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The group transformation theoretic approach is applied to present an analytic
study of the temperature distribution in a triangular plate, Ω, placed in the field
of heat flux, along one boundary, in a form of polynomial functions of any degree
“n.” The Laplace’s equation has been reduced to second-order linear ordinary dif-
ferential equation with an appropriate boundary conditions. Exact solution has
been obtained for general shape of Ω and different boundary conditions.
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1. Introduction. The Laplace’s equation arises in many branches of physics,

from which it attracts a wide band of researchers. Electrostatic potential, tem-

perature in the case of steady state heat conduction, velocity potential in the

case of steady irrotational flow of an ideal fluid, concentration of a substance

that is diffusing through a solid, and the displacements of a two-dimensional

membrane in equilibrium state are counter examples in which the Laplace’s

equation is satisfied.

The mathematical technique used in the present analysis is the parameter-

group transformation. The group methods, as a class of methods lead to the

reduction of the number of independent variables, were first introduced by

Birkhoff [6] in 1948, where he made use of one-parameter transformation

groups. In 1952, Morgan [9] presented a theory which has led to improvements

over earlier similarity methods. The method has been applied intensively by

Abd-el-Malek et al. [1, 2, 3, 4, 5, 7].

In this paper, we present a general procedure for applying one-parameter

group transformation to the Laplace’s equation in a triangular domain. Un-

der the transformation, the partial differential equation with boundary condi-

tions in polynomial form, of any degree, is reduced to an ordinary differential

equation with the appropriate corresponding conditions. The equation is then

solved analytically for the general form of the triangular domain and boundary

conditions.

2. Mathematical formulation. The governing equation for the distribution

of temperature T(x,y) is given by

∂2T
∂x2

+ ∂
2T
∂y2

= 0, (x,y)∈Ω (2.1)
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Figure 2.1. Geometrical configuration of the problem.

with the following boundary conditions:

T(x,y)=αq(x), (x,y)∈ L1,

∂T
∂y

= βxn, (x,y)∈ L2.
(2.2)

It is required to find the distribution of the temperature T(x,y) inside the

domain Ω, defined in Figure 2.1, and the heat flux across L3, where

L1 :y = x tanΦ1,

L2 :y =−x tanΦ2,

L3 :y = x tanΦ3+b, b �= 0, n∈ {0,1,2,3, . . .}, α and β are constants.
(2.3)

Write

T(x,y)=w(x,y)q(x), q(x) �≡ 0 in Ω, (2.4)

by which differential equation (2.1) takes the form

q(x)
(
∂2w
∂x2

+ ∂
2w
∂y2

)
+2

∂w
∂x

dq
dx

+w d
2q
dx2

= 0, (2.5)

and the boundary conditions (2.2) take the form

w(x,y)=α, (x,y)∈ L1,

∂w
∂y

= βxn

q(x)
, (x,y)∈ L2.

(2.6)

3. Solution of the problem. The method of solution depends on the ap-

plication of a one-parameter group transformation to the partial differential

equation (2.1). Under this transformation, the two independent variables will

be reduced by one and the differential equation (2.1) transforms into an or-

dinary differential equation in only one independent variable, which is the

similarity variable.
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3.1. The group systematic formulation. The procedure is initiated with the

group G, a class of transformation of one-parameter “a” of the form

G : S̄ = CS(a)S+KS(a), (3.1)

where S stands for x, y , w, and q and the C ’s and K’s are real valued and at

least differentiable in the real argument “a.”

3.2. The invariance analysis. To transform the differential equation, trans-

formations of the derivatives of w and q are obtained from G via chain-rule

operations

S̄ī =
(
CS

Ci

)
Si, S̄ij =

(
CS

CiCj

)
Sij, i= x,y ; j = x,y, (3.2)

where S stands for w and q.

Equation (2.5) is said to be invariantly transformed, for some functionH1(a),
whenever

q̄
(
w̄x̄x̄+w̄ȳȳ

)+2w̄x̄q̄x̄+w̄q̄x̄x̄ =H1(a)
[
q
(
wxx+wyy

)+2wxqx+wqxx
]
.

