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We propose a mathematical model which considers the series-type product struc-
ture with n−1 predecessors. Our objective is to obtain the optimal production
functions, in the planning horizon [0,T ], based on the assumptions (1) that the
cost of production unit is a linear function of production quantity in a time unit,
(2) that sales of finished goods occur at the end of planning horizon, and (3) that
product demand is a random variable. Then the phenomenon of optimal solution
is discussed.
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1. Introduction. Billington et al. [1] have described that there are four types

of product structures in the multistage production systems: (1) series; (2) par-

allel; (3) assembly; (4) general. The simplest is the series-type product structure

which illustrates a single product, produced in a series of steps. Zangwill [7]

and Love [6] use a concave cost structure and present relatively efficient solu-

tion techniques. Whatever type of the multistage production systems, the as-

sumption of the demand schedule for the end products has been established,

and then one determines the lot sizes in each stage to minimize the total costs.

On the contrary, the probabilistic demand is discussed in the inventory system.

The typical one is the classical newsboy problem. It is a single-period, single-

product inventory problem which considers the inventory size to be ordered

for the sake of meeting random demand so as to maximize expected profit

while balancing holding and shortage costs. There are many papers to discuss

this problem in recent years. For example, Eppen [4] presented a multilocation

newsboy problem with normal distribution of a location’s demand, identical

linear holding, and penalty cost functions. Chen and Lin [3] extend Eppen’s

model by considering the concave cost function with unspecified distribution

of demand, then show that the Eppen’s results are still true.

M. S. Chen and Y. C. Chen [2] have constructed a mathematical model for

the newsboy problem with production and holding costs. The problem is, in

the planning horizon [0,T ], how should the decision makers control the pro-

duction rates to meet the random demand at the end of the period such that

the expected profit is optimal? However, they assumed that the product struc-

ture is single-stage. Thus, we extend it by assuming that the product structure
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is series-type with n−1 predecessors. Then how should the decision makers

control the production rates at each stage to meet the random demand at the

end of planning period such that the expected profit is optimal?

2. Notation and assumptions. For the sake of convenience, the following

notation and assumptions are used in this paper:

(i) [0,T ]: the available time interval for production and T is the selling time;

(ii) v : the price unit of produced goods;

(iii) hi: the holding unit cost of ith semifinished goods in a time unit, i =
1, . . . ,n−1, let h0 = 0, and hn is the holding unit cost of finished goods

in a time unit;

(iv) b: the loss or treatment cost per unit of surplus goods. It occurs when

the quantity of inventory on hand at time T is larger than the quantity of

goods in demand;

(v) p: the penalty cost per unit of lacking goods. It occurs when the quantity

of inventory on hand is less than the quantity of goods in demand;

(vi) S: the quantity of goods in demand at time T . Here, S is a random variable,

its probability density function is f(s), and its cumulative distribution

function is

F(s)=
∫ s

0
f(t)dt; (2.1)

(vii) [ti,T]: the time interval during which the decision maker is actually en-

gaged in the production of ith semifinished goods, and ti is the time to be-

gin production of ith semifinished goods, where ti ≥ 0 and i= 1, . . . ,n−1.

Let [tn,T] be the time interval during which the decision maker is actu-

ally engaged in the production of finished goods and let tn be the time

to begin the production of finished goods, where tn ≥ 0;

(viii) xi(t): the cumulative production of ith semifinished goods at time t,
that is, the total production of semifinished goods in the time interval

[ti,t], where xi(ti)= 0 and i= 1, . . . ,n−1. Furthermore, xn(t) is the total

production of finished goods in the time interval [tn,t], where xn(tn)= 0

and xn(T) is the total inventory on hand at time T . When the decision

makers make extra production plans in addition to the routine work, the

cost will burden them because of the capital and the human resources. So,

the production unit cost will increase as the production increases. Hence,

in this paper, we assume that the production unit cost is an increasing

function of production in the time unit. If the decision makers do not

have production, they do not have to pay for the cost. Therefore, we

have

(ix) cix′i(t): the production unit cost of the ith semifinished goods at time t,
where ci is a constant and i = 1,2, . . . ,n−1. Furthermore, cnx′n(t) is the

production unit cost of finished goods at time t, where cn is a constant.
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3. Model. Using the notation of the previous section, we have that

