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In the introductory part of this paper, a notion of absolute integral sums of a
complex function, which is more general with respect to that of an integral and
integral sums of ordinary integral calculus, is defined. Throughout the main part
of the paper, an attempt has been made to generalize, on the basis of redefining
the notion of a complex function residue, some of the fundamental results of
Cauchy’s calculus of residues of analytic functions. The foundation stone of the
whole theory is the total value of an improper integral of complex functions.
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1. Introduction

1.1. Notations and definitions. In this paper, we mean by a three-dimen-

sional complex vector space �r = x�e1 + iy�e2 + ��n (i denotes the imaginary

unit) a vector space of the definite Euclidean metric ds2 = d�r ·d�r∗ = dx2+
dy2 +d�2, where �r∗ = x�e1 − iy�e2 + ��n is the complex conjugate of �r and

�n is a normal vector of the unit length of �� = x�e1+ iy�e2 (�� is a two-dimen-

sional complex vector plane of the definite Euclidean metric dq2 = d��·d��∗ =
dx2+dy2). The one-to-one map z∗ = x− iy and z = x+ iy maps the two-

dimensional complex vector plane �� = z∗ �w1+z �w2 ( �wl · �wj = δlj , where δlj
is the Kronecker delta, more precisely, the identity 2× 2 matrix) into itself

(��= x�e1+iy�e2), with the so-called Jacobian of transformation

J =

∣∣∣∣∣∣∣∣∣

∂z∗

∂x
∂z∗

∂iy
∂z
∂x

∂z
∂iy

∣∣∣∣∣∣∣∣∣
=
∣∣∣∣∣1 −1

1 1

∣∣∣∣∣= 2. (1.1)

If �rA is a position vector of an arbitrary point A, then the set �rG of points

�rA defines, in the three-dimensional Euclidean complex vector space �r , some

arbitrary domain G : �rG = {�rA : A ∈ G}. If the domain �rG bounded by a con-

tour surface �rg in �r is subdivided by planes, which are parallel to the coordi-

nate planes, into k1 elemental subdomains �j1 �rG bounded by the elemental

contour surfaces �j1 �rg (j1 = 2, . . . ,k1), then every subdomain �j1 �rG of �rG
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can be further subdivided into new subdomains �j1,j2 �rG (j2 = 2, . . . ,k2). (If

an infinite process of a subdivision of the domain �rG in �r leads to any point

�rN of �rG: limn→+∞ �j1,...,jn �rG = �rN , then the subdivision Dn�rG is said to be

an evenly spaced one.) Let �j1,...,jn σ and �j1,...,jn v denote numerous mea-

sures of an area of �j1,...,jn �rg and a volume of �j1,...,jn �rG, respectively. Then

d�rNv = limn→+∞ �j1,...,jn v = 0 and d�rN �σ = limn→+∞ �n�r∆j1 ,...,jn �rg
�j1,...,jn σ = �0

(�n�r∆j1 ,...,jn �rg
is a normal vector of the unit length of �j1,...,jn �rg at an arbitrary

point �r∆j1 ,...,jn �rg ) are an infinitesimal volume element and an infinitesimal sur-

face element at a point �rN of the domain �rG, respectively.

Since vectors ��r∆j1 ,...,jn �rg
�σ = �n�r∆j1 ,...,jn �rg

�j1,...,jn σ , at an arbitrary point

�r∆j1 ,...,jn �rg of a part of the elemental contour surface �j1,...,jn �rg separating two

elemental subdomains, have opposite orientations, for every evenly spaced

subdivision:

Dn�rG =
{
�j1,...,jl �rG : jl = 2, . . . ,kl (l= 1,2, . . . ,n)

}
(1.2)

of �rG bounded by �rg , it follows that

lim
n→+∞

k1∑
j1=2

k2∑
j2=2

···
kn∑
jn=2

��r∆j1 ,...,jn �rg
�σ =

∑
�rN∈�rg

d�rN �σ. (1.3)

The infinite sum
∑
�rN∈�rg d�rN �σ of zero vectors

∑
�rN∈�rg d�rN �σ = �0×∞, as an

indefinite expression, in this acute case reduces to the vector �P whose intensity

is equal to the area of �rg :
∑
�rN∈�rg d�rN �σ = �P .

