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ABSTRACT. The damping of gravity waves over the surface of a layer of viscous

fluid which overlies a porous bed saturated with the same fluid is studied.

It is shown that viscosity may not be the dominant influence in the damping

mechanism; the damping effects due to percolation in the fixed bed may be of

the same or even higher order than those due to viscosity.
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i. INTRODUCTION.

In this paper we explore the role of permeability in the damping of viscous,

gravity waves on the free surface of a layer of fluid. It is assumed that this

layer is bounded below by a porous bed of infinite depth which is saturated

with the same fluid.

Owing to the practical interest in such a study, this problem has already
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received attention from some authors. The main difficulty lies in the formula-

tion of the appropriate boundary conditions at the interface. Putnam [i],

followed by Reid and Kajura [2] considered the inviscid problem and calculated

the effect of permeability of the porous medium on the damping of such waves.

Their model was based upon the continuity of the pressure and the vertical velo-

city at the interface; the horizontal velocity thereat was left unaccounted.

Hunt [3], generalized the above model by considering a viscous fluid, instead.

In the way of interfacial conditions, he used the continuity of the vertical

stress in place of that of the pressure and assumed zero horizontal velocity at

the bed.

Two comments are germane to Hunt’s conditions. Firstly, he included

viscosity term in the expression for the stress in the bed. The same has also

been assumed by Liu [6]. This is questionable because its effect is already

included in Darcy drag term and so should not be considered again through the

boundary conditions. The same has been recognized by Nield [4] and Murray [5].

In the present formulation, we equate the vertical stress in the fluid to the

pressure alone in the bed. The second comment pertains to the assumption of

zero horizontal fluid velocity at the bed surface. This would be valid for a

rigid non-porous bottom but would not be consistent when motion of the fluid is

permitted in the bed. To rectify the situation, Liu [6], instead, adopted the

continuity of the horizontal component across the interface. This also is open

to a similar objection. The validity of this condition would require that there

should be two fluids, perhaps of different physical characteristics, but would

not permit the presence of solid particles in the lower medium even if we

assume a continuum flow which, indeed, we do. Murray, by requiring that the

velocity components in the fluid match with the specific velocity components in

the bed, adopts an intuitively more appealing condition. There, however, is no
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experimental evidence to support it. Also, he uses the seepage velocity in the

linearized friction term. As a result the limiting case when the frequency

becomes infinitely small cannot be reduced to Darcy’s equation.

The question of relating horizontal velocity components across the inter-

face has been a subject of several studies. The experimental studies of

Beavers and Joseph [4], for example, lead to the conclusion that there is some

net drag due to the transfer of forward momentum across the permeable interface,

thus, negating one of the premises on which Hunt’s study rests. They have also

derived an empirical condition (see the equation (2.7), below), that describes

the tangential flow in the vicinity of the boundary. Since then, their condi-

tion has found ample further support, both experimental and theoretical in the

works of Saffman [8], Neale and Nadar [9], Beavers, Sparrow and Nasha [I0], to

mention a few. The same will be used in this work to study the effect of per-

meability and viscosity in the damping of two dimensional gravity waves.

2. FORMULATION OF THE PROBLEM.

We consider two-dimensional wave motion on the froee surface of a layer of

viscous, incompressible fluid of finite depth h and infinite horizontal extent,

overlying an infinitely deep porous bed which is assumed to be saturated with

the same fluid. The physical plane is taken to be the (x’, y’) plane with x’

axis along the free surface and y’ axis vertically upward. Thus the bed sur-

face is located at y’ -h. Our problem is to find solutions which are small

amplitude surface waves in the (x’, y’) plane and to study the effect of vis-

cosity and permeability on their decay.

The linearized Navier-Stokes equations of motion for the fluid and Darcy’s

equations for the bed are
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--Iv’ +vV’2ql (2.1)qlt O Pl

i i---V’p’ D’(n) (2 2)
n q2t 2 q2

Here the subscripts ’i’ & ’2’ (used as ’i’ below), refer to the fluid and the

bed respectively. The quantities V’ (! (u[ ’.) representx’ -y’ and qi i i

the gradient and the velocities respectively. The latter satisfy the continuity

equations,

0V’’ql’ 0 and V’-q2
The gravitational effect is included in the pressure terms so as to write

Pi’ P’i PgY Po
where P’. are the hydrodynamical pressures in the two regimes, p is the constant.

l o

Also, p is the viscosity of the fluid, n is the porosity of the medium and D’(n)

represents the drag in the fluid due to the solid particles in the porous matrix.

We assume that the particles are fixed so that D’(n) may be taken as a constant,

equivalent to /K’, where K’ is the bed permeability.

