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1. Introduction. The purpose of this paper is to show that almost super-

diagonal, polynomially compact operators on the sequence space l(pi) have

nontrivial, closed invariant subspaces if the nonlocally convex linear topology

τ(pi) is locally bounded. The proofs and arguments of this paper are stated

within the framework of nonstandard analysis (see [4, Theorem 6.3 and Propo-

sition 5.5]).

1.1. Preliminaries. Let {pi}∞i=1 be a sequence of real numbers such that 0<
pi ≤ 1 for each i∈N+, the set of positive integers. Let

l
(
pi
)=



(
ξi
) |

∞∑

i=1

∣∣ξi
∣∣pi <∞


, (1.1)

where ξi ∈ C, the complex numbers. Since |λ+β|p ≤ |λ|p+|β|p and |λβ|p ≤
max(1,|λ|)|β|p are valid for all λ,β ∈ C and 0 < p ≤ 1, it follows that l(pi) is

a vector space over C. Also,

ρ
(
pi
)
(x,y)=

∞∑

i=1

∣∣ξi−ζi
∣∣pi , (1.2)

where x = (ξi) and y = (ζi), defines a translation invariant metric on l(pi).
Let τ(pi) denote the topology generated on l(pi) by ρ(pi). If pi = p ∈ (0,1]
for all i∈N+, then we denote l(pi) by lp and τ(pi) by τp .

For (l(pi),τ(pi)), the following facts are known:

(1) (l(pi),τ(pi)) is a complete topological vector space;

(2) (l(pi),τ(pi)) is a locally convex space if and only if l(pi)= l1;

(3) the following three conditions on {pi}∞i=1 ⊂ (0,1] are equivalent :
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(a) liminfpi > 0,

(b) a subset B of l(pi) is bounded in τ(pi) if and only if it is bounded in

the metric ρ(pi),
(c) (l(pi),τ(pi)) is locally bounded, that is, there exists a τ(pi)-bounded

neighborhood of 0.

(See [5, Lemmas 1 and 2, Theorems 5 and 6].)

Unless stated otherwise, it will be assumed that 0 < pi ≤ 1, for i ∈ N+, and

0<p ≤ liminfpi.
The sequence {ei} (where ei = (εij), εii = 1, and εij = 0 for i≠ j) will denote

the natural Schauder basis for (l(pi),τ(pi)) and {πi | i ∈ N+}, {Pj | j ∈ N+},
and {Ej | j ∈N+} will denote the sequences of coordinate functionals, projec-

tions, and coordinate spaces, respectively, generated in l(pi) by {ei}. Also, a

τ or ρ, when used, will symbolize τ(pi) and ρ(pi), respectively.

Let �[l(pi)] symbolize the collection of all functions mapping l(pi) into

l(pi) and let [l(pi)] and �(l(pi)) designate the vector spaces of τ(pi)-con-

tinuous linear transformation and linear transformations on l(pi), respec-

tively. If T ,U ∈�(l(pi)), then TU denotes the composite map of T and U . For

n ∈ N, the set of natural numbers, and T ∈ �(l(pi)), define Tn in the usual

manner, that is, T 0 = I, the identity map, T 1 = T , and Tn = TTn−1 for 1≤n. If

q(λ)=∑n
k=0 ckλk is a polynomial over C, then we define q(T)=∑n

k=0 ckTk for

T ∈�(l(pi)).
Let x ∈ l(pi), which implies x = ∑∞

j=1πj(x)ej . If T ∈ [l(pi)], then Tx =∑∞
j=1πj(x)Tej . Note that πi(Tx) = πi(

∑∞
j=1πj(x)Tej) =

∑∞
j=1πi(Tej)πj(x),

for i ∈N+, by the continuity of πi. Consequently, if aij = πi(Tej), then Tx =∑∞
i=1πi(Tx)ei =

∑∞
i=1[

∑∞
j=1aijπj(x)]ei. Therefore, for T ∈ [l(pi)], a double

sequence [aij]⊂ C will be called the matrix of T with respect to {ei} (or simply

the matrix of T ) if and only if aij =πi(Tej).
Define ��[l(pi)] ⊂ [l(pi)] as follows: T ∈ ��[l(pi)] if and only if T ∈

[l(pi)] and for j ∈ N+, there exists n ∈ N+, depending on j, such that Tej ∈
En. If T ∈ ��[l(pi)] and [aij] is the matrix of T , then there exists n ∈ N+
such that aij = 0 for n < i. Also, T ,U ∈ ��[l(pi)] implies TU ∈ ��[l(pi)].
For T ∈ ��[l(pi)], T is said to be almost superdiagonal (a.sd.) if and only if

Tej ∈ Ej+1 for each j ∈N+.