(i) total production and holding costs of finished goods equals
∫ T
tn[cnx

′2
n (t)

+hnxn(t)]dt;
(ii) total production and holding costs of the ith semifinished goods in the

time interval [ti,ti+1] equals
∫ ti+1
ti [cix′2i (t)+hixi(t)]dt for all i= 1,2, . . . ,

n−1;

(iii) total production and holding costs of the ith semifinished goods in the

time interval [ti+1,T ] equals
∫ T
ti+1
[cix′2i (t)+hi(xi(t)−xi+1(t))]dt for all

i= 1,2, . . . ,n−1;

(iv) total production and holding costs of the ith semifinished goods in the

time interval [ti,T] equals
∫ T
ti [cix

′2
i (t)+hixi(t)]dt−

∫ T
ti+1

hixi+1(t)dt.
So, total production and holding costs of all semifinished goods equals

n−1∑
i=1

∫ T
ti

[
cix′2i (t)+hixi(t)

]
dt−

n−1∑
i=1

∫ T
ti+1

hixi+1(t)dt

=
n−1∑
i=1

∫ T
ti

[
cix′2i (t)+hixi(t)

]
dt−

n∑
i=2

∫ T
ti
hi−1xi(t)dt

=
n−1∑
i=1

∫ T
ti

[
cix′2i (t)+hixi(t)

]
dt−

n∑
i=1

∫ T
ti
hi−1xi(t)dt

(
h0 = 0

)

=
n−1∑
i=1

∫ T
ti

[
cix′2i (t)+

(
hi−hi−1

)
xi(t)

]
dt−

∫ T
tn
hn−1xn(t)dt.

(3.1)

Thus, total production and holding costs equals

∫ T
tn

[
cnx′2n (t)+hnxn(t)

]
dt−

∫ T
tn
hn−1xn(t)dt

+
n−1∑
i=1

∫ T
ti

[
cix′2i (t)+

(
hi−hi−1

)
xi(t)

]
dt

=
n∑
i=1

∫ T
ti

[
cix′2i (t)+

(
hi−hi−1

)
xi(t)

]
dt.

(3.2)

Since the for-sale quantity of goods min{xn(T),S} is a random variable, we

have that

(i) the expected revenue equals
∫ xn(T)
0 vsf(s)ds+∫∞xn(T) vxn(T)f(s)ds;

(ii) the expected cost of surplus goods equals
∫ xn(T)
0 b(xn(T)−s)f (s)ds;

(iii) the expected cost of shortage goods equals
∫∞
xn(T) p(s−xn(T))f(s)ds.
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If our objective is the profit optimization, then the mathematical model is

as follows:

Max
∫ xn(T)

0

[
vs−b(xn(T)−s)]f(s)ds

+
∫∞
xn(T)

[
vxn(T)−p

(
s−xn(T)

)]
f(s)ds

−
n∑
i=1

∫ T
ti

[
cix′2i (t)+

(
hi−hi−1

)
xi(t)

]
dt

(3.3)

subject to xi(ti) = 0 for all i, xi(T) = xn(T) for all i = 1, . . . ,n− 1, x1(t) ≥
x2(t) ≥ x3(t) ≥ ··· ≥ xn(t) for all t ∈ [tn,T], hi > hi−1 for all i = 1,2, . . . ,n,

h0 = 0, tn ≥ tn−1 ≥ ··· ≥ t1 ≥ 0, x′i(t)≥ 0 for all t ∈ [ti,T], for all i= 1,2, . . . ,n,

where xi(T), ti are free for all i.
Now, let (x∗1 (t),x

∗
2 (t), . . . ,x∗n(t)) be the optimal solution of (3.3) and con-

sider two feasible solutions(
x∗1 (t), . . . ,x

∗
i−1(t),x

∗
i+1(t),x

∗
i+1(t),x

∗
i+2(t), . . . ,x

∗
n(t)

)
,(

x∗1 (t), . . . ,x
∗
i−1(t),x

∗
i (t),x

∗
i (t),x

∗
i+2(t), . . . ,x

∗
n(t)

)
.