For an arbitrary scalar-valued function f(�r) defined and bounded on the

domain �rG of the three-dimensional Euclidean complex vector space �r , the

following holds:

lim
n→+∞

k1∑
j1=2

k2∑
j2=2

···
kn∑
jn=2

f
(
�r∆j1 ,...,jn �rg

)
��r∆j1 ,...,jn �rg

�σ =
∑
�rN∈�rg

f
(
�rN
)
d�rN �σ, (1.4)

where f(�r∆j1 ,...,jn �rg ) are values of f(�r) at arbitrary points of parts of the ele-

mental contour surfaces �j1,...,jn �rg separating two elemental subdomains, as

well as at arbitrary points of �j1,...,jn �rg belonging to �rg . If f(�r) is a Riemann-

integrable function over the domain �rG, then for any evenly spaced subdivision

Dn�rG of �rG and any choice of points �r∆j1 ,...,jn �rg , there exists a unique limiting

value

lim
n→+∞

k1∑
j1=2

k2∑
j2=2

···
kn∑
jn=2

f
(
�r∆j1 ,...,jn �rg

)
��r∆j1 ,...,jn �rg

�σ =
∫∫�
�rg
f (�r)d�σ. (1.5)

The symbol
∫∫�
�rg denotes an integration over the closed contour surface �rg ,

in this case in the positive mathematical direction.
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To sum up, for a function f(�r), which is Riemann-integrable over �rG, the

infinite sum of zero vectors
∑
�rN∈�rg f (�rN)d�rN �σ = ∞× �0, as an indefinite ex-

pression, is just equal to the integral of f(�r)

∑
�rN∈�rg

f
(
�rN
)
d�rN �σ =

∫∫�
�rg
f (�r)d�σ. (1.6)

Accordingly, we are able to redefine, more exactly, to generalize the notion

of Riemann integral sums as follows.

Definition 1.1. Absolute integral sums of a scalar-valued function f(�r),
defined on the domain �rG bounded by a contour surface �rg in the three-dimen-

sional Euclidean complex vector space �r , are by definition

∑
�rN∈�rg

f
(
�rN
)
d�rN �σ,

∑
�rN∈�rG

f
(
�rN
)
d�rNv. (1.7)

Definition 1.2. Absolute integral sums of a vector-valued function �F(�r),
defined on the domain �rG bounded by a contour surface �rg in the three-dimen-

sional Euclidean complex vector space �r , are by definition

∑
�rN∈�rg

�F
(
�rN
)·d�rN �σ, ∑

�rN∈�rg
d�rN �σ × �F

(
�rN
)
,

∑
�rN∈�rG

�F
(
�rN
)
d�rNv.

(1.8)

1.2. The purpose of the paper. Thus far, little attention has apparently

been paid to the general case in which functions of a complex variable have

an infinity of singularities. But in various applications, for example, in [1, 3], it

was essential to analyze, on the basis of the residual calculus theory, this class

of functions, so that the goal of this paper is to establish a general theory of

residual calculus whose results would be slightly more general in comparison

with the fundamental results of Cauchy’s calculus of residues. Since functions,

which are regular ones in an extended complex plane except at infinitely but

countable many points, do not belong to the functional space of either analytic

or nonanalytic functions, it follows that the notion of a residue of the class of

the aforementioned functions cannot be defined in the same way as was done

in the case of a class of analytic as well as nonanalytic functions. Accordingly,

it is necessary to redefine the notion of a complex function residue, more pre-

cisely, to generalize it. This notion, as is well known, was first generalized by

Poor [4, 5] (taken over from [3]), see, for example, [3, Definitions 1 and 2, pages

38–39].
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1.3. The outline of the rest of the paper. In Section 2.1, we will define, on

the basis of the definitions from the introductory part of the paper, a spatial

differentiability of a complex function. Our variant of the spatial derivative of

a complex function will turn out to be very convenient in defining a residue

of this general class of functions as it was done in Section 2.2. We define a

potential of a point with respect to a contour surface of integration. Thereafter,

in the same subsection, we define a total value of an improper integral as a sum

of Cauchy’s principal value and Jordan’s singular value. Note, as peculiarity,

that the total value of an improper integral is not a unique defined value in

the general case [6]. This subsection ends with an example that illustrates a

notion of a singular-analytic function.

2. Main results

2.1. On spatial differentiability of a complex function. Let f(�r) be an arbi-

trary uniform scalar-valued function defined on some domain �rG of the three-

dimensional Euclidean complex vector space �r = ��+��n as an ambient space

of the two-dimensional Euclidean complex vector space ��. The following def-

inition is an obvious consequence of the integral equality from the definition

of the spatial derivative of f(�r), see, for example, [2, Definition 2, page 291].

Definition 2.1. A scalar-valued function f(�r) is spatially differentiable

over the domain �rG bounded by a contour surface �rg in the three-dimensional

Euclidean complex vector space �r if and only if, for every evenly spaced sub-

division Dn�rG and every elemental subdomain �j1,...,jn �rG of �rG, the sequence

of reduced absolute integral sums:

�A�j1 ,...,jn �rg =
1

�j1,...,jn v

∑
�rN∈�j1 ,...,jn �rg

f
(
�rN
)
d�rN �σ (2.1)

converges to

lim
�rg→�rN

1
V

∑
�rN∈�rg

f
(
�rN
)
d�rN �σ = lim

n→+∞
�A�j1 ,...,jn �rg = �A�rN , (2.2)

where V =∑�rN∈�rG d�rNv .