For T ∈ [l(pi)], n ∈ N, and [aij], the matrix of T , let the matrix of Tn be

denoted by [a(n)ij ]. It can be shown that if T is almost superdiagonal, then

a(m)j+n,j = 0 for m<n,

a(n)j+n,j =
n−1∏

i=0

aj+i+1,j+i for j,m,n∈N+
(1.3)

(see [1, Section 3, Theorem 3.6]).

An asterisk appended to the upper-left corner of a symbol indicates the

nonstandard extension of the object represented by the symbol. The notation
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µ(0) will denote the set of infinitesimals of ∗C. An element λ of ∗C is said

to be finite if and only if |λ| ≤ ∗δ for some positive δ ∈ R; otherwise, λ is

said to be infinite. It is customary to consider C ⊂ ∗C, that is, the elements

of C are identified with their nonstandard extensions; therefore, the asterisk

notation is mostly not used for these elements. However, to bring clarity to

some arguments, the asterisk notation for nonstandard extensions of elements

of C will be used occasionally.

The notation �τ(0) denotes the τ(pi)-neighborhood filter of zero in l(pi)
and µτ(0) denotes the monad of the τ(pi)-neighborhoods of zero in l(pi). An

element z ∈ ∗l(pi) is called near standard if and only if there exists a (unique)

element in l(pi), denoted by ◦z, such that z−◦z ∈ µτ(0). Also, for A ⊂ ∗l(pi),
the set ◦A⊂ l(pi), called the standard part of A, is defined as follows: x ∈ ◦A if

and only if there is a z ∈A such that z−∗x ∈ µτ(0). It can be shown that if F is

an internal vector subspace of ∗l(pi), then ◦F is a τ(pi)-closed linear subspace

of l(pi) (see [3, Proposition 1.7]). If T ∈ [l(pi)], then ∗T[µτ(0)]⊆ µτ(0), ∗T(z)
is near standard if z ∈ ∗l(pi) is near standard, and ◦[∗T(z)] = T(◦z). We will

denote the (external) set of all near standard points of ∗l(pi) by the notation

nsτ(∗l(pi)). The (external) set {z ∈ ∗l(pi) | λz ∈ µτ(0) for each λ ∈ µ(0)} is

called the set of finite points of ∗l(pi) and is denoted by finτ(∗l(pi)). Clearly,

nsτ
(∗l(pi

))⊂ finτ
(∗l(pi

))
. (1.4)

Finally, if Y is any set belonging to the superstructure generated by C∪l(pi),
then 	(Y) denotes the collection of all finite subsets of the set Y . Also, the

elements of ∗	(Y) are called ∗-finite subsets of ∗Y .

2. Nonstandard properties of l(pi). The purpose of this section is to state

some of the (nonstandard) properties of (l(pi),τ(pi)) that will be used in later

arguments. These facts were developed in [2, 3]. The reader is referred to these

references for the proofs.

Recall that for x ∈ l(pi),

Pi(x)=
i∑

j=1

πj(x)ej ∈ Ei, (2.1)

where {ei} is the natural Schauder basis for l(pi), Ei = sp(e1, . . . ,ei), and {πi}
is the sequence of scalar projections generated by {ei}. Let ��(l(pi)) be the

collection of all finite-dimensional linear subspaces of l(pi). We will let d :

��(l(pi))→ N denote the dimension function. In other words, d(F) = n, for

F ∈��(l(pi)), if and only if F = sp(x1, . . . ,xn) for some linearly independent

{xi}ni=1 ⊂ l(pi). In particular,

d
(
Ei
)= i for each i∈N+. (2.2)
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Proposition 2.1 (see [2, Propositions III.1 and III.3]). If α∈∗N+−N+, then

the (internal) projection Pα : ∗l(pi)→Eα satisfies the following two conditions:

(1) for W ∈�τ(0), there exists V ∈�τ(0) such that Pα[∗V]⊂ ∗W ;

(2) if x ∈ l(pi), then Pα(∗x)−∗x ∈ µτ(0) (i.e., ◦[Pα(∗x)]= x).