(3.4)

Therefore, using the fact that the objective value of (x∗1 (t),x
∗
2 (t), . . . ,x∗n(t))

is greater than the objective of (x∗1 (t), . . . ,x
∗
i−1(t),x

∗
i+1(t),x

∗
i+1(t),x

∗
i+2(t), . . . ,

x∗n(t)), we have

∫ x∗n(T)
0

[
vs−b(x∗n(T)−s)]f(s)ds+

∫∞
x∗n(T)

[
vx∗n(T)−p

(
s−x∗n(T)

)]
f(s)ds

−
n∑
i=1

∫ T
t∗i

[
cix∗

′2
i (t)+(hi−hi−1

)
x∗i (t)]dt

≥
∫ x∗n(T)

0

[
vs−b(x∗n(T)−s)]f(s)ds

+
∫∞
x∗n(T)

[
vx∗n(T)−p

(
s−x∗n(T)

)]
f(s)ds

−
i−1∑
k=1

∫ T
t∗k

[
ckx∗

′2
k (t)+(hk−hk−1

)
x∗k (t)

]
dt

−
∫ T
t∗i+1

[
cix∗

′2
i+1(t)+

(
hi−hi−1

)
x∗i+1(t)

]
dt

−
n∑

k=i+1

∫ T
t∗k

[
ckx∗

′2
k (t)+(hk−hk−1

)
x∗k (t)

]
dt,

(3.5)

which implies

∫ T
t∗i

(
x∗

′2
i+1(t)−x∗

′2
i (t)

)
dt ≥ hi−hi−1

ci

∫ T
t∗i

(
x∗i (t)−x∗i+1(t)

)
dt. (3.6)
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Similarly, the objective value of (x∗1 (t),x
∗
2 (t), . . . ,x∗n(t)) is greater than the

objective of (x∗1 (t), . . . ,x
∗
i−1(t),x

∗
i (t),x

∗
i (t),x

∗
i+2(t), . . . ,x∗n(t)), then we have

∫ x∗n(T)
0

[
vs−b(x∗n(T)−s)]f(s)ds+

∫∞
x∗n(T)

[
vx∗n(T)−p

(
s−x∗n(T)

)]
f(s)ds

−
n∑
i=1

∫ T
t∗i

[
cix∗

′2
i (t)+(hi−hi−1

)
x∗i (t)

]
dt

≥
∫ x∗n(T)

0

[
vs−b(x∗n(T)−s)]f(s)ds

+
∫∞
x∗n(T)

[
vx∗n(T)−p

(
s−x∗n(T)

)]
f(s)ds

−
i∑

k=1

∫ T
t∗k

[
ckx∗

′2
k (t)+(hk−hk−1

)
x∗k (t)

]
dt

−
∫ T
t∗i

[
ci+1x∗

′2
i (t)+(hi+1−hi

)
x∗i (t)

]
dt

−
n∑

k=i+2

∫ T
t∗k

[
ckx∗

′2
k (t)+(hk−hk−1

)
x∗k (t)

]
dt,

(3.7)

which implies that

hi+1−hi
ci+1

∫ T
t∗i

(
x∗i (t)−x∗i+1(t)

)
dt ≥

∫ T
t∗i

(
x∗

′2
i+1(t)−x∗

′2
i (t)

)
dt. (3.8)

Combining (3.6) and (3.8), we have

hi−hi−1

ci

∫ T
t∗i

(
x∗i (t)−x∗i+1(t)

)
dt ≤ hi+1−hi

ci+1

∫ T
t∗i

(
x∗i (t)−x∗i+1(t)

)
dt,

(
hi−hi−1

ci
− hi+1−hi

ci+1

)∫ T
t∗i

(
x∗i (t)−x∗i+1(t)

)
dt ≤ 0 ∀i= 1,2, . . . ,n−1.

(3.9)

Therefore, if (hi−hi−1)/ci > (hi+1−hi)/ci+1, then x∗i (t) = x∗i+1(t) for all i =
1,2, . . . ,n−1.

Define sequence Q = {Qi}ni=1, where Qi = (hi−hi−1)/ci. Then, Q must be

one of the following three cases.

Case I. The sequence Q is an increasing sequence.

In this case, the optimal solution is shown in the next section.

Case II. The sequence Q is a strictly decreasing sequence.
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Then by (3.9), we know that x∗n−1(t)= x∗n(t). So, in this case, we let xn(t)=
xn−1(t) in (3.3), then the coefficients of xn−1(t) and x′n−1(t) are hn−hn−1 and

cn+cn−1, respectively.