The domain �rG in the three-dimensional Euclidean complex vector space �r ,

such that at all points of �rG, a scalar-valued function f(�r) is spatially differ-

entiable, is a regular domain of f(�r). The points �rN in �r , at which f(�r) is

not differentiable, are singular points of f(�r), and the domain �rG, such that

f(�r) is differentiable almost everywhere over �rG, is a singular domain of f(�r).
The singular points �rN of �rG, at which f(�r) is bounded, are apparent singular

points of f(�r). The singular domain �rG, such that f(�r) is bounded on �rG, is

an apparent singular domain of f(�r).
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If f(�r) is spatially differentiable over �rG, then for an arbitrary evenly spaced

subdivision Dn�rG and an arbitrary elemental subdomain �j1,...,jn �rG of the reg-

ular domain �rG, it follows from equality (2.1) of Definition 2.1 that

∑
�rN∈�j1 ,...,jn �rg

f
(
�rN
)
d�rN �σ = �A�j1 ,...,jn �rg �j1,...,jn v. (2.3)

In view of the fact that surface elementsd�rN �σ , at every point �rN of the part of

an elemental contour surface�j1,...,jn �rg separating two elemental subdomains,

are oppositely directed, for every level of the evenly spaced subdivision Dn�rG
of �rG,

k1∑
j1=2

k2∑
j2=2

···
kn∑
jn=2

∑
�rN∈�j1 ,...,jn �rg

f
(
�rN
)
d�rN �σ =

∑
�rN∈�rg

f
(
�rN
)
d�rN �σ. (2.4)

On the other hand, on the basis of the convergence of reduced absolute

integral sums, more precisely, from equality (2.2) of Definition 2.1, we obtain

lim
n→+∞

k1∑
j1=2

k2∑
j2=2

···
kn∑
jn=2

�A�j1 ,...,jn �rg �j1,...,jn v =
∑

�rN∈�rG
�A�rNd�rNv. (2.5)

Hence, these last three expressions give

∑
�rN∈�rg

f
(
�rN
)
d�rN �σ =

∑
�rN∈�rG

�A�rNd�rNv. (2.6)

If f(�r) is defined and continuous on the domain �rG bounded by a contour

surface �rg , more precisely, is integrable over �rG, which is its regular domain in

the sense of Definition 2.1, then it follows from (2.6) and (1.6) that

∫∫�
�rg
f (�r)d�σ =

∑
�rN∈�rG

�A�rNd�rNv, (2.7)

that is,

lim
�rg→�rN

1
V

∫∫�
�rg
f (�r)d�σ = �A�rN , (2.8)

where V = (1/3)∫∫��rg �r ·d�σ .

If a vector-valued function �A(�r) ( �A(�rN) = �A�rN ) is also defined and continu-

ous on �rG, more precisely, is integrable over �rG, then (2.7) reduces to

∫∫�
�rg
f (�r)d�σ =

∫∫∫
�rG
�A(�r)dv. (2.9)
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Clearly, in this case, �A(�r) is a vector-valued function of the spatial deriv-

ative of a continuous function f(�r) : �A(�r) = ∇·f(�r), and ∇ is the so-called

Hamiltonian operator of spatial differentiability, see [2].

In view of the fact that d�σ = d�� × d��n+ dz∗dz�n and dv = d�r · d�σ =
dz∗dzd� if the function f(�r) is defined and continuous on (integrable over)

the bounded domain �rG in the three-dimensional Euclidean complex vector

space �r and possesses defined and continuous (integrable) partial derivatives

on (over) �rG, then it follows from (2.9) that

∫∫�
�rg
f (�r)dzd�=

∫∫∫
�rG

∂
∂z∗

f(�r)dz∗dzd�,

−
∫∫�
�rg
f (�r)dz∗d�=

∫∫∫
�rG

∂
∂z
f(�r)dz∗dzd�,

∫∫�
�rg
f (�r)dz∗dz =

∫∫∫
�rG

∂
∂�
f(�r)dz∗dzd�.

(2.10)

Also, for a complex vector function �F(�r)= P(�r) �w1+Q(�r) �w2+R(�r)�n whose

components are defined and continuous (integrable) functions possessing de-

fined and continuous (integrable) partial derivatives on (over) the bounded do-

main �rG in the three-dimensional Euclidean complex vector space �r , it follows

from previously derived results that

∫∫�
�rg
�F(�r)·d�σ =

∫∫∫
�rG
∇· �F(�r)dv, (2.11)

∫∫�
�rg
d�σ × �F(�r)=

∫∫∫
�rG
∇× �F(�r)dv. (2.12)

The integral equalities (2.11) and (2.12) correspond to that of the so-called

Gauss-Ostrogradski theorem attached to the three-dimensional Euclidean real

vector space �r , see [2].