(3.3)

Substitution from (3.1) into (3.3) yields

q
([
CqCw(
Cx
)2

]
wxx+

[
CqCw(
Cy
)2

]
wyy

)

+2

[
CqCw(
Cx
)2

]
wxqx+

[
CqCw(
Cx
)2

]
wqxx+ζ1(a)

=H1(a)
[
q
(
wxx+wyy

)+2wxqx+wqxx
]
,

(3.4)

where

ζ1(a)=
(
KqCw

)( wxx(
Cx
)2 +

wyy(
Cy
)2

)
+
[
KwCq(
Cx
)2

]
qxx. (3.5)

The invariance of (3.4) implies that ζ1(a)≡ 0. This is satisfied by putting

Kq =Kw = 0,
[
CqCw(
Cx
)2

]
=
[
CqCw(
Cy
)2

]
=H1(a), (3.6)

which yields

Cx = Cy. (3.7)

Moreover, the boundary conditions (2.6) are also invariant in form, implying

that

Kx =Kq =Kw = 0, CqCw = (Cx)n+1, Cw = 1. (3.8)
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Finally, we get the one-parameter group G which transforms invariantly the

differential equation (2.5) and the boundary conditions (2.6). The group G is

of the form

G :




x̄ = Cxx,
ȳ = Cxy+Ky,
w̄ =w,
q̄ =

[(
Cx
)n+1

]
q.

(3.9)

3.3. The complete set of absolute invariants. Our aim is to make use of

group methods to represent the problem in the form of an ordinary differential

equation. Then, we have to proceed in our analysis to obtain a complete set of

absolute invariants.

If η≡ η(x,y) is the absolute invariant of the independent variables, then

gj(x,y ;w,q)= Fj
[
η(x,y)

]
; j = 1,2 (3.10)

are the two absolute invariants corresponding to w and q. The application of

a basic theorem in group theory, see [8], states that a function g(x,y ;w,q)
is an absolute invariant of a one-parameter group if it satisfies the following

first-order linear differential equation:

4∑
i=1

(
αiSi+βi

) ∂g
∂Si

= 0, (3.11)

where Si stands for x, y , w, and q, respectively, and

αi = ∂C
Si

∂a
(
a0), βi = ∂K

Si

∂a
(
a0), i= 1,2,3,4 (3.12)

and a0 denotes the value of “a” which yields the identity element of the group.

From (3.6), (3.7), (3.8), and (3.12), we get

α1 =α2, α3 = 0, β1 = β3 = β4 = 0. (3.13)

We take β2 = 0.

Owing to (3.11), η(x,y) is an absolute invariant if it satisfies

x
∂η
∂x

+y ∂η
∂y

= 0, (3.14)

which has a solution in the form

η(x,y)= y
x
. (3.15)
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To obtain the absolute invariant of the dependent variables w and q, apply

(3.11), we get

q(x)= R(x)θ(η). (3.16)

Since q(x) and R(x) are independent of y , while η is a function of x and

y , then θ(η) must be a constant, say θ(η)= 1, hence

q(x)= R(x), (3.17)

and the second absolute invariant is

w(x,y)= F(η). (3.18)

4. The reduction to an ordinary differential equation. As the general anal-

ysis proceeds, the established forms of the dependent and the independent ab-

solute invariant are used to obtain an ordinary differential equation. Generally,

the absolute invariant η(x,y) has the form given in (3.15).

Substituting from (3.15) and (3.18) into (2.5) yields

(
η2+1

)d2F
dη2

−2η
[
x
R
dR
dx

−1
]
dF
dη

+
[
x2

R
d2R
dx2

]
F = 0. (4.1)

For (4.1) to be reduced to an expression in the single independent invariant η,

the coefficients should be constants or functions of η alone. Thus,

x
R
dR
dx

= C1, (4.2)

x2

R
d2R
dx2

= C2. (4.3)

It follows then that, from (4.2),

R(x)= C3xC1 . (4.4)

Also, from (4.2) and (4.3), we can show that

C2 = C1
(
C1−1

)
. (4.5)

Take C3 = 1 and C1 =n+1, we get C2 =n(n+1), hence we have

(
η2+1

)d2F
dη2

−2ηn
dF
dη

+n(n+1)F = 0. (4.6)
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Under the similarity variable η, the boundary conditions are

F
(
tanφ1

)=α, dF
dη

(−tanφ2
)= β, (4.7)

such that the boundary L1 or L2 does not coincide with the vertical axis.