Hence, sequence Q becomes

{
h1−h0

c1
, . . . ,

hn−2−hn−3

cn−2
,
hn−hn−2

cn+cn−1

}
. (3.10)

It is easy to see that if

hn−hn−1

cn
<
hn−1−hn−2

cn−1
, (3.11)

then

hn−hn−1

cn
<
hn−hn−2

cn+cn−1
<
hn−1−hn−2

cn−1
. (3.12)

Thus, (hn−2 −hn−3)/cn−2 > (hn −hn−2)/(cn + cn−1), by (3.9), we then have

x∗n−2(t)= x∗n−1(t).
Continuing the process, we finally find that x∗1 (t) = x∗2 (t) = ··· = x∗n(t) =

x∗(t), and the coefficients of x∗(t) and x∗′(t) are hn−h0 and
∑n
i=1 ci, respec-

tively. Then, problem (3.3) reduces to

Max
∫ xn(T)

0

[
vs−b(xn(T)−s)]f(s)ds

+
∫∞
xn(T)

[
vxn(T)−p

(
s−xn(T)

)]
f(s)ds

−
∫ T
tn

[[ n∑
i=1

ci

]
x′2n (t)+

(
hn−h0

)
xn(t)

]
dt

(3.13)

subject to xn(tn)= 0, h0 = 0, tn ≥ 0, x′n(t)≥ 0, for all t ∈ [tn,T], where xn(T),
tn are free.

In this case, problem (3.3) reduces to the single-stage problem which is dis-

cussed in [2].

Case III. The sequence Q is neither increasing nor strictly decreasing.

Define Q(i) = (hi−hi−1)/ci = h̄i/c̄i, then by (3.9), we use Algorithm 3.1 to

check whether xi(t)= xi+1(t), for all i= 1, . . . ,n−1.
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Step 0. Form the sequence Q(i). (When Q(i)>Q(i+1), then xi(t)=xi+1(t).
In this situation, we recompute Q(i) and let Q(i+1)= “∗” in step 4.)

Step 1. i= 1, j = 2.
Step 2. If Q(i)= “∗” then i= i+1; if i=n, then go to step 7;

else redo step 2;
else if Q(j)= “∗,” then j = j+1; if j =n+1, then go to step 7;

else redo step 2;
go to step 3.

Step 3. If Q(i) >Q(j), then go to step 4 else go to step 6.
Step 4. h̄i = h̄i+ h̄j , c̄i = c̄i+ c̄j , and Q(j)= “∗”; print xi = xj ;

if i= 1, then j = j+1; if j =n+1, then go to step 7;
else go to step 2;

else j = i and go to step 5.
Step 5. i= i−1; if Q(i)= “∗,” then redo step 5 else go to step 2.
Step 6. i= j; j = j+1; if i=n or j =n+1, then go to step 7

else go to step 2.
Step 7. Stop.

Algorithm 3.1

4. Optimal solution. To derive the optimal solution of Case I, note that (3.3)

is not the standard form of calculus of variation, we first neglect the constraints

x′i(t)≥ 0 for all i, and xi(t)≥ xj(t) for 1≤ i < j ≤n, and consider the follow-

ing problem:

Max
∫ xn(T)

0

[
vs−b(xn(T)−s)]f(s)ds+

∫∞
xn(T)

[
vxn(T)−p

(
s−xn(T)

)]
f(s)ds

−
n∑
i=1

∫ T
ti

[
cix′2i (t)+

(
hi−hi−1

)
xi(t)

]
dt

(4.1)

subject to xi(ti) = 0 for all i, xi(T) = xn(T) for all i = 1, . . . ,n−1, hi > hi−1

for all i = 1,2, . . . ,n, h0 = 0, tn ≥ tn−1 ≥ ··· ≥ t1 ≥ 0, where xi(T), ti are free

for all i.
Let (x̄1(t), x̄2(t), . . . , x̄n(t)) be the optimal solution of (4.1).

Case 1. Suppose that (hi−hi−1)/ci ≤ (hi+1−hi)/ci+1 for all i=1,2, . . . ,n−1.