Note that Proposition 2.1 implies that for x ∈ l(pi) and α ∈ ∗N+ −N+, we

have l(pi)= ◦Eα and Pα[µτ(0)]⊆ µτ(0). It can be shown that

z ∈ nsτ
(∗l(pi

))
implies z−Pα(z)∈ µτ(0) (2.3)

(see [2, Proposition II.2]). Also, for T ∈ [l(pi)] and α ∈ ∗N+−N+, if we define

Tα = Pα(∗T)Pα, then Tα ∈ ∗�(l(pi)) (i.e., Tα is an internal linear transformation

on ∗l(pi)), Tα : ∗l(pi) → Eα, and Tα[µτ(0)] ⊆ µτ(0). In addition, ◦[Tα(∗x)] =
T(x) for x ∈ l(pi) and ◦[Tα(z)]= T(◦z) for any near standard z ∈ ∗l(pi) (see

[2, Propositions II.4 and II.5]). Finally, if F ∈ ∗��(l(pi)) such that F ⊆ Eα and

Tα[F]⊆ F , then T[◦F]⊆ ◦F (see [2, Proposition II.6]).

Proposition 2.2 (see [2, Theorem II.1]). There exists a function∇ :��(l(pi))
→�[l(pi)] that satisfies the following conditions:

(1) if F ∈��(l(pi)), then ∇(F) : l(pi)→ F ;

(2) for each V ∈ Nτ(0) and any nonzero x ∈ l(pi), there exists a positive

λ∈R such that ∇(F)(λx)∈ V for all F ∈��(l(pi));
(3) if x ∈ l(pi) such that x ∈ ◦F for F ∈ ∗��(l(pi)), then ∗∇(F)(∗x)−∗x ∈

µτ(0) (i.e., ◦[∗∇(F)(∗x)]= x).

Let [��(l(pi))] be the collection of all linear transformations Q with �(Q),
�(Q) ∈ ��(l(pi)), where �(Q) and �(Q) are the domain and range of Q,

respectively, (i.e., the domain and range of linear transformation Q are finite

dimensional for Q ∈ [��(l(pi))]). Since the scalar field of l(pi) is complex,

the following sentence is true.

If E ∈��(l(pi)) and Q∈ [��(l(pi))] such that Q : E→ E, then for n= d(E),
there exists {Fj}nj=0 ∈	(��(l(pi))) such that

(a) F0 = {0} and Fn = E,

(b) Fj−1 ⊂ Fj for j = 1, . . . ,n,

(c) d(Fj)= d(Fj−1)+1 for j = 1, . . . ,n,

(d) Q[Fj]⊂ Fj for j = 0, . . . ,n.

Note that the (logical) constants of the previous statement are ��(l(pi)),
[��(l(pi))], 	(��(l(pi))), and d, the dimension function. Therefore, by the

transfer principle, the following sentence is true.

If E ∈ ∗��(l(pi)) and Q ∈ ∗[��(l(pi))] such that Q : E → E, then for α =
∗d(E), there exists {Fι}αι=0 ∈ ∗	(��(l(pi))) such that

(a) F0 = {0} and Fα = E,

(b) Fι−1 ⊂ Fι for ι= 1, . . . ,α,

(c) ∗d(Fι)= ∗d(Fι−1)+1 for ι= 1, . . . ,α,

(d) Q[Fι]⊂ Fι for ι= 0, . . . ,α.
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In [2], this fact was used to obtain the following proposition.

Proposition 2.3 (see [2, Definition II.2 and Lemma II.8]). Let∇ :��(l(pi))→
�[l(pi)] be the function established by Proposition 2.2 and let α∈ ∗N+−N+. If

T ∈�(l(pi)), then there exists an internal family {Fι}αι=0 ∈ ∗	(��(l(pi))) such

that the following conditions are fulfilled:

(1) F0 = {0}, Fα = Eα, and Fι−1 ⊂ Fι for ι= 1, . . . ,α,

(2) ∗d(Fι)= ∗d(Fι−1)+1 for ι= 1, . . . ,α,

(3) Tα[Fι]⊂ Fι for ι= 0, . . . ,α, where Tα = Pα(∗T)Pα,

(4) {Fι}αι=0 and {∗∇(Fι)}αι=0 are ∗-finite,

(5) ∗∇(Fι) : ∗l(pi) → Fι such that x ∈ ◦Fι implies ∗∇(Fι)(∗x)−∗x ∈ µτ(0)
(i.e., ◦[∗∇(Fι)(∗x)]= x) for each ι∈ {0, . . . ,α}.