In view of the fact that the limiting value �A�rN of the sequence of reduced

absolute integral sums �A�j1 ,...,jn �rg (see equality (2.12) of Definition 2.1) does

not depend on the form of a contour surface �rg bounding the domain �rG
in the three-dimensional Euclidean complex vector space �r , it follows that if

�rs(�rN,dδ) is an infinitesimally small spherical surface centred at �rN and of

radius dδ, then for every point �rN lying inside �rG (�rN ∈ int �rG, where int �rG is

an interior of �rG),

�A�rN =
1

d�rNv

∫∫�
�rs(�rN ,dδ)

f (�r)d�σ. (2.13)

For a point �rN on the boundary �rg of �rG (�rN ∈ �rg),

�A�rN =
1

d�rNv

∫∫�
int �rs(�rN ,dδ)

f (�r)d�σ, (2.14)
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where int �rs(�rN,dδ) is a part of an infinitesimally small spherical surface �rs(�rN,
dδ) laying inside �rg .

Comment 2.2. Since the spatial derivative of a real-valued function f(x)
of the one variable x, which is defined on the segment [a,b] of the real axis

R1, at a point c lying inside [a,b] is by definition

lim
[a,b]→c

f (b)−f(a)
b−a =Ac, (2.15)

it follows from (2.13) that

Ac = 1
dcx

[
f
(
c+0+

)−f (c−0+
)]

= lim
2�x→dcx

f (c+� x)−f(c−� x)
2� x

.
(2.16)

Also, for boundary points of [a,b], it follows from (2.14) that

Aa = 1
dax

[
f
(
a+0+

)−f(a)]= lim
�x→dax

f(a+� x)−f(a)
� x

,

Ab = 1
dbx

[
f(b)−f (b−0+

)]= lim
�x→dbx

f (b)−f(b−� x)
� x

.
(2.17)

Accordingly, from (2.7), we obtain

f(b)−f(a)=
∑

c∈[a,b]
Acdcx. (2.18)

If A(x) (A(c) = Ac ) is integrable over [a,b], then f(x) is continuous on

[a,b] and

f(b)−f(a)=
∫ b
a
A(x)dx, (2.19)

where A(x)=∇f(x)= df(x)/dx.

2.2. Residue of a complex function. From the functional equality (2.2) of

Definition 2.1, more precisely, the integral relations (2.13) and (2.14), it follows

that if �rG is a regular domain of a function f(�r), bounded by a contour surface

�rg in the three-dimensional Euclidean complex vector space �r , then at any point

�rN of �rG, �A�rNd�rNv = �0.

On the other hand, if �rG is a singular domain of f(�r), then the absolute

integral sum of the function �A(�r),
∑
�rN∈int �rG

�A�rNd�rNv , can be subdivided into

two absolute integral sums:

∑
�rN∈�rG

�A�rNd�rNv =
∑

�rN∈vp�rG
�A�rNd�rNv+

∑
�rN∈vs�rG

�A�rNd�rNv, (2.20)
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where vp�rG and vs�rG are sets of regular and singular points of the function

f(�r) in the singular domain �rG, respectively. Clearly, at all regular points of

the singular domain of f(�r), �A�rNd�rNv = �0; in other words, the first absolute in-

tegral sum of �A(�r) on the left-hand side of the preceding relation is an infinite

sum of zero vectors. At each singular point �rN of the domain �rG, at which the

sequence of the reduced absolute integral sum �A�j1 ,...,jn �rg definitely diverges,

�A�rNd�rNv reduces to an indefinite expression, more precisely, to either definite

or indefinite vector value of the extended vector space �r ∪ �r∞, where �r∞ is a

set of infinite points.

2.2.1. A potential of a point with respect to a contour surface of integra-

tion. In the two-dimensional Euclidean real vector space �� = x�e1 +y�e2, an

intensity of the vector (��×d��)/�� · �� : (��×d��)· �n/�� · �� = (xdy−ydx)/(x2+
y2)= darctan(y/x) defines an infinitesimal evolution of the vector ��o of the

unit length as a unit vector of a position vector of an arbitrary point in �� with

respect to the origin

(
��×d��)· �n
��· �� = ∣∣d��o∣∣= dϕ. (2.21)

In the two-dimensional Euclidean complex vector space �� = |��|��o, it holds

that

∫�
��g

(
��×d��)· �n
��· ��∗ =

∫�
��g

(
��o×d��o

)· �n= i
∫�
��g
dϕ. (2.22)