Case 1.1. If t̄i = 0 for all i, then the optimal solution x̄i(t), for all i, must

satisfy the following necessary conditions [5, pages 67–68]:

hi−hi−1 = 2cix̄′′i (t), (4.2)

−
n∑
i=1

2cix̄′i(T)+p+v−(p+v+b)F
(
x̄n(T)

)= 0. (4.3)
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Using the boundary conditions and x̄i(T)= x̄n(T), (4.2) yields

x̄i(t)= hi−hi−1

4ci
t2+

[
x̄n(T)
T

− hi−hi−1

4ci
T
]
t ∀i= 1,2, . . . ,n. (4.4)

From (4.3), we have

−hnT −
n∑
i=1

2ci
[
x̄n(T)
T

− hi−hi−1

4ci
T
]
+p+v−(p+v+b)F(x̄n(T))= 0.

(4.5)

Thus, x̄n(T) is determined by (4.5).

It is easy to see that x̄i(t)− x̄j(t) ≥ 0 for 1 ≤ i < j ≤ n. For each i, since

x̄′′i (t) > 0, x̄′i(t)≥ 0 if and only if x̄′i(0)≥ 0. It is easy to see that x̄′i(0)≥ 0, for

all i if and only if x̄′n(0)≥ 0, and by (4.4) if and only if

x̄n(T)≥ hn−hn−1

4cn
T 2. (4.6)

Let G be the function of x̄n(T):

G
(
x̄n(T)

)=−hnT −
n∑
i=1

2ci
[
x̄n(T)
T

− hi−hi−1

4ci
T
]
+p+v−(p+v+b)F(x̄n(T)).

(4.7)

It is easy to see that G′(x̄n(T)) < 0, so (4.6) holds if and only if G(((hn −
hn−1)/4cn)T 2)≥ 0, that is,

p+v ≥ hnT +
n∑
i=1

2ci
[
hn−hn−1

4cn
T − hi−hi−1

4ci
T
]
+(p+v+b)F

(
hn−hn−1

4cn
T 2
)
.

(4.8)

Result 1. If inequality (4.8) holds, then x̄i(t) in (4.4) is also the optimal

solution of (3.3).

Case 1.2. If 0< t̄1 ≤ t̄2 ≤ ··· ≤ t̄n, then the optimal solution x̄i(t), for all i,
must satisfy the following necessary conditions (see [5, pages 67–68]):

hi−hi−1 = 2cix̄′′i (t), (4.9)

−x̄′2i
(
t̄i
)−(hi−hi−1

)
x̄i
(
t̄i
)− x̄′i(t̄i)(−2x̄′i

(
t̄i
))= 0, i= 1,2, . . . ,n, (4.10)

−
n∑
i=1

2cix̄′i(T)+p+v−(p+v+b)F
(
x̄n(T)

)= 0. (4.11)

From (4.10), we know that x̄′i(t̄i)= 0. Hence, (4.9) yields

x̄i(t)= hi−hi−1

4ci

(
t− t̄i

)2, t ∈ [t̄i,T ]. (4.12)
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Note that x̄i(T)= x̄n(T), so

t̄i = T −
√
h1−h0

c1

ci
hi−hi−1

(
T − t̄1

) ∀i= 2,3, . . . ,n. (4.13)

From (4.11), we have

−
n∑
i=1

(
hi−hi−1

)[√h1−h0

c1

ci
hi−hi−1

(
T − t̄1

)]

+p+v−(p+v+b)F
(
h1−h0

4c1

(
T − t̄1

)2
)
= 0.

(4.14)

Thus, t̄1 is determined by (4.14) and t̄i is determined by (4.13) for all i =
2,3, . . . ,n.

Let G be the function of t̄1:

G
(
t̄1
)=− n∑

i=1

(
hi−hi−1

)[√h1−h0

c1

ci
hi−hi−1

(
T − t̄1

)]

+p+v−(p+v+b)F
(
h1−h0

4c1

(
T − t̄1

)2
)
.

(4.15)

Clearly, G′(t̄1) > 0, so t̄1 exists if and only if G(0) < 0, that is,

p+v <
n∑
i=1

(
hi−hi−1

)[√h1−h0

c1

ci
hi−hi−1

T
]
+(p+v+b)F

(
h1−h0

4c1
T 2
)
.

(4.16)

Result 2. If inequality (4.16) holds, then x̄i(t) in (4.12) is also the optimal

solution of (3.3).