Note that ◦Fα = ◦Eα = l(pi) and from continuity and Proposition 2.3(3), we

infer that T[◦Fι]⊂ ◦Fι for T ∈ [l(pi)] and ι∈ {0, . . . ,α}. Also, given Fι−1 and Fι,
ι= 1, . . . ,α, it can be shown that Proposition 2.3(2) implies that for x1,x2 ∈ ◦Fι,
either x1 = ζ1x2+y1 or x2 = ζ2x1+y2 for some ζ1,ζ2 ∈ C and y1,y2 ∈ ◦Fι−1.

In other words, any two points of ◦Fι are linearly dependent modulo ◦Fι−1 (see

[2, Proposition I.21]).

Observe that for T ∈ [l(pi)], Proposition 2.3 produces a chain of closed

invariant linear subspaces for T , namely {◦Fι}αι=0. The problem is that we could

have ◦Fι = {0} for ι ∈ {0, . . . ,α}∩N (i.e., the finite elements of {0, . . . ,α}) and
◦Fι = l(pi) for ι ∈ {0, . . . ,α}∩(∗N−N) (i.e., the infinite elements of {0, . . . ,α}).
However, if we could find ν ∈ {1, . . . ,α} such that ◦Fν−1 ≠ l(pi) and ◦Fν ≠ {0},
then either ◦Fν−1 or ◦Fν is a closed nontrivial linear subspace of T since l(pi) is

infinite dimensional and any two points of ◦Fν are linearly dependent modulo
◦Fν−1. The next proposition gives sufficient conditions for the existence of such

a ν .

Proposition 2.4 (see [2, Definition II.2 and Lemma II.9]). Let T ∈�(l(pi)),
∇ : ��(l(pi)) → �[l(pi)] be the function established by Proposition 2.2, and

let α ∈ ∗N+ −N+. Let the collection [{Fι}αι=0 : {∗∇(Fι)}αι=0] satisfy the condi-

tions of Proposition 2.3 with respect to T , ∇, and α. Let U ∈ ∗�(l(pi)) such

that U[µτ(0)] ⊂ µτ(0). If there exists x ∈ l(pi) such that U(∗x) 
∈ µτ(0) and

U(∗∇(Fι)(∗x)) ∈ Fι∩nsτ(∗l(pi)) for each ι ∈ {0, . . . ,α}, then there exists ν ∈
{1, . . . ,α} such that ◦Fν−1 ≠ l(pi) and ◦Fν ≠ {0}.

We close this section with a useful characterization of finτ(∗l(pi)), the finite

points of ∗l(pi).

Proposition 2.5. If z ∈ finτ(∗l(pi)), then πι(z) is finite for πι ∈ ∗{πi | i ∈
N+}.

Proof. Since 0 < p ≤ liminfpi implies that τ(pi) is locally bounded (see

[5, Theorem 6]), there exists a positive δ0 ∈R such that

V0 = S
(
ρ
(
pi
)
;δ0
)= {x ∈ l(pi

) | ρ(pi
)
(x,0)≤ δ0

}
(2.4)
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is τ(pi)-bounded. Let z ∈ finτ(∗l(pi)). Hence, ∗gV0(z) ≤ ∗δ for some posi-

tive δ ∈ R, where gV0 is the gauge of V0 (see [2, Proposition I.14]). So, z ∈
∗(δV0) ⊂ ∗S(ρ(pi);λ) for λ =max(δδ0,δ0,1) since V0 is closed, balanced and

δS(ρ(pi);δ0)⊂S(ρ(pi);λ). Therefore, ∗ρ(pi)(z,0)≤∗λ, which implies |πι(z)|pι
≤ ∗λ for πι ∈ ∗{πi | i ∈ N+}. It suffices to consider the case when 1 ≤ |πι(z)|
for ι∈ ∗N+. Since p ∈R and 0<p−1

ι ≤ ∗(p−1) for pι ∈ ∗{pi}, we have |πι(z)| ≤
(∗λ)p−1

ι ≤ ∗(λp−1) for πι ∈ ∗{πi | i ∈ N+}. We infer that πι(z) is finite for

πι ∈ ∗{πi | i∈N+}.