The above equations are to be solved subject to the following boundary

conditions. At the free surface we have"

aty’ =0kinematic condition v
I t

vertical stress condition- -PI + 2pviy, 0 at y’ 0

horizontal stress condition" (v’ + u’ 0 at y’ 0
ix ly

At the interface we have,

(2.3)

(2.4)

(2.5)

vI’ v2’ at y’ -h (2.6)

u’ - +
DI-, at y’ -h

ly’ KCr- Ul P2x’ (2.7)

where is a dimensionless number which depends upon the material of the porous

matrix and is often called the slip constant.
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-Pi + 20V’ly, P at y’ -h (2.8)

Finally, we require that

q2’ 0 as y’ (2.9)

The condition (2.7) is due to Beavers and Joseph. It finds its genesis in the

observed fact that there is some net tangent drag due to the transfer of for-

ward momentum at a permeable boundary. As a result of which the tangential com-

ponent of the velocity of the fluid can be considerably greater than the mean

filter velocity within the porous medium. Also, as discussed above, the vis-

cosity term on the right of (2.8) has been omitted on the ground that the drag

due to the solid particles has already been accounted for in Darcy’s equations.

The present formulation differs from that of Hunt because of the difference

between the equations (2,7), (2.8) and their counterparts in his analysis.

Assuming that k, w have the dimensions of the wave number and the frequency

respectively, we define the dimensionless variables as follows"

(x,y) k(x’,y’), t t’w (u _k (u’ v
j’ w j’

i 9k
pj (k2/w2lp pj F -- e k2/w

W

D D’/pw K k2K rl r?’d

(2.10)

We shall also write, X /V, qj VxCj.
Introducing the new variables in the above equations we get,

(- V2)V2l 0

--gt +nD)V22 0

(2.Zl)

(2.12)

-ix t at y=0 (2.13)

Pl FN + 2g@Ixy 0 at y 0 (2.14)

V(@lxx @lyy) 0 at y: 0 (2.15)
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at y -khlx 2x (2.16)

i
@lyy l(@ly + P2x at y -kh (2.17)

PI + 2Slyx P2 at y -kh (2.18)

@2x’ 2y 0 as y (2.19)

Using the dimensionless form of the horizontal component of (2.1), we can

easily eliminate Pl from (2.14) to obtain,

s (3@lyxxt + @lyyyt @lytt Fxt 0 (2.20)

Using (2.13) to eliminate from (2.20), we get

+ 0 aty 0e 3@lyxxt + @lyyyt lytt Fixx (2.21)

Similarly, using the horizontal components of the dimensionless forms of

(2.1) and (2.2) to eliminate Pl

(i@ + D at y -kh(lyyy + 3lyxx) lyt n 2yt 2y

and

2y i at y -kh
lyy

1 {ly 2yt

and P2 from (2.18) and P2 from (2.17), we get,

(2.22)

(2,23)

3. SOLUTION OF THE PROBLEM.

We are interested in studying the progressive wave solutions of the form

j j(y)ei(t-x), I, 2 (3.1)

Substituting (3.1) in (2.11) & (2.12) and invoking the condition (2.19) we get

@I AeY+kh + Be(-y+hk) + Ce-6(y+kh) + DeSY (3.2)

2 EeY+kh (3.3)

2
where B i + i/s and A, B, C, D, E are constants of integration. The form

of the solution (3.2) is motivated by the presence of the boundary layer at

the free surface. Also using (3.1) in the boundary conditions (2.15), (2.22),
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(2.16), (2.22), (2.23) and discarding exponentially decaying terms, we have"

kh -kh
2Age + 2Bee + D(2e + i) 0 (3.4)

Aekh(l-F-2ie) Be-kh(l + F- 2ie) D(F + 2ie8) 0 (3.5)

A + B + C E 0 (3.6)

A(2e + i) B(2e + i) -2eC- (i__ + D)E 0
n

i i__) E oe(y -1 )A + eB(y + i) + eC(-- + B) + e(l +
nD

(3.7)

(3.8)

We thus have five homogeneous equations in five unknowns, A, B, C, D, E, for a

nontrivial solution to the above problem, we must have

kh -kh2ce 2se 0 2s + i 0

kh -khe (l-F-2ie) -(I+F- 2ie)e 0 -(F + 2ie8) 0

i i i 0 -i

2c + i -(2c + i) -2 B 0 -DN

AI i ( _i_A i 2s( + e(-- +) 0 c N

0 (3.9)

where N I + i/nD.