5. Analytical solution. The solution corresponds to n≥ 0 is

F(η)= b0

[(n+1)/2]∑
k=0

(−1)k
(
n+1

2k

)
η2k

+
(
b1

n+1

) [n/2]∑
k=0

(−1)k
(
n+1

2k+1

)
η2k+1

(5.1)

hence we get

T(x,y)= b0

[(n+1)/2]∑
k=0

(−1)k
(
n+1

2k

)
y2kxn−2k+1

+
(
b1

n+1

) [n/2]∑
k=0

(−1)k
(
n+1

2k+1

)
y2k+1xn−2k.

(5.2)

The heat flux across L3 is

∂T
∂n
(x,y)|L3 =−

∂T
∂x

sinφ3+ ∂T∂y cosφ3, (5.3)

hence we get

∂T
∂n
(x,y)|L3 = b0

[−sinφ3M0,1+cosφ3M0,2
]

+
(
b1

n+1

)[−sinφ3M1,1+cosφ3M1,2
]
.

(5.4)

Applying the boundary conditions (4.7), we get

α= b0z0,1+
(
b1

n+1

)
z1,1,

β= b0z0,2+
(
b1

n+1

)
z1,2,

(5.5)
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where

M0,1 =
[n/2]∑
k=0

(−1)k(n−2k+1)
(
n+1

2k

)
y2kxn−2k,

M1,1 =
[(n−1)/2]∑
k=0

(−1)k(n−2k+1)
(
n+1

2k+1

)
y2k+1xn−2k−1,

M0,2 =
[(n+1)/2]∑
k=1

(−1)k(2k)
(
n+1

2k

)
y2k−1xn−2k+1,

M1,2 =
[n/2]∑
k=0

(−1)k(2k+1)
(
n+1

2k+1

)
y2kxn−2k,

z0,1 =
[(n+1)/2]∑
k=0

(−1)k
(
n+1

2k

)
tan2kφ1,

z1,1 =
[(n+1)/2]∑
k=0

(−1)k
(
n+1

2k+1

)
tan2k+1φ1,

z0,2 =
[(n+1)/2]∑
k=0

(−1)k(2k)
(
n+1

2k

)
tan2k−1φ2,

z1,2 =
[n/2]∑
k=0

(−1)k(2k+1)
(
n+1

2k+1

)
tan2kφ2.

(5.6)

Solving (5.5) for a given value of “n,” we get b0 and b1.

Theorem 5.1. The system of (5.5) possesses a solution, if the difference be-

tween “Φ1/n” and the vertex angle between L1 and L2 is not an odd integral

multiple of “π/(2n).”

Proof. Let z = eiφ1 . Hence,

zn+1+z−(n+1) = (cosφ1+isinφ1
)n+1+(cosφ1−isinφ1

)n+1

= cosn+1
([

1+itanφ1
]n+1+[1−itanφ1

]n+1
)
.

(5.7)

Applying the binomial theorem, we obtain

zn+1+z−(n+1) = 2
[
cosn+1φ1

]
z0,1. (5.8)

On the other hand,

zn+1+z−(n+1) = 2
[
cos(n+1)φ1

]
. (5.9)

Equating the right-hand side of (5.8) and (5.9) and solving for z0,1, we get

z0,1 = cos(n+1)φ1

cosn+1φ1
. (5.10)
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Figure 6.1. Geometrical configuration of the problem of Case 6.1.

Similarly, we get

z1,1 = sin(n+1)φ1

cosn+1φ1
,

z0,2 = (n+1)sinnφ2

cosnφ2
,

z1,2 = (n+1)cosnφ2

cosnφ2
.