3. Polynomially compact almost superdiagonal operators. We want to

show that if T ∈ ��[l(pi)] is almost superdiagonal and q(T) is compact for

some polynomial q(λ) over C, then T has a nontrivial closed invariant lin-

ear subspace. Note that for α ∈ ∗N+ −N+ and ∇ : ��(l(pi)) → �[l(pi)], the

function defined by Proposition 2.2, we can use Proposition 2.3 to produce

a collection [{Fι}αι=0 : {∗∇(Fι)}αι=0], for some α ∈ ∗N, such that {◦Fι}αι=0 is a

collection of closed invariant linear subspaces of T . The strategy is to find

some α ∈ ∗N+ −N+ such that ∗q(Tα) ∈ ∗�(l(pi)) satisfies the hypotheses of

Proposition 2.4, where Tα = Pα(∗T)Pα.

First, however, consider a compact operator U on l(pi).
As stated in the proof of Proposition 2.5, there exists a positive δ0 ∈R such

that

V0 = S
(
ρ
(
pi
)
;δ0
)= {x ∈ l(pi

) | ρ(pi
)
(x,0)≤ δ0

}
(3.1)

is τ(pi)-bounded since 0<p ≤ liminfpi implies that τ(pi) is locally bounded

(see the known facts about (l(pi),τ(pi)) in the first section). Therefore,

∗V0 ⊂ finτ
(∗l(pi

))
(3.2)

(see [2, Corollary I.18]). If U ∈ [l(pi)] such that U[W] is τ(pi)-compact for

some W ∈ �τ(0), then U[V0] is τ(pi)-compact since λV0 ⊂W for some posi-

tive scalar λ. Unless stated otherwise, V0 = S(ρ(pi);δ0) will be a fixed, τ(pi)-
bounded neighborhood of 0, with 0< δ0 ≤ 1. Thus, we have that U ∈ [l(pi)] is

compact if and only ifU[V0] is τ(pi)-compact. Also, ifU[V0] is τ(pi)-compact,

then ∗U[∗V0]⊂ nsτ(∗l(pi)) (see [2, Proposition I.1]).

Proposition 3.1. If U ∈ [l(pi)] is compact and [bij] is the matrix of U ,

then bικ ∈ µ(0) for bικ ∈ ∗[bij] such that ι,κ ∈ ∗N+−N+.

Proof. Let λκ = (∗δ0)p
−1
κ for κ ∈ ∗N+ and pκ ∈ ∗{pi} and define zκ =

λκeκ for κ ∈ ∗N+ and eκ ∈ ∗{ei}. We infer that ∗ρ(pi)(zκ,0) = |λκ|pκ = ∗δ0

for κ ∈ ∗N+, which implies zκ ∈ ∗V0 for κ ∈ ∗N+. Therefore, ∗Uzκ ∈ nsτ(∗l(pi))
for κ ∈ ∗N+ since ∗U[∗V0] ⊂ nsτ(∗l(pi)). So, if ι ∈ ∗N+ −N+, then ∗Uzκ −
Pι−1(∗Uzκ)∈ µτ(0) for κ ∈ ∗N+ by expression (2.3) since ι∈ ∗N+−N+ implies

ι−1∈ ∗N+−N+.
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Let ι,κ ∈ ∗N+−N+ and let [bij] be the matrix of U with respect to {ei}. Note

that πι(∗Uzκ) = λκπι(∗Ueκ) = λκbικ for πι ∈ ∗{πi | i ∈ N+}, eι ∈ ∗{ei}, and

bικ ∈ ∗[bij]. Since

∣∣λκbικ
∣∣pι = ∗ρ

(
pi
)(
λκbικeι,0

)≤ ∗ρ
(
pi
)(∗Uzκ−Pι−1

(∗Uzκ
)
,0
)
, (3.3)

we have |λκbικ|pι ∈ µ(0). Consequently, 1 ≤ p−1
ι ≤ ∗(p−1) implies λκ|bικ| ∈

µ(0). Also, 1≤ p−1
κ ≤ ∗(p−1) implies ∗(δp

−1

0 )≤ λκ ≤ ∗δ0, which implies |bικ| ∈
µ(0). Therefore, bικ ∈ µ(0).