In order to find the unknowns A, B, C, etc., we use the third row in the

determinant above, to obtain, after some simplification.

i3/2 1/2A i+DN+ 5 2DNi
(DN + i) e(N + + iND)

3/2 3/2 5 2 5 e2i (-DN + 2N + -- -) + 0(

B i DN) + i
3/2 1/2( 5 2iND

s DN- i) + c(-+ --- + iND + N)

.3/2 3/2 5 2 5 c2i (- DN + y + + 2N) + 0(

2
C 2si(DN iN i/l) + 0(

3/2D iDN sinh kh cosh kh) + 4i 3/2 g (cosh kh iDN sinh kh) + 0(g2)

iE 4c(i sinh kh + DN cosh kh)(- + /) + 0(s2)
A
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1/2Also expanding the determinant in powers of s we obtain, after some

tedious algebra,

i 1/2( D 1 3F[ (T + -) (is) iT- + s(i + -+ l--)

iT 2T 1+ (is)3/2(--+ D 2DN
+ )]

iT i/2( D 4i T %N
+ [- I + -) + (is) i -s(iT --+ +

9i 4iT 2 9T 6 2+ (is)3/2(-- +
l D

+
2DN InN

)] + 0(s 0 (3.10)

where T tanh(kh).

The above equation, together with (2.10) yields the required dispersion

relation for the wave frequency w and, as a result, the wave form exp(iwt ikx)

as it evolves from an initially assumed form exp(iw t ikx), at any arbitrary
O

time t, under the effects of viscosity of the fluid and the permeability char-

acteristics of the porous bed.

In order to find the modes of vibrations, we set s 0 in the equation

(3.10). Realizing that w w in this case, we have, in terms of the dimensional
O

variables,

gk[i(l + T) + TD’] w2[i(T + i_) +
D’ ]

n o n pw
(3.11)

Separating into the real and imaginary parts, we obtain,

and

2
w gk tanh kh
O

2 (tanh kh + n)
w gk
o [i + n tanh kh)"

These results agree with those of the afore mentioned authors.

We first deduce from the relation (3.10), the known viscous effect on

the damping of a wave on the free surface of a fluid, bounded below by an

impermeable, rigid bottom. This can be done by using two limiting processes.
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The first tends to replace the porous bed by an impermeable one and the second

provides the vanishing of the horizontal slip at the bottom as a special case

of the interfacial condition (2.24). They are accomplished by the limits,

ND + , while holding D fixed and , D / . Using these in the dispersion

relation (3.10), we obtain

where e k2)/w.
2(w Tvr- /i-) gk(,/ /I-T) (3 12)

We now let w Wo + Wl’ Wl << Wo in equation (3.12) to obtain, (3.13)

(i- i)k
o

(3.14)Wl
sinh 2kh

This give.s both the frequency as well as the amplitude correction and agrees

wih the corresponding expressions in Weuhausen and Laitone [ii].

4. DISCUSSION OF THE RESULT.

Strictly speaking, the role of permeability on the damping characteristics

of surface waves depend, in a composite way, on various physical parameters of

the problem. For a bed of course sand, the permeability K’ 0(10-6)cm2.
Assuming the kinematic viscosity of the water to be 0(10-2 cm2/sec, we find

D’ 0(i04). For water 0(i) so that 0(I03). Under these conditions,

it is clear from (3.10) that the permeability effect is negligible and the

damping is dominated by viscosity and is of 0(r). The presence of the porous

bed is simply irrlelvant.

The above estimate of the magnitude of K’ is correct only in deep waters.

In shallow waters, particularly near the coast, the upward flow of water may

increase the permeability and thus reduce the drag due to the bed. In this case

K’ may be 0(10-4 or 0(10-3 so that D’ 0(102
or D(10) and 0(10-2 or

-i0(i0 respectively. Guided by the procedure adopted in the derivation of the
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equation (3.14), we can obtain the frequency correction relevant to the new

numerical data. Thus using the transformation (3.13) in the equation (3.10)

and retaining only the dominating terms, we get, after some algebra,

w (I- T2) D + i/n D

im(wl)
o [.

o o o

2T /- /IM 12
+ IMo I + ] (4.1)

o o

where M N D
o o o

The quantities with the subscript zero, are the same as their unsubscripted

analogues, scaled to the initial frequency w Thus, for example,
o

k
2 ]2

w o w
o

The equation (4.1) yields the frequency correction w
I

to w To interpret
o

D’ i
it, we observe that M m+ This quantity in the present case could be

o w n
o

O(lO) or O(1) according as w O(1) or O(lO). In the first case, the bed
o

porosity has contribution of the same order as viscosity and the two are

additive. The second case entails the possibility of permeability being the

dominating influence as an agent for the decay of surface waves.
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