EXPRESSION FOR A GENERAL ELEMENT OF AN SO(n) MATRIX

T. M. JANAKI and GOVINDAN RANGARAJAN

Received 3 February 2003

We derive the expression for a general element of an SO(n) matrix. All elements are obtained from a single element of the matrix. This has applications in recently developed methods for computing Lyapunov exponents.

2000 Mathematics Subject Classification: 22E70, 20G05.

1. Introduction. Matrix representations of the SO(n) group have played an important role in mathematical physics [5, 6]. They continue to be used in many fields to this day [4, 7, 8]. They also play a crucial role in new methods for computing Lyapunov exponents [2, 3].

In this paper, we obtain the expression for a general element of an SO(n) matrix \(Q^{(n)} \) for \(n \geq 3 \). This offers significant advantages in generalizing the recent Lyapunov spectrum calculation methods [2, 3] to higher dimensions. We demonstrate that expressions for all elements can be obtained from the expression of a single matrix element by suitable operations. As an example of the application of these results, we derive the elements of an SO(3) matrix in Section 3. The standard expressions are obtained as expected.

2. General element of an SO(n) matrix. In this section, we derive the expression for a general element of an SO(n) matrix denoted by \(Q^{(n)} \) (for \(n \geq 3 \)). In all the expressions below, it is implicitly assumed that \(n \geq 3 \).

We start by deriving the expression for the element \(Q_{1n}^{(n)} \). Then we prove that all other elements of \(Q^{(n)} \) can be obtained from this single element and give explicit expressions for these elements. This method is based on the representation of the group SO(n) as a product of \(n(n-1)/2 \) \(n \times n \) matrices, which are simple rotations in the \((i-j)\)th coordinates [1].

Proposition 2.1. An SO(n) matrix \(Q^{(n)} \) can be represented as the following product of simple rotations (see [1]):

\[
Q^{(n)} = O^{(1,2)} O^{(1,3)} \cdots O^{(1,n)} \cdots O^{(n-1,n)},
\]

where \(O^{(i,j)} \) is given as

...
\[O_{kl}^{(i,j)} = \begin{cases}
1, & \text{if } k = 1 \neq i, j; \\
\cos \theta_r, & \text{if } k = l = i \text{ or } j; \\
\sin \theta_r, & \text{if } k = i, l = j; \\
-\sin \theta_r, & \text{if } k = j, l = i; \\
0, & \text{otherwise},
\end{cases} \tag{2.2} \]

where \(r = (i-1)(2n-i)/2 + j-i. \)

Let

\[
T^{(1)} = O^{(1,2)}O^{(1,3)} \ldots O^{(1,n)}, \\
T^{(2)} = O^{(2,3)}O^{(2,4)} \ldots O^{(2,n)}, \\
\vdots \\
T^{(k)} = O^{(k,k+1)}O^{(k,k+2)} \ldots O^{(k,n)}, \\
\vdots \\
T^{(n-1)} = O^{(n-1,n)}.
\tag{2.3} \]

We see that the matrix \(T^{(1)} \) depends only on the first \((n-1) \) \(\theta_i \)'s, namely, \(\theta_1, \theta_2, \ldots, \theta_{n-1} \), and the matrix \(T^{(2)} \) depends only on the next \((n-2) \) \(\theta_i \)'s, namely, \(\theta_n, \theta_{n+1}, \ldots, \theta_{2n-3} \), and so on. Finally, the matrix \(T^{(n-1)} \) depends only on one \(\theta_i \), namely, \(\theta_{n(n-1)/2} \). Thus, a general matrix \(T^{(k)} \) is parameterized by the following \(\theta_i \)'s, namely, \(\theta_{m(n,k)}, \theta_{m(n,k)+1}, \ldots, \theta_{p(n,k)} \), where \(m(n,k) \) and \(p(n,k) \) are given by

\[
m(n,k) = \frac{(k-1)(2n-k)+2}{2}, \tag{2.4} \]
\[
p(n,k) = \frac{k(2n-k-1)}{2}. \tag{2.5} \]

Therefore,

\[
Q^{(n)} = T^{(1)}T^{(2)} \ldots T^{(n-1)}. \tag{2.6} \]