(Since e2iarctan(y/x) = (1+i(y/x))2/(1+(y/x)2)= (x+iy)/(x−iy), it follows

from the functional equality ϕ = arctan(y/x) that �� = (
√
��· ��∗/2)(e−iϕ �w1+

eiϕ �w2)= |��|��o, where |��| =
√
��· ��∗ and ��o = (1/

√
2)(e−iϕ �w1+eiϕ �w2))

Definition 2.3. A potential p��g↔��N of a point ��N with respect to a contour

��g bounding an arbitrary domain ��G in the two-dimensional Euclidean complex

vector space �� is by definition

p��g↔��N =
∫�
��g

[(
��− ��N

)×d��]· �n(
��− ��N

)·(��− ��N)∗ . (2.23)

In view of the fact that differential dϕ is an absolute one for any closed path

of integration ��g bounding the domain ��G in the complex plane ��, it follows

that

p��g↔��N = i
∫�
��g
dθ =


2πi for ��N ∈ int ��G,

0 for ��N ∉ ��G,
(2.24)

where int ��G is an interior of ��G.
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In the case when a point ��N belongs to the boundary ��g of ��G, the potential

p��g↔��N of a point ��N with respect to ��g is defined to be the sum of limiting

values of i
∫�
��g dθ over a part of the path of integration ��g from the point ��A

to the point ��B (��A and ��B are intersection points of the path of integration

��g and some arbitrary small circle ��δ centred at ��N and of radius δ) as well as

over circular arcs from the point ��B to the point ��A, when the radius δ of ��δ
tends to zero, in other words, when the boundary points of the circular arcs

��A and ��B , along the path of integration ��g , tend to the point ��N .

Considering the fact that the limiting value of i
∫�
��g dθ over a part of the path

of integration ��g from the point ��A to the point ��B is equal to

lim
δ→0+

i
∫ �
��B ��A

��g
dθ = iα, lim

δ→0+
i
∫ �
��B ��A

int��δ
dθ =−iα, (2.25)

as well as

lim
δ→0+

i
∫ �
��A ��B

ext��δ
dθ = i(2π−α), (2.26)

where int ��δ and ext ��δ are circular arcs inside and outside ��g , respectively,

and α is a limit angle of tangent lines to ��g at the points ��A and ��B in the case

when the boundary points ��A and ��B , along ��g , tend to the point ��N , it follows

that

p��g↔��N =

0,

2πi.
(2.27)

Definition 2.4. A potential p�rγ↔�rN of a point �rN with respect to a con-

tour surface �rg bounding the domain �rG in the three-dimensional Euclidean

complex vector space �r = ��+��n is by definition

p�rg↔�rN = 2p��g↔��N , (2.28)

where ��g = �rg∩ �� and �� is any complex plane such that �rN ≡ ��N .

If one takes into consideration the fact that except the point �rN , which is an

inner point with respect to an infinitesimally small spherical surface �rs(�rN,dδ),
all remaining points of the vector space �r are external points, then according

to the defined notion of the potential p�rg↔�rN of a point �rN with respect to a

contour surface �rg bounding a certain domain �rG in �r and Poor’s definition

of nonanalytic functions residue (see [3, Definition 1, page 38]), the notion of

residues of a scalar-valued function f(�r) can be defined as follows.
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Definition 2.5. A residue (Res) of a scalar-valued function f(�r) at a point

�rN in the three-dimensional Euclidean complex vector space �r is by definition

∫∫�
�rs(�rN ,dδ)

f (�r)d�σ = p�rs(�rN ,dδ)↔�rN
→

Res
�r=�rN

f
(
�r
)
. (2.29)

Definition 2.6. A residue (Res) of a scalar-valued function f(�r) at the set

of the infinite points �r∞ is by definition

→
Res
�r=�r∞

f
(
�r
)=− ∑

�rN∈�r

→
Res
�r=�rN

f
(
�r
)
. (2.30)

From equality (2.29) of Definition 2.5, it follows that at all points inside a

certain singular domain �rG bounded by a contour surface �rg (�rN ∈ int �rG),

�A�rNd�rNv =∇�rN f (�r)d�rNv = p�rg↔�rN
→

Res
�r=�rN

f (�r), (2.31)

while at points on the boundary �rg of �rG (�rN ∈ �rg),

�A�rNd�rNv = pint�rs(�rN ,dδ)↔�rN
→

Res
�r=�rN

f (�r), (2.32)

where according to equality (2.28), pint �rs(�rN ,dδ)↔�rN = 2pint��s(��N ,dδ)↔��N and

pint ��s(��N ,dδ)↔��N = i
∫�

int ��s(��N ,dδ)
dθ = lim

δ→0+
i
∫ �
��B ��A

int ��δ
dθ = iα, (2.33)

and α is an angle of tangent lines at the point ��N lying on the boundary ��g of

the domain ��G: ��G = �rG∩ �� (��g = �rg∩ ��).