Case 1.3. If t̄1 = t̄2 = ··· = t̄k = 0, 0 < t̄k+1 ≤ t̄k+2 ≤ ··· ≤ t̄n, and k =
1,2, . . . ,n−1, then the optimal solution x̄i, for all i, must satisfy the following

necessary conditions (see [5, pages 105–106]):

hi−hi−1 = 2cix̄′′i (t), ∀i= 1,2, . . . ,n, (4.17)

−x̄′2i
(
t̄i
)−(hi−hi−1

)
x̄i
(
t̄i
)− x̄′i(t̄i)(−2x̄′i

(
t̄i
))= 0, ∀i= k+1, . . . ,n,

(4.18)

−
n∑
i=1

2cix̄′i(T)+p+v+(p+v+b)F
(
x̄n(T)

)= 0. (4.19)

From (4.18), we find that x̄′i(t̄i)= 0, for all i= k+1, . . . ,n, then (4.17) yields

x̄i(t)= hi−hi−1

4ci

(
t− t̄i

)2 ∀i= k+1,k+2, . . . ,n. (4.20)
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On the other hand, (4.17) yields

x̄i(t)= hi−hi−1

4ci
t2+

[
x̄n(T)
T

− hi−hi−1

4ci
T
]
t ∀i= 1,2, . . . ,k. (4.21)

From (4.20) and using the boundary conditions x̄k+1(T) = x̄i(T), for all i =
k+2, . . . ,n, we have

hk+1−hk
4ck+1

(
T − t̄k+1

)2 = hi−hi−1

4ci

(
T − t̄i

)2 ∀i= k+2, . . . ,n. (4.22)

Hence,

t̄i = T −
√
hk+1−hk
ck+1

ci
hi−hi−1

(
T − t̄k+1

) ∀i= k+2, . . . ,n. (4.23)

Thus, from (4.19), we have

−hkT −
k∑
i=1

2ci
[

1
T
hk+1−hk

4ck+1

(
T − t̄k+1

)2− hi−hi−1

4ci
T
]

−
n∑

i=k+1

(
hi−hi−1

)√hk+1−hk
ck+1

ci
hi−hi−1

(
T − t̄k+1

)

+p+v−(p+v+b)F
(
hk+1−hk

4ck+1

(
T − t̄k+1

)2
)
= 0.

(4.24)

Hence, the value of t̄k+1 is determined by (4.24) and the value of t̄i is then given

by (4.23).

For 1 ≤ i < j ≤ k, it is easy to see that x̄i(t)− x̄j(t) ≥ 0. Next, we show that

x̄k(t)− x̄k+1(t)≥ 0. From (4.20) and (4.21), we have

x̄k(t)− x̄k+1(t)= hk−hk−1

4ck
t2+

[
1
T
hk+1−hk

4ck+1

(
T − t̄k+1

)2− hk−hk−1

4ck
T
]
t

− hk+1−hk
4ck+1

(
t− t̄k+1

)2.

(4.25)

The right-hand side of the above equation is a polynomial of degree 2 and

x̄k(T)− x̄k+1(T)= 0. So, there exists γ ∈R such that

x̄k(t)− x̄k+1(t)=
(
hk−hk−1

4ck
− hk+1−hk

4ck+1

)
(t−γ)(t−T). (4.26)

Since x̄k(t̄k+1)− x̄k+1(t̄k+1) > 0, this implies that γ < t̄k+1 < T . Hence, x̄k(t)−
x̄k+1(t) ≥ 0 for all t ∈ [t̄k+1,T ]. For k+ 1 ≤ i < j ≤ n, it can be shown that

x̄i(t)− x̄j(t)≥ 0 by the same way. Hence, x̄i(t)− x̄j(t)≥ 0 for 1≤ i < j ≤n.