Proposition 3.2. If U ∈ [l(pi)] is almost superdiagonal and q(U) is com-

pact for some complex polynomial q(λ), then there exists α ∈ ∗N+ −N+ such

that aα+1,α ∈ µ(0) for aα+1,α ∈ ∗[aij], where [aij] is the matrix of U .

Proof. Let n be the degree of q(λ) = ∑n
k=0 ckλk, which implies cn ≠ 0. If

[bij] is the matrix of q(U), with respect to {ei}, then q(U) being compact im-

plies bικ ∈ µ(0) for bικ ∈ ∗[bij] such that ι,κ ∈ ∗N+−N+ by Proposition 3.1. Let

κ ∈ ∗N+−N+. SinceU being almost superdiagonal impliesa(m)κ+n,κ = 0 form<n
and a(n)κ+n,κ =

∏n−1
i=0 aκ+i+1,κ+i (by expression (1.3) and the transfer principle), we

have bκ+n,κ = ∗cn
∏n−1
i=0 aκ+i+1,κ+i. Therefore, if κ ∈ ∗N+−N+, then ∗cn 
∈ µ(0)

and bκ+n,κ ∈ µ(0) imply aκ+i0+1,κ+i0 ∈ µ(0) for some i0 ∈ {0, . . . ,n− 1}. Let

α= κ+i0.

Proposition 3.3. If U ∈ ∗�(l(pi)) such that U[µτ(0)]⊂ µτ(0), then

U
[
finτ

(∗l(pi
))]⊂ finτ

(∗l(pi
))
. (3.4)

Proof. Let z ∈ finτ(∗l(pi)). If λ ∈ µ(0), then λz ∈ µτ(0), which implies

λUz =U(λz)∈ µτ(0). Therefore, Uz ∈ finτ(∗l(pi)).

Let T ∈ ��[l(pi)] be an almost superdiagonal operator such that q(T)
is compact for q(λ) = ∑n

k=0 ckλk, a polynomial over C with cn ≠ 0. Let ∇ :

��(l(pi)) → �[l(pi)] satisfy the conditions of Proposition 2.2 and let α ∈
∗N+ −N+ satisfy the conclusion of Proposition 3.2. Note that the (internal)

projection Pα : ∗l(pi) → Eα satisfies the conditions of Proposition 2.1. Define

Tα = Pα(∗T)Pα. Observe that

∗q
(
Tα
)∈ ∗�

(
l
(
pi
))
, Tα

[
µτ(0)

]⊂ µτ(0),
∗(q(T))[µτ(0)

]⊂ µτ(0),
(3.5)

since T and q(T) are continuous.

Proposition 3.4. If z ∈ µτ(0), then ∗q(Tα)z ∈ µτ(0).
Proof. It suffices to show that (Tα)m[µτ(0)] ⊂ µτ(0) for m ∈ N+ (see

[2, Proposition I.6]). Note that from (3.5), Tα[µτ(0)] ⊂ µτ(0). Assume that
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(Tα)m[µτ(0)]⊂ µτ(0) for m∈N+. Consequently,

(
Tα
)m+1[µτ(0)

]= Tα
[(
Tα
)m[µτ(0)

]]⊂ Tα
[
µτ(0)

]⊂ µτ(0). (3.6)

Therefore, (Tα)m[µτ(0)]⊂ µτ(0) for each m∈N+ by induction.

So, one of the conditions of Proposition 2.4 for ∗q(Tα) has been satisfied,

that is, ∗q(Tα)[µτ(0)]⊂ µτ(0).
Proposition 3.5. Let F ∈ ∗��(l(pi)) such that F ⊂ Eα. If Tα[F] ⊂ F , then

(Tα)m[F]⊂ F for m∈N.

Proof. If (Tα)m[F] ⊂ F for m ∈ N, then (Tα)m+1[F] = Tα[(Tα)m[F]] ⊂
Tα[F]⊂ F . Therefore, (Tα)m[F]⊂ F for any m∈N by induction.