Clearly,

pext ��s(��N ,dδ)↔��N = i
∫�

ext ��s(��N ,dδ)
dθ = lim

δ→0+
i
∫ �
��A ��B

ext ��δ
dθ = i(2π−α). (2.34)

Definition 2.7. Cauchy’s principal value (vp) of an improper integral of a

vector-valued function∇f(�r), with respect to a certain domain �rG bounded by

a contour surface �rg in the three-dimensional Euclidean complex vector space

�r , is by definition

vp
∫∫∫

�rG
∇f(�r)dv =

∑
�rN∈vp�rG

�A�rNd�rNv, (2.35)

where vp�rG is a set of regular points �rN of the function in the domain �rG.

Definition 2.8. Jordan’s singular value (vs) of an improper integral of a

vector-valued function∇f(�r), with respect to a certain domain �rG bounded by



ON A RESIDUE OF COMPLEX FUNCTIONS . . . 1877

a contour surface �rg in the three-dimensional Euclidean complex vector space

�r , is by definition

vs
∫∫∫

�rG
∇f(�r)dv =

∑
�rN∈vs�rG

�A�rNd�rNv, (2.36)

where vs�rG is a set of singular points �rN of the function in the domain �rG.

Definition 2.9. The sum of Cauchy’s principal value (vp) and Jordan’s

singular value (vs) is a total value (vt) of an improper integral.

Since the derived equality (2.6) holds also in the case when the sequences

of reduced absolute integral sums �A�j1 ,...,jn �rg diverge, in other words, in the

case of a singular domain �rG of the function f(�r), it follows that if f(�r) is

an integrable function over a contour surface �rg bounding a certain singular

domain �rG of f(�r), then

∫∫�
�rg
f (�r)d�σ =

∑
�rN∈vp�rG

�A�rNd�rNv+
∑

�rN∈vs�rG
�A�rNd�rNv. (2.37)

Finally, on the basis of Definition 2.9 as well as equalities (2.35) and (2.36),

we obtain

∫∫�
�rg
f (�r)d�σ −vp

∫∫∫
�rG
∇f(�r)dv =

∑
�rN∈vs�rG

p�rg↔�rN
→

Res
�r=�rN

f (�r), (2.38)

where vs�rG is a set of singular points �rN of f(�r) in the singular domain �rG
bounded by a contour surface �rg in the three-dimensional Euclidean complex

vector space �r , more precisely

∫∫�
�rg
f (�r)d�σ = vt

∫∫∫
�rG
∇f(�r)dv. (2.39)

If a function f(�r) is not integrable over a contour surface �rg bounding a

certain singular domain �rG of the function, in other words, if singularities of

the function f(�r) lie not only inside but on the contour surface �rg too, then

on the one hand

∑
�rN∈vp�rg

f
(
�rN
)
d�rN �σ +

∑
�rN∈vs�rγ

∫∫�
int �rs(�rN ,dδ)

f (�r)d�σ

= vp
∫∫∫

�rG
∇f(�r)dv+

∑
�rN∈vs int �rG

4πi
→

Res
�r=�rN

f (�r),
(2.40)
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and on the other

∑
�rN∈vp�rg

f
(
�rN
)
d�rN �σ +

∑
�rN∈vs�rγ

∫∫�
ext �rs(�rN ,dδ)

f (�r)d�σ

= vp
∫∫∫

�rG
∇f(�r)dv+

∑
�rN∈vs�rG

4πi
→

Res
�r=�rN

f (�r),
(2.41)

more precisely

vt
∫∫�
�rg
f (�r)d�σ −vp

∫∫∫
�rG
∇f(�r)dv =

∑
�rN∈vs�rG

p�rg↔�rN
→

Res
�r=�rN

f (�r), (2.42)

where

vt
∫∫�
�rg
f
(
�r
)
d�σ = vp

∫∫�
�rg
f
(
�r
)
d�σ +vs

∫∫�
�rg
f
(
�r
)
d�σ

=
∑

�rN∈vp�rg
f
(
�rN
)
d�rN �σ +

∑
�rN∈vs�rg

{−pint·�rs(�rN ,dδ)↔�rN
pext·�rs(�rN ,dδ)↔�rN

}
→

Res
�r=�rN

f
(
�r
)
.