(5.11)

The system of (5.5) has a unique solution if the determinant

D =
∣∣∣∣∣z0,1 z0,2

z1,1 z1,2

∣∣∣∣∣ �= 0. (5.12)

That is,

D = z0,1z1,2−z0,2z1,1 = cos
[
n
(
φ1+φ2

)+φ1
]

cosn+1φ1 cosnφ2
(n+1) �= 0 (5.13)

which is satisfied if the difference between “Φ1/n” and the vertex angle be-

tween L1 and L2 is not an odd multiple of “π/(2n).”

6. Special cases

Case 6.1. Boundary conditions are combinations of two different degrees

of polynomials.

The governing equation for the distribution of temperature T(x,y) is given

by

∂2T
∂x2

+ ∂
2T
∂y2

= 0, (x,y)∈Ω (6.1)
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with the following boundary conditions:

T(x,y)= q(x), (x,y)∈ L1,

∂T
∂y

= β1x+β2x5, (x,y)∈ L2,

φ1 = 45◦, φ2 = 45◦, φ3 = 0◦.

(6.2)

From the principle of superposition, write

T(x,y)= T1(x,y)+T2(x,y), (6.3)

where the boundary conditions for T1(x,y) are

T1(x,y)=α1q1(x), (x,y)∈ L1,

∂T1

∂y
= β1x, (x,y)∈ L2,

(6.4)

and the boundary conditions for T2(x,y) are

T2(x,y)=α2q2(x), (x,y)∈ L1,

∂T2

∂y
= β2x5, (x,y)∈ L2,

(6.5)

where

q(x)=α1q1(x)+α2q2(x). (6.6)

Setting n= 1 in the general solution (5.2) and (5.4), we get

T1(x,y)= β1−α1

2

(
x2−y2)+α1yx,

∂T1

∂n
(x,y)|L3 = b

(
α1−β1

)+α1x.
(6.7)

Setting n= 5 in the general solution (5.2) and (5.4), we get

T2(x,y)= 3α2−β2

24

(
x6−15y2x4−15y4x2−y6)

− α2

8

(
6yx5−20y3x3+6y5x

)
,

∂T2

∂n
(x,y)|L3 =−

3α2−β2

4
b
(
5x4−10b2x2+b4)

− 3α2

4

(
x5−10b2x3+5b4x

)
.

(6.8)
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Figure 6.2. Geometrical configuration of the problem of Case 6.2.

Hence, the analytic solutions have the form

T(x,y)= β1−α1

2

(
x2−y2)+ 3α2−β2

24

(
x6−15y2x4−15y4x2−y6)

− α2

8

(
6yx5−20y3x3+6y5x

)
,

∂T
∂n
(x,y)|L3 = b

(
α1−β1

)+α1x− 3α2−β2

4
b
(
5x4−10b2x2+b4)

− 3α2

4

(
x5−10b2x3+5b4x

)
.

(6.9)

Case 6.2. One of the boundaries is vertical.

The governing equation for the distribution of temperature T(x,y) is given

by

∂2T
∂x2

+ ∂
2T
∂y2

= 0, (x,y)∈Ω (6.10)

with the following boundary conditions:

T(x,y)=αq(y), (x,y)∈ L1,

∂T
∂x

= βyn, (x,y)∈ L2, φ2 = 90◦.
(6.11)

Write

T(x,y)=w(x,y)q(y), q(y) �≡ 0 in Ω, (6.12)

by which differential equation (6.10) takes the form

q(y)
(
∂2w
∂x2

+ ∂
2w
∂y2

)
+2

∂w
∂y

dq
dy

+w d2q
dy2

= 0, (6.13)
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and the boundary conditions (6.11) take the form

w(x,y)=α, (x,y)∈ L1,

∂w
∂x

(x,y)= βyn

q(y)
, (x,y)∈ L2.