The matrix \(T^{(k)} \) \((k = 1, 2, \ldots, n-1) \) is given by

\[
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & R^{(k)} \\
0 & & & 0
\end{bmatrix}, \tag{2.7} \]

where \(R^{(k)} \) is an \((n-k+1) \times (n-k+1) \) matrix parameterized by \(\theta_{m(n,k)+1}, \theta_{m(n,k)+2}, \ldots, \theta_{p(n,k)} \), where \(m(n,k) \) and \(p(n,k) \) are given by (2.4) and (2.5),
respectively. The elements of $R^{(k)}$ are given as follows:

$$R^{(k)}_{11} = \prod_{r=m(n,k)}^{p(n,k)} \cos \theta_r,$$

(2.8)

and for $j = 3, 4, \ldots, n - (k - 1)$,

$$R^{(k)}_{1j} = \left(\prod_{r=0}^{j-3} \cos \theta_{m(n,k)+r} \right) \sin \theta_{m(n,k)+j-2}.$$

(2.10)

The second row ($j = 1, 2, \ldots, n - (k - 1)$) is given by

$$R^{(k)}_{2j} = \frac{\partial}{\partial \theta_{m(n,k)}} R^{(k)}_{1j}.$$

(2.11)

The rest of the rows ($i = 3, 4, \ldots, n - (k - 1)$ and $j = 1, 2, \ldots, n - (k - 1)$) are given by

$$R^{(k)}_{ij} = \frac{\partial}{\partial \theta_{m(n,k)+i-2}} s^{(k)}_{ij},$$

(2.12)

where $s^{(k)}_{ij} = \text{Coefficient of } \prod_{r=0}^{i-3} \cos \theta_{m(n,k)+r} \text{ in } R^{(k)}_{1j}$.

Putting everything together, from (2.6) we have the following lemma.

Lemma 2.2. Let $Q^{(n)}$ be an SO(n) matrix ($n \geq 3$). Then the element $Q^{(n)}_{1n}$ is given by the expression

$$Q^{(n)}_{1n} = \sum_{j_{n-2}=2}^{3} \sum_{j_{n-3}=2}^{4} \cdots \sum_{j_2=2}^{n-1} \sum_{j_1=2}^{n} R^{(1)}_{1j_1} R^{(2)}_{j_1-1,j_2} R^{(3)}_{j_2-1,j_3} \cdots R^{(n)}_{j_{n-2}-1,2},$$

(2.13)

where $j_{n-1} = 2$.

Next, we prove that all other elements of $Q^{(n)}$ can be obtained from the single element $Q^{(n)}_{1n}$ (derived above). To show this, we need some preliminary results contained in Lemmas 2.3 and 2.4 proved below.

Lemma 2.3. Consider a general SO(n) matrix $Q^{(n)}$ ($n \geq 3$). The expressions for $Q^{(n)}_{1n}$ for $i = 1, 2, \ldots, n - 1$, do not involve the term $\cos \theta_{p(n,1)} (= \cos \theta_{n-1})$ in them.

Proof. We can write the matrix $Q^{(n)}$ as

$$Q^{(n)} = R^{(1)} \Gamma \quad \text{(since } T^{(1)} = R^{(1)}),$$

(2.14)
where Γ is of the form

$$\Gamma = T^{(2)} T^{(3)} \cdots T^{(n-1)} = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & A^{(n-1)} & \\
0 & & &
\end{bmatrix}. \quad (2.15)$$

Here $A^{(n-1)}$ is a general $\text{SO}(n-1)$ matrix parameterized by $\theta_n, \theta_{n+1}, \ldots, \theta_{n(n-1)/2}$. Thus, $Q_{in}^{(n)}$ ($i = 1, 2, \ldots, n-1$) is given by

$$Q_{in}^{(n)} = \sum_{k=2}^{n} R_{ik}^{(1)} A_{k-1, n-1}^{(n-1)}. \quad (2.16)$$

From this equation, we see that $R_{1k}^{(1)}$’s ($i = 1, 2, \ldots, n-1$) are absent in the expressions for $Q_{in}^{(n)}$ ($i = 1, 2, \ldots, n-1$). Also, by (2.9), (2.10), (2.11), and (2.12), which give the expressions for $R_{ij}^{(k)}$’s, we see that the term $\cos \theta_{n-1}$ is absent in all the $R_{ik}^{(1)}$’s, where $i = 1, 2, \ldots, n-1$ and $k = 2, 3, \ldots, n$. Finally, $A^{(n-1)}$ is parameterized by $\theta_n, \theta_{n+1}, \ldots, \theta_{n(n-1)/2}$ and hence does not contain the term $\cos \theta_{n-1}$. Therefore, $Q_{in}^{(n)}$ ($i = 1, 2, \ldots, n-1$) does not involve the term $\cos \theta_{n-1}$. This proves the lemma.

Lemma 2.4. For $n \geq 3$, $Q_{nn}^{(n)} = \prod_{k=1}^{n-1} \cos \theta_{p(n,k)}$, where

$$p(n,k) = k(2n-k-1) \frac{2}{2}. \quad (2.17)$$

This lemma is easily proved by mathematical induction and hence we omit the proof.