(2.43)

Comment 2.10. For a real-valued function f(x) of the one variablex, which

is spatially differentiable almost everywhere over the segment [a,b] of the real

axis R1 and defined at boundary points a and b of [a,b], it follows from (2.38)

that

f(b)−f(a)−vp
∫ b
a
∇f(x)dx =

∑
c∈vs[a,b]

pa,b↔c Res
x=c f (x), (2.44)

where 2pa,b↔c = p��g↔��c and ��g : ��g∩R1 = {a,b} as well as

pa,b↔c Res
x=c f (x)= f

(
c+0+

)−f (c−0+
)=Acdcx, (2.45)

more precisely

pa,b↔c Res
x=c f (x)= lim

2�x→dcx
[
f(c+� x)−f(c−� x)]. (2.46)

Based on Definitions 2.7, 2.8, and 2.9,

vt
∫ b
a
∇f(x)dx = f(b)−f(a). (2.47)

Example 2.11. The scalar-valued function f(x)= logx, where log denotes

principal logarithm, is spatially differentiable at all points of the segment
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[−a,b] of the real axis R1 (a,b ∈ R1+) except at the point x = 0. Since

p−a,b↔0 Res
x=0

f(x)= lim
2�x→d0x

[
log(� x)− log(−� x)]=∓πi,

vp
∫ b
−a
∇f(x)dx = log

b
a
,

(2.48)

it follows that vt
∫ b
−a(dx/x)= log(b/a)∓πi.

Example 2.12. The scalar-valued function f(x)= x−1 is spatially differen-

tiable at all points of the segment [−a,b] of the real axis R1 (a,b ∈ R1+) except

at the point x = 0. Since

p−a,b↔0 Res
x=0

f(x)= lim
2�x→d0x

[
1
� x

+ 1
� x

]
=+∞,

vp
∫ b
−a
∇f(x)dx =−∞,

(2.49)

in this case the total value of an improper integralvt
∫ b
−ax−2dx, as an indefinite

expression ∞−∞, has exactly definite value

vt
∫ b
−a
dx
x2

=−b+a
ab

. (2.50)

Let the singular domain �rG of the function f(�r) : f(�r)= f(z∗,z) , defined on

the complex plane ��, be a cylindrical domain bounded by a contour surface �rg
in the three-dimensional Euclidean complex vector space �r : �r = ��+��n, whose

bases are obtained by translation of the domain ��G bounded by a contour ��g in

the complex plane �� in the direction of the unit normal vector �n for constant

values −h and h (�1(��)=−h and �2(��)= h). In this case, if the function f(�r)
is integrable over the contour of integration ��g , then it follows from (2.38) that

∫�
��g
f
(
z,z∗

)
dz−vp

∫∫
��G

∂
∂z∗

f
(
z,z∗

)
dz∗dz

=
∑

��N∈vs��G
p��g↔��N Res

��=��N
f
(
z,z∗

)
,

−
∫�
��g
f
(
z,z∗

)
dz∗−vp

∫∫
��G

∂
∂z
f
(
z,z∗

)
dz∗dz

=
∑

��N∈vs��G
p��g↔��N

�
Res
��=��N

f
(
z,z∗

)
.

(2.51)

Clearly, partial residues of the function f(z,z∗) are by definition

∫�
��s(��N ,dδ)

f
(
z,z∗

)
dz = p��s(��N ,dδ)↔��N Res

��=��N
f
(
z,z∗

)
,

−
∫�
��s(��N ,dδ)

f
(
z,z∗

)
dz∗ = p��s(��N ,dδ)↔��N

�
Res
��=��N

f
(
z,z∗

)
.

(2.52)
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Definition 2.13. The function f(�r) is a regular-analytic function on the

domain ��G in the complex plane ��, which is a regular domain of f(�r), if and

only if a function f(��) = f(z,z∗), at any point ��N of ��G, satisfies one of the

conditions {(∂/∂z∗)f (z,z∗)}��N = 0 or {(∂/∂z)f(z,z∗)}��N = 0.

Definition 2.14. The function f(�r) is a singular-analytic function on the

domain ��G in the complex plane ��, which is a singular domain of f(�r), if and

only if a function f(��) = f(z,z∗), at any point ��N of ��G, satisfies one of the

conditions: {(∂/∂z∗)f (z,z∗)}��N = 0 or {(∂/∂z)f(z,z∗)}��N = 0.

For a complex vector-valued function �F(��) = P(��) �w1+Q(��) �w2 defined on

the two-dimensional Euclidean complex vector space ��, whose components

P(��) andQ(��) are integrable functions over a contour of integration ��g bound-

ing a singular domain ��G of �F(��),

∫�
��g

[�F(��)×d��]· �n−vp
∫∫
��G

[∇· �F(��)](d�σ · �n)
=

∑
��N∈vs��G

p��g↔��N Res
��=��N

�F(��),

∫�
��g
�F(��)·d��−vp

∫∫
��G
�n·[∇× �F(��)](d�σ · �n)

=
∑

��N∈vs��G
p��g↔��N

�
Res
��=��N

�F(��).