(6.14)

Applying the invariant analysis, we get

G :




x̄ = Cxx,
ȳ = Cxy,
w̄ =w,
q̄ =

[(
Cx
)n+1

]
q,

(6.15)

and the absolute invariant η(x,y) is

η(x,y)= x
y
. (6.16)

The complete set of absolute invariants corresponding to “w” and “q” are

q(y)= R(y), w(x,y)= F(η). (6.17)

Substituting (6.16) and (6.17) in (6.13), with R(y)=yn+1, we get

(
η2+1

)d2F
dη2

−2nη
dF
dη

+n(n+1)F = 0. (6.18)

Under the similarity variable η, the boundary conditions take the form

F
(
tanφ1

)=α, dF
dη
(0)= β. (6.19)

Solution of (6.18) with the boundary conditions (6.19) is

T(x,y)= b0

[(n+1)/2]∑
k=0

(−1)k
(
n+1

2k

)(
x
y

)2k
yn+1

+
(
b1

n+1

) [n/2]∑
k=0

(−1)k
(
n+1

2k+1

)(
x
y

)2k+1

yn+1,

(6.20)

where

α= b0

[(n+1)/2]∑
k=0

(−1)k
(
n+1

2k

)
cot2k+1φ1

+
(
b1

n+1

) [n/2]∑
k=0

(−1)k
(
n+1

2k+1

)
cot2k+1φ1,

β= b1.

(6.21)
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Figure 6.3. Geometrical configuration of the problem of Case 6.3.

Solving (6.21) for the given value of “n,” we get both b0 and b1.

The heat flux across L3 is

∂T
∂n
(x,y)|L3 = b0

[−sinφ3N0,1+cosφ3N0,2
]

+
(
b1

n

)[−sinφ3N1,1+cosφ3N1,2
]
,

(6.22)

where

N0,1 =
[(n+1)/2]∑
k=0

(−1)k(2k)
(
n+1

2k

)
x2k−1yn−2k,

N1,1 =
[n/2]∑
k=0

(−1)k(2k+1)
(
n+1

2k+1

)
x2kyn−2k−1,

N0,2 =
[n/2]∑
k=1

(−1)k(n−2k+1)
(
n+1

2k

)
x2kyn−2k,

N1,2 =
[(n−1)/2]∑
k=0

(−1)k(n−2k)
(
n+1

2k+1

)
x2k+1yn−2k+1.

(6.23)

Case 6.3. The two boundary conditions are identical.

The governing equation for the distribution of temperature T(x,y) is given

by

∂2T
∂x2

+ ∂
2T
∂y2

= 0, (x,y)∈Ω (6.24)

with the following boundary conditions:

T(x,y)=αq(x), (x,y)∈ L1,

∂T
∂y

=−3
4
αx2, (x,y)∈ L2,

φ1 = 60◦, φ2 = 45◦, φ3 = 0◦.

(6.25)
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Write

T(x,y)=w(x,y)q(x), q(x) �≡ 0 in Ω, (6.26)

by which differential equation (6.24) takes the form

q(x)
(
∂2w
∂x2

+ ∂
2w
∂y2

)
+2

∂w
∂x

dq
dx

+w d
2q
dx2

= 0, (6.27)

and the boundary conditions (6.11) take the form

w(x,y)=α, (x,y)∈ L1,

∂w
∂y

(x,y)=− 3αx2

4q(x)
, (x,y)∈ L2.

(6.28)

Applying the invariant analysis, we get

G :




x̄ = Cxx,
ȳ = Cxy,
w̄ =w,
q̄ =

[(
Cx
)3
]
q,

(6.29)

and the absolute invariant η(x,y) is

η(x,y)= y
x
. (6.30)

The complete set of absolute invariants corresponding to “w” and “q” are

q(x)= R(x), w(x,y)= F(η). (6.31)

Substituting (6.30) and (6.31) in (6.27), with R(x)= x3, we get

(
η2+1

)d2F
dη2

−4η
dF
dη

+6F = 0. (6.32)

Under the similarity variable η, the boundary conditions take the form

F
(√

3
)=α, dF

dη
(−1)=−3

4
α. (6.33)

It can be easily shown that the two conditions (6.33) are identical.

Hence, to find the second condition, assume that

∂T
∂y
(x,y)|L3 =

3
4
αbx+γ(x2−b2), (6.34)

where “γ” is a constant.
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The solution of (6.32) with the aid of the boundary conditions (6.33) and

(6.34) is

T(x,y)=−α
8

(
x3−3xy2)+ γ

3

(
3x2y−y3). (6.35)
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