We are now in a position to prove that we can obtain all rows of $Q^{(n)}$ given only the first row.

Lemma 2.5. Let $Q^{(n)}$ be an $\text{SO}(n)$ matrix ($n \geq 3$). Let $Q_{1l}^{(n)}$, $i = 1, 2, \ldots, n$, be its first row. Then the second row is given by the following equation:

$$Q_{2l}^{(n)} = \frac{\partial Q_{1l}^{(n)}}{\partial \theta_1}, \quad l = 1, 2, \ldots, n. \quad (2.18)$$

The other rows are given by the following expression:

$$Q_{il}^{(n)} = \frac{\partial B_{il}^{(n)}}{\partial \theta_{i-1}}, \quad i = 3, 4, \ldots, n; \quad l = 1, 2, \ldots, n, \quad (2.19)$$

where

$$B_{il}^{(n)} = \text{Coefficient of} \prod_{r=1}^{i-2} \cos \theta_r \text{ in } Q_{1l}^{(n)} . \quad (2.20)$$
PROOF. A general SO\((n)\) matrix \(Q^{(n)}\) is given by
\[
Q^{(n)} = T^{(1)} \Gamma,
\]
(2.21)
where \(T^{(1)}\) and \(\Gamma\) are given by (2.3) and (2.15), respectively. The matrix \(T^{(1)}\) is parameterized by the following \((n - 1)\) \(\theta\)'s, namely, \(\theta_1, \theta_2, \ldots, \theta_{n-1}\) while \(\Gamma\) is given by (2.15), where \(A^{(n-1)}\) is an SO\((n - 1)\) matrix, parameterized by \((n - 1)(n - 2)/2\) \(\theta\)'s, namely, \(\theta_n, \theta_{n+1}, \ldots, \theta_{n(n-1)/2}\). Thus, \(Q^{(n)}_{ii}, i = 1, 2, \ldots, n\), is given by
\[
Q^{(n)}_{ii} = R_{i1}^{(1)}.
\]
(2.22)
Using this equation and (2.11), we obtain
\[
Q^{(n)}_{21} = \frac{\partial Q^{(n)}_{11}}{\partial \theta_{i-1}}.
\]
(2.23)
Also, from (2.12), we have
\[
R_{11}^{(1)} = \frac{\partial \mathcal{J}_{i1}^{(1)}}{\partial \theta_{i-1}}, \quad i = 3, 4, \ldots, n,
\]
(2.24)
where (see (2.22) and (2.20))
\[
\mathcal{J}_{i1}^{(1)} = \mathcal{B}_{i1}^{(n)}.
\]
(2.25)
Thus,
\[
\frac{\partial \mathcal{B}_{i1}^{(1)}}{\partial \theta_{i-1}} = \frac{\partial \mathcal{J}_{i1}^{(1)}}{\partial \theta_{i-1}} = R_{i1}^{(1)} = Q^{(n)}_{ii}, \quad i = 3, 4, \ldots, n.
\]
(2.26)
Now, for \(l = 2, 3, \ldots, n\), we have
\[
Q^{(n)}_{il} = \sum_{k=2}^{n} R_{ik}^{(1)} A^{(n-1)}_{k-1,l-1}.
\]
(2.27)
Putting \(i = 1\), we get
\[
Q^{(n)}_{1l} = \sum_{k=2}^{n} R_{1k}^{(1)} A^{(n-1)}_{k-1,l-1}.
\]
(2.28)
Since \(A^{(n-1)}_{k-1,l-1}\)'s do not involve the first \((n - 1)\) \(\theta\)'s, namely, \(\theta_1, \theta_2, \ldots, \theta_{n-1}\), we obtain (for \(k = 2, 3, \ldots, n\))
\[
\frac{\partial}{\partial \theta_1} \left(R_{1k}^{(1)} A^{(n-1)}_{k-1,l-1} \right) = R_{2k}^{(1)} A^{(n-1)}_{k-1,l-1}.
\]
(2.29)
Summing over \(k\) \((k = 2, 3, \ldots, n)\) and using (2.28) and (2.23), we get
\[
\frac{\partial}{\partial \theta_1} Q^{(n)}_{1l} = Q^{(n)}_{2l}, \quad l = 1, 2, \ldots, n.
\]
(2.30)
Thus, the second row of $Q(n)$, namely, $Q_{2l}^{(n)}$ ($l = 1, 2, \ldots, n$) obeys the hypothesis (2.18). We will now prove the hypothesis for the rest of its rows.