Consequently, if F ∈ ∗��(l(pi)) such that F ⊂ Eα and Tα[F]⊂ F , then

∗q
(
Tα
)
[F]⊂ F. (3.7)

Proposition 3.6. If z ∈ Eα ∩ finτ(∗l(pi)), then [∗q(Tα)z − ∗(q(T))z] ∈
µτ(0).

Proof. It is sufficient to show that ∗(Tm)z−(Tα)mz ∈ µτ(0) for z ∈ Eα∩
finτ(∗l(pi)) andm∈N (see [2, Proposition I.6]). Let z ∈ Eα∩finτ(∗l(pi)), which

implies z =∑α
κ=1πκ(z)eκ forπκ ∈ ∗{πi | i∈N+} and eκ ∈ ∗{ei}. Consequently,

∗Tz =
α∑

κ=1

πκ(z)∗Teκ =
α∑

κ=1

πκ(z)



α+1∑

ι=1

aικeι


=

α+1∑

ι=1




α∑

κ=1

aικπκ(z)


eι (3.8)

since T is almost superdiagonal. Also, aα+1,κ = 0 for κ < α, which implies∑α
κ=1aα+1,κπκ(z) = aα+1,απα(z). Therefore, ∗Tz = ∑α

ι=1[
∑α
κ=1aικπκ(z)]eι +

aα+1,απα(z)eα+1, which implies ∗Tz−Pα(∗Tz)= aα+1,απα(z)eα+1. So,

∗ρ
(
pi
)(∗Tz−Pα

(∗Tz),0)= ∣∣aα+1,α
∣∣pα+1

∣∣πα(z)
∣∣pα+1 . (3.9)

Since πα(z) is finite (by Proposition 2.5), aα+1,α ∈ µ(0) (Proposition 3.2), and

0< ∗p ≤ pα+1 ≤ 1, we infer that |aα+1,α|pα+1 |πα(z)|pα+1 ∈ µ(0), which implies
∗Tz− Pα(∗Tz) ∈ µτ(0). Therefore, ∗Tz− Tαz ∈ µτ(0) since z ∈ Eα implies

z = Pα(z).
Now, let m ∈ N such that 2 ≤m and assume that ∗(Tm−1)z− (Tα)m−1z ∈

µτ(0) for z ∈ Eα∩finτ(∗l(pi)). If z ∈ Eα∩finτ(∗l(pi)), then

∗(Tm)z−∗T
((
Tα
)m−1z

)
= ∗T

(
∗(Tm−1)z−(Tα

)m−1z
)
∈ µτ(0) (3.10)
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since T ∈ [l(pi)] implies that T is linear and ∗T[µτ(0)] ⊆ µτ(0). If we set

y = (Tα)m−1z, then y ∈ Eα ∩ finτ(∗l(pi)) by Propositions 3.3 and 3.5 since

Tα[Eα]⊂ Eα and (Tα)m−1[µτ(0)] ⊆ µτ(0) (see the proof of Proposition 3.4).

Thus,

∗T
((
Tα
)m−1z

)
−(Tα

)mz = ∗T(y)−Tαy ∈ µτ(0) (3.11)

(see the first part of the present proof), which implies

∗(Tm)z−(Tα
)mz =

[
∗(Tm)z−∗T

((
Tα
)m−1z

)]

+
[
∗T
((
Tα
)m−1z

)
−(Tα

)mz
]
∈ µτ(0).

(3.12)

Therefore, by induction, it follows that ∗(Tm)z−(Tα)mz ∈ µτ(0) for z ∈ Eα∩
finτ(∗l(pi)) and m∈N.

Proposition 3.7. If z ∈ Eα∩finτ(∗l(pi)), then ∗q(Tα)z ∈ nsτ(∗l(pi)) (i.e.,
∗q(Tα)z is τ(pi)-near standard).

Proof. Let z ∈ Eα∩finτ(∗l(pi)). There exists n ∈ N such that z ∈ ∗(nV0)
(see [2, Corollary I.15]). Since q(T) is compact, it follows that

∗(q(T))[∗(nV0
)]=n∗(q(T))[∗V0

]⊂n[nsτ
(∗l(pi

))]⊂ nsτ
(∗l(pi

))
(3.13)

(see [2, Proposition I.1 and Corollary I.10]). Therefore,

∗q
(
Tα
)
z−◦[∗(q(T))z]= [∗q(Tα

)
z−∗(q(T))z]

+[∗(q(T))z−◦[∗(q(T))z]]∈ µτ(0)
(3.14)

since [∗q(Tα)z−∗(q(T))z] ∈ µτ(0) by Proposition 3.6. Therefore, ∗q(Tα)z ∈
nsτ(∗l(pi)).