For i = k+1, . . . ,n, we have x̄′i(t) ≥ 0. For i = 1,2, . . . ,k since x̄′′i (t) = (hi−
hi−1)/2ci > 0, we have x̄′i(t) ≥ 0, for all t ∈ [t̄i,T ], if and only if x̄′i(0) ≥ 0.
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Since x̄′i(t)= ((hi−hi−1)/2ci)t+[x̄n(T)/T −((hi−hi−1)/4ci)T],

x̄′i(0)=
x̄n(T)
T

− hi−hi−1

4ci
T ∀i= 1,2, . . . ,k. (4.27)

The fact that Q is an increasing sequence implies that x̄′i(0) ≥ x̄′k(0) for all

i= 1,2, . . . ,k. Therefore, x̄′i(0)≥ 0, for all i= 1,2, . . . ,k, if and only if x̄′k(0)≥ 0

and by the expression of x̄′k(0) if and only if

x̄n(T)≥ hk−hk−1

4ck
T 2. (4.28)

This implies that

hk+1−hk
4ck+1

(
T − t̄k+1

)2 ≥ hk−hk−1

4ck
T 2,

0< t̄k+1 ≤ T −
√
hk−hk−1

ck
ck+1

hk+1−hk T .
(4.29)

Let G be the function of t̄k+1:

G
(
t̄k+1

)=−hkT −
k∑
i=1

2ci
[

1
T
hk+1−hk

4ck+1

(
T − t̄k+1

)2− hi−hi−1

4ci
T
]

−
n∑

i=k+1

(
hi−hi−1

)√hk+1−hk
ck+1

ci
hi−hi−1

(
T − t̄k+1

)

+p+v−(p+v+b)F
(
hk+1−hk

4ck+1

(
T − t̄k+1

)2
)
.

(4.30)

It is easy to see that G′(t̄k+1) > 0. Thus, by (4.29), we know that t̄k+1 exists

if and only if G(0) < 0 and G(T −√((hk−hk−1)/ck)(ck+1/(hk+1−hk))T) ≥ 0,

that is,

hkT +
k∑
i=1

2ci
[
hk−hk−1

4ck
T − hi−hi−1

4ci
T
]

+
n∑

i=k+1

(
hi−hi−1

)√hk−hk−1

ck
ci

hi−hi−1
T

+(p+v+b)F
(
hk−hk−1

4ck
T 2
)

≤ p+v < hkT +
k∑
i=1

2ci
[
hk+1−hk

4ck+1
T − hi−hi−1

4ci
T
]

+
n∑

i=k+1

(
hi−hi−1

)√hk+1−hk
ck+1

ci
hi−hi−1

T

+(p+v+b)F
(
hk+1−hk

4ck+1
T 2
)
.

(4.31)
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Result 3. If inequality (4.31) holds, then x̄i(t) in (4.20) and (4.21) is also

the optimal solution of (3.3).

Hence, by Results 1, 2, and 3, the optimal solution (x∗1 (t),x
∗
2 (t), . . . ,x∗n(t))

of (3.3) is as follows.

Case 1. Suppose that (hi−hi−1)/ci≤(hi+1−hi)/ci+1 for all i=1,2, . . . ,n−1.

Case 1.1. If

p+v ≥ hnT +
n∑
i=1

2ci
[
hn−hn−1

4cn
T − hi−hi−1

4ci
T
]

+(p+v+b)F
(
hn−hn−1

4cn
T 2
)
,

(4.32)

then

x∗i (t)=
hi−hi−1

4ci
t2+

[x∗n(T)
T

− hi−hi−1

4ci
T
]
t, ∀i= 1,2, . . . ,n, (4.33)

where the value of x∗n(T) is determined by the following equation:

−hnT −
n∑
i=1

2ci
[x∗n(T)

T
− hi−hi−1

4ci
T
]
+p+v−(p+v+b)F(x∗n(T))= 0.

(4.34)

Case 1.2. If

p+v <
n∑
i=1

(
hi−hi−1

)[√√√(h1−h0
)

c1

ci(
hi−hi−1

)T
]

+(p+v+b)F
((
h1−h0

)
4c1

T 2

)
,

(4.35)

then

x∗i (t)=
hi−hi−1

4ci

(
t−t∗i

)2, t ∈ [t∗i ,T ], i= 1,2, . . . ,n, (4.36)

where the value of t∗1 is determined by the following equation:

−
n∑
i=1

(
hi−hi−1

)[√h1−h0

c1

ci
hi−hi−1

(
T −t∗1

)]

+p+v−(p+v+b)F
(
h1−h0

4c1

(
T −t∗1

)2
)
= 0,

(4.37)

and the value of t∗i is given by

t∗i = T −
√
h1−h0

c1

ci
hi−hi−1

(
T −t∗1

) ∀i= 2,3, . . . ,n. (4.38)
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Case 1.3. If

hkT +
k∑
i=1

2ci
[
hk−hk−1

4ck
T − hi−hi−1

4ci
T
]