(2.53)

In this case

Res
��=��N

�F
(
��
)= Res

��=��N
P
(
z,z∗

)+ �
Res
��=��N

Q
(
z,z∗

)
,

�
Res
��=��N

�F
(
��
)= Res

��=��N
Q
(
z,z∗

)− �
Res
��=��N

P
(
z,z∗

)
.

(2.54)

Example 2.15. A domain ��Gδ = {�� : a≥ |��| ≥ δ; (δ,a)∈ R1+} of the complex

plane �� is a regular domain of the function (z,z∗) � (1/2) log(zz∗). Taking

into account the fact that (1/2) log(zz∗) = (1/2) ln(x2+y2), it follows from

the result of the well-known Green-Riemann theorem that

∫�
��a

log
(
zz∗

)
dz−

∫�
��δ

log
(
zz∗

)
dz

= 2i
∫∫
��Gδ

x+iy
x2+y2

dxdy,

−
∫�
��a

log
(
zz∗

)
dz∗+

∫�
��δ

log
(
zz∗

)
dz∗

= 2i
∫∫
��Gδ

x−iy
x2+y2

dxdy.

(2.55)
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Similarly, as (1/2) log(z/z∗)= iarctan(y/x), then

∫ �
��B ��A

��a
log

z
z∗
dz+

∫ ��B↘
��C

��1

log
z
z∗
dz+

∫ �
��C ��D

��δ
log

z
z∗
dz+

∫ ��D↙
��A

��2

log
z
z∗
dz

=−2i
∫∫
��Gδ \
��Gδ

x+iy
x2+y2

dxdy,

∫ �
��B ��A

��a
log

z
z∗
dz∗+

∫ ��B↘
��C

��1

log
z
z∗
dz∗+

∫ �
��C ��D

��δ
log

z
z∗
dz∗+

∫ ��D↙
��A

��2

log
z
z∗
dz∗

= −2i
∫∫
��Gδ \
��Gδ

x−iy
x2+y2

dxdy,

(2.56)

where the domain ��Gδ\ 
 ��Gδ is a part of the domain ��Gδ bounded by parts

of circular contours of integration ��a and ��δ bounding ��Gδ also by segments

of straight lines ��k of �� : ��k = {�� : �� = |��|��ok (ϕ =ϕk)} (k = 1,2). The points

��A, ��B , ��C , and ��D are obtained by an intersection of circular contours of

integration ��a and ��δ with directions ��k.
For arbitrary chosen angular values ϕk, when ϕ1 → π and ϕ2 → −π , it

follows that

∫�
��a

log
z
z∗
dz−

∫�
��δ

log
z
z∗
dz+

∫�
��k

log
z
z∗
dz

=−2i
∫∫
��Gδ

x+iy
x2+y2

dxdy,

∫�
��a

log
z
z∗
dz∗−

∫�
��δ

log
z
z∗
dz∗+

∫�
��k

log
z
z∗
dz∗

= −2i
∫∫
��Gδ

x−iy
x2+y2

dxdy.

(2.57)

In other words, the scalar-valued function z� logz:

logz = 1
2

[
log

(
zz∗

)+ log
z
z∗

]
(2.58)

is a singular-analytic one on the domain ��g = {�� : |��| ≤ a} in the complex plane

��, more precisely

∫�
��a

logzdz+
∫�
��k

logzdz = lim
δ→0+

∫�
��δ

logzdz,

−
∫�
��a

logzdz∗−vp
∫∫
��g

1
z
dzdz∗−

∫�
��k

logzdz∗ = − lim
δ→0+

∫�
��δ

logzdz∗.
(2.59)
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3. Conclusion. On the basis of a notion of absolute integral sums of a com-

plex function, which is slightly more general with respect to that of integral

sums of ordinary integral calculus, result (2.6) has been derived as an imme-

diate consequence of equality (2.1) of Definition 2.1 so that its generality is

undeniable since it is not conditioned by convergence of reduced absolute

integral sums. In other words, the aforementioned result (2.6) is more gen-

eral with respect to that of the well-known Cauchy fundamental theorem on

residues of Cauchy’s calculus of residues. Also, results (2.38) and (2.42) as

well as the results of Section 2.2, which are based on the redefined notion of

a complex function residue as well as the defined notion of the total value of

an improper integral of a function with respect to a certain singular domain

bounded by a contour surface in the three-dimensional Euclidean complex vec-

tor space and which are more general with respect to the fundamental results

of Cauchy’s calculus of residues of both analytic and nonanalytic functions,

have been derived.

Any further generalization of the results of Cauchy’s calculus of residues

as well as of the results in near relation to other areas of either the pure or

applied mathematics must have the aforementioned results as its base.
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