We now state and prove the main result.

Theorem 3.8. Let 0 < p ≤ pi ≤ 1 and let T ∈ [l(pi)] be almost superdiag-

onal. If q(λ) is a polynomial over C such that q(T) is compact, then T has at

least one nontrivial τ(pi)-closed invariant linear subspace of l(pi).

Proof. Let [aij] be the matrix of T with respect to {ei}. Therefore, there ex-

istsα∈ ∗N+−N+ such thataα+1,α ∈ µ(0) foraα+1,α∈∗[aij] by Proposition 3.2.

Let ∇ : ��(l(pi))→ �[l(pi)] satisfy the conditions of Proposition 2.2 and let

the collection [{Fι}αι=0 : {∗∇(Fι)}αι=0] satisfy the conclusion of Proposition 2.3

with respect to T , ∇, and α. From Proposition 2.2(2) (and the transfer princi-

ple), we infer the existence of a nonzero x0 ∈ l(pi) such that ∗∇(F)(∗x0)∈ ∗V0

for each F ∈ ∗��(l(pi)), which implies ∗∇(F)(∗x0)∈ F∩finτ(∗l(pi)) for each
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F ∈ ∗��(l(pi)) (see expression (3.2)). Consequently,

∗q
(
Tα
)(∗∇(Fι

)(∗x0
))∈ Fι∩nsτ

(∗l(pi
))

for ι∈ {0, . . . ,α} (3.15)

by Proposition 3.7 since, for each ι∈ {0, . . . ,α}, ∗∇(Fι)(∗x0)∈ Fι ⊂ Eα, by def-

initions of ∇, {Fι}αι=0 (and the transfer principle), and ∗q(Tα)[Fι] ⊂ Fι (see ex-

pression (3.7)).

If {x0,Tx0, . . . ,Tmx0} is linearly dependent for somem∈N+, then the linear

space generated by {x0,Tx0, . . . ,Tm−1x0} is nontrivial, closed, and invariant

under T .

For the remainder of the proof, we will assume that {x0,Tx0, . . . ,Tmx0} is

linearly independent for each m∈N+. Consequently,

q(T)
(
x0
)
≠ 0. (3.16)

Since the (internal) projection Pα satisfies Proposition 2.1, we have ∗x0 −
Pα(∗x0) ∈ µτ(0), which implies [∗q(Tα)(∗x0)−∗q(Tα)(Pα(∗x0))] ∈ µτ(0) by

Proposition 3.4 and [∗(q(T))(Pα(∗x0))−∗(q(T)(x0))]∈ µτ(0) because q(T)∈
[l(pi)]. Also, Pα(∗x0)∈ Eα∩finτ(∗l(pi)) (see expression (1.4)) implies

[∗q(Tα
)(
Pα
(∗x0

))−∗(q(T))(Pα
(∗x0

))]∈ µτ(0) (3.17)

by Proposition 3.6. Therefore,

∗q
(
Tα
)(∗x0

)−∗(q(T)(x0
))

= [∗q(Tα
)(∗x0

)−∗q
(
Tα
)(
Pα
(∗x0

))]

+[∗q(Tα
)(
Pα
(∗x0

))−∗(q(T))(Pα
(∗x0

))]

+[∗(q(T))(Pα
(∗x0

))−∗(q(T)(x0
))]
,

(3.18)

which implies [∗q(Tα)(∗x0)−∗(q(T)(x0))]∈ µτ(0). So, q(T)(x0)≠ 0 implies

∗q
(
Tα
)(∗x0

) 
∈ µτ(0) (3.19)

since τ = τ(pi) is Hausdorff. Therefore, by Propositions 2.4 and 3.4, expres-

sions (3.15) and (3.19), there exists ν ∈ {1, . . . ,α} such that ◦Fν−1 ≠ l(pi) and
◦Fν ≠ {0}. Since any two points of ◦Fν are linearly dependent modulo ◦Fν−1,

we have that either ◦Fν−1 or ◦Fν is a closed nontrivial linear subspace of T .
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