+
n∑

i=k+1

(
hi−hi−1

)√hk−hk−1

ck
ci

hi−hi−1
T

+(p+v+b)F
(
hk−hk−1

4ck
T 2
)

≤ p+v < hkT +
k∑
i=1

2ci
[
hk+1−hk

4ck+1
T − hi−hi−1

4ci
T
]

+
n∑

i=k+1

(
hi−hi−1

)√hk+1−hk
ck+1

ci
hi−hi−1

T

+(p+v+b)F
(
hk+1−hk

4ck+1
T 2
)
,

(4.39)

then

x∗i (t)=
hi−hi−1

4ci

(
t−t∗i

)2, ∀i= k+1,k+2, . . . ,n,

x∗i (t)=
hi−hi−1

4ci
t2+

[x∗n(T)
T

− hi−hi−1

4ci
T
]
t, ∀i= 1,2, . . . ,k,

(4.40)

where the value of t∗k+1 is determined by the following equation:

−hkT −
k∑
i=1

2ci
[

1
T
hk+1−hk

4ck+1

(
T − t̄k+1

)2− hi−hi−1

4ci
T
]

−
n∑

i=k+1

(
hi−hi−1

)√hk+1−hk
ck+1

ci
hi−hi−1

(
T −t∗k+1

)

+p+v−(p+v+b)F
(
hk+1−hk

4ck+1

(
T −t∗k+1

)2
)
= 0,

(4.41)

then the value of t∗i is given by

t∗i = T −
√
hk+1−hk
ck+1

ci
hi−hi−1

(
T −t∗k+1

) ∀i= k+2, . . . ,n. (4.42)

Case 2. Suppose that (hi−hi−1)/ci >(hi+1−hi)/ci+1 for all i= 1,2, . . . ,n−1.

Case 2.1. If p+v ≥ (hn−h0)T +(p+v+b)F(((hn−h0)/4
∑
ci)T 2), then

x∗(t)= hn−h0

4
∑
ci
t2+

[x∗n(T)
T

− hn−h0

4
∑
ci
T
]
t, 0≤ t ≤ T , (4.43)
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where the value of x∗n(T) is determined by the following equation:

(
hn−h0

)
T +2

n∑
i=1

ci
[x∗n(T)

T
− hn−h0

4
∑
ci
T
]
= p+v−(p+v+b)F(x∗n(T)).

(4.44)

Case 2.2. If p+v < (hn−h0)T +(p+v+b)F(((hn−h0)/4
∑
ci)T 2), then

x∗i (t)=
hn−h0

4
∑
ci

(
t−t∗n

)2 ∀i, ∀t ∈ [t∗n,T ], (4.45)

where the value of t∗n is determined by the following equation:

p+v = (hn−h0
)(
T −t∗n

)+(p+v+b)F(hn−h0

4
∑
ci

(
T −t∗n

)2
)
. (4.46)

5. Conclusion. To analyze the characteristics of the optimal solution, the

Q sequence should be considered first:

Q= {Qi}ni=1, Qi = hi−hi−1

ci
. (5.1)

Then there are some features of the optimal solution that are described as

follows:

(1) if Q is an increasing sequence, then the optimal solution is of Case 1.

In this situation, for Case 1.1, the optimal inventory size x∗n(T) will be

greater than ((hn−hn−1)/4cn)T 2. For Case 1.2, the optimal inventory

size x∗n(T) will be less than ((h1−h0)/4c1)T 2. Otherwise, the optimal

inventory size will be between them;

(2) if Q is a strictly decreasing sequence, then the optimal solution is of

Case 2. Furthermore, if (hi−hi−1)/ci = (hi+1−hi)/ci+1 is established,

then the optimal solutions of Case 1 will reduce to that of Case 2, that

is, the multistage problem will reduce to the single-stage problem like

[2]. Precisely speaking, the optimal production functions of all stages

are the same;

(3) there are two types of the optimal production plan for Cases I, II, and

III: immediate production and postponed production.

Briefly speaking, (hi −hi−1)/ci, the ratio of the incremental holding cost

to production cost per unit of ith semifinished goods, is an important factor

which determines whether the optimal production functions are the same or

not.
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