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ABSTRACT. It is shown that (i) a diffeomorphism of manifolds with indefinite

metrics preserving degenerate r-plane sections is conformal, (li) a sectional

curvature-preservlng diffeomorphlsm of manifolds with indefinite metrics of dimen-

sion > 4 is generically an isometry.

1. INTRODUCTION.

Let (Mn, g), (n,) be pseudo-Riemannian manifolds. A diffeomorphism f:M /

is said to be curvature-preserving if given peM and a 2-dimensional plane section

o at p such that the sectional curvature K(o) is defined then at f(p) the sectional

curvature K(f,o) is defined and K(o) K(f,u). A point peM is called isotroplc if

there exists a constant c(p) such that K(u) c(p) for any 2-plane section at p

for which K is defined. I studied the notion of a curvature preserving map in the

Riemannian case and showed

THEOREM i. If n > 4 (Mn,g), (n,) Riemannian manifolds and non-lsotropic
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points are dense in M then a curvature-preserving map f:M + M is an isometr.

cf. [i] and for this and other types of "Riemannian" analogues cf. [5], [6]

[2], [3], [4]. The purpose of this note is to point out Theorem 2.

THEOREM 2. Theorem i is valid for pseudo-Riemannlan manifolds.

Unlike certain local results in pseudo-Riemannian geometry Theorem 2 is not

obtained from Theorem i by formal changes of signs. Its proof is actually simpler

but for an entirely different reason which seems to be well worth pointing out.

One of the main steps in Theorem i and its other analogues mentioned above is that

a curvature-preserving map is necessarily conformal on the set of nonisotropic

points. This step is automatic in the case of indefinite metrics due for the next

result. Let us call a subspace A of a tangent space at a point in M degenerate

(resp. nondegerate) if glA is degenerate (resp. nondegenerate). Sectional curva-

ture is defined only for nondegenerate 2-plane sections. So by definition a

curvature-preserving map carries degenerate 2-plane sections into degenerate 2-

plane sections.

THEOREM 3. Let (Mn,g), (,) be indefinite pseudo-Riemannian manifolds,

n 3. Let r i. Let f:M / M be a diffeomorphism which carries degenerate r-

dimensional plane sections of M into those of M. Then f is conformal. (i.e.

there exists a nowhere vanishing smooth function #:M + such that f* #.g.)

Recall that a geodesic on (M,g) whose tangent vector field X satisfies

g(X,X) 0 is called a light like geodesic.

COROLLARY i. Let (Mn, g), (n,g) be indefinite pseudo-Riemannian manifolds.

Then a diffeomorphism f:M / M which preserves light-llke geodesics is conformal.

This is the case r i of Theorem 3. Note that this corollary is an exten-

sion and "Geometrization" of H. Weyl’s famous observation about the conformal

invariance of Maxwell’s equations.
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2. PROOF OF THEOREMS 2 AND 3.

First we prove Theorem 3.

The case r 2 contains the essential ideas so we prove the theorem only in

this case leaving the general case to the reader. Let T (M) denote the tangent
P

space to M at p etc. It clearly suffices to show that for each p in M

f, :Tp(M) / Tf(p) (M) is a homothety. Let {ei,ej,e} be an orthonormal set of
P

vectors so that

<el,el> <ej,ej> =-<e,ee>

Let f,ei e
i

and g or <,> also denote the canonically induced metric in all

tensor powers and similarly for g. Let x2 + y2 I. Then the 2-dimensional

plane o=span {xe
i
+ yej + e ye + xeo} is degenerate. Hence by hypothesis

i 3

f,o is degenerate i.e.

o g ((x e
i
+ y ej + ee)A(-y ei + x ej), (x e

i + y ej + e)A(-y e
i
+ x ej))

g (e
i

A j + x e A ?.-y e A e e
i

A e + x e A .-y e A el)

{g(e
i

A ej, e
i

A ej) + x2g(ee A ej, e A ej) + y2(e A el, ee A ei

2xy g(e A el, e, A ej)} + {2x g(e
i

A ej, e, A ej) 2y g(ei A ej, ee A ei }"

A similar expression with (x,y) replaced by (-x,-y) is also true. Hence each {,}

is separately zero and since (x,y) are subject to the only relation x2 + y2 i

it follows that

o g(e
i

A e A ei) g(e
i

A ej, e A ej) g(e
i
A e, ej A e,)

and

g(e
i A ej, e

i
A ej) -g(e

i
A ee, e

i
A ee) -g(ej A e, ej A ee)
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i.e. {e A ej, e
i

A ea, ej A ea} is an orthogonal basis of the second exterior

power A2(spa {’, e], ea}). This ans that f induces a hothetic mp of

A2(span {ei, el, e}) onto A2(span {’-t’ ej, ea}). It is then easy to see that f

induces a homothety of span {e
i, e], e} onto span {e

i, ej, e}. By varying the

set {el, e,j ea} it is clear that f, is a homothety. This finishes the proof. QED
P

PROOF OF THEOREM 2. By Theorem 3 we have f* .g where is a nowhere

vanishing function on M. Now the proof that f is an isometry i.e. i is exactly

as in [i] or [4] 7. QED
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