Let

$$\mathcal{J}^{(1)}_{il} = \text{Coefficient of } \prod_{r=1}^{i-2} \cos \theta_r \text{ in } R_{il}^{(1)}, \quad i = 3, 4, \ldots, n,$$

$$\mathcal{C}_{ik} = \text{Coefficient of } \prod_{r=1}^{i-2} \cos \theta_r \text{ in } R_{ik}^{(1)} A_{k-1,l-1}^{(n-1)}, \quad i = 3, 4, \ldots, n; \quad k = 2, 3, \ldots, n.$$

(2.31)

(2.32)

Therefore, (see (2.28) and (2.20))

$$\sum_{k=2}^{n} \mathcal{C}_{ik} = B_{il}^{(n)}.$$

(2.33)

Since $A_{k-1,l-1}^{(n-1)}$'s do not involve $\theta_1, \theta_2, \ldots, \theta_{n-1}$, we have from (2.32)

$$\mathcal{C}_{ik} = A_{k-1,l-1}^{(n-1)} \mathcal{J}^{(1)}_{ik},$$

(2.34)

where $\mathcal{J}^{(1)}_{ik} = \text{Coefficient of } \prod_{r=1}^{i-2} \cos \theta_r \text{ in } R_{ik}^{(1)}$.

Thus, (see (2.12))

$$\frac{\partial \mathcal{C}_{ik}}{\partial \theta_{i-1}} = A_{k-1,l-1}^{(n-1)} \frac{\partial \mathcal{J}^{(1)}_{ik}}{\partial \theta_{i-1}} = A_{k-1,l-1}^{(n-1)} R_{ik}^{(1)}.$$

(2.35)

Summing both sides over k ($k = 2, 3, \ldots, n$), we obtain

$$\sum_{k=2}^{n} \frac{\partial \mathcal{C}_{ik}}{\partial \theta_{i-1}} = \sum_{k=2}^{n} R_{ik}^{(1)} A_{k-1,l-1}^{(n-1)} = Q_{il}^{(n)}.$$

(2.36)

But, from (2.33),

$$\sum_{k=2}^{n} \frac{\partial \mathcal{C}_{ik}}{\partial \theta_{i-1}} = \frac{\partial (\sum_{k=2}^{n} \mathcal{C}_{ik})}{\partial \theta_{i-1}} = \frac{\partial B_{il}^{(n)}}{\partial \theta_{i-1}}.$$

(2.37)

Thus,

$$\frac{\partial B_{il}^{(n)}}{\partial \theta_{i-1}} = Q_{il}^{(n)},$$

(2.38)

where $B_{il}^{(n)} = \text{Coefficient of } \prod_{r=1}^{i-2} \cos \theta_r \text{ in } Q_{il}^{(n)}$ for $l = 2, 3, \ldots, n$.

Combining the above equation with (2.26), we obtain the following:

$$Q_{il}^{(n)} = \frac{\partial B_{il}^{(n)}}{\partial \theta_{i-1}}, \quad i = 3, 4, \ldots, n; \quad l = 1, 2, \ldots, n,$$

(2.39)

where $B_{il}^{(n)} = \text{Coefficient of } \prod_{r=1}^{i-2} \cos \theta_r \text{ in } Q_{il}^{(n)}$. Thus, (2.30) and (2.39) prove the lemma. □
We next prove a result analogous to Lemma 2.5, but for columns instead of rows. Combining Lemmas 2.5 and 2.6 will give us the desired result of obtaining all elements of \(Q^{(n)} \) from a single element.

Lemma 2.6. For \(n \geq 3 \), given the \(n \)th column of \(Q^{(n)} \), the \((n - 1)\)th column is given by the following expression:

\[
Q_{i,n-1}^{(n)} = \frac{\partial Q_{in}^{(n)}}{\partial \theta_{p(n,n-1)}}, \quad i = 1, 2, \ldots, n. \tag{2.40}
\]

The other columns are given by

\[
Q_{il}^{(n)} = \frac{\partial \varphi_{il}^{(n)}}{\partial \theta_{p(n,l)}}, \quad i = 1, 2, \ldots, n; \quad l = 1, 2, \ldots, n-2, \tag{2.41}
\]

where \(\varphi_{il}^{(n)} \) is the coefficient of \(\prod_{m=l+1}^{n-1} \cos \theta_{p(n,m)} \) in \(Q_{in}^{(n)} \).

The proof of this lemma is by induction and is straightforward (though laborious). So we omit the proof.

Lemma 2.6 implies that given the last column of \(Q^{(n)} \), we can derive the other columns. In particular, given \(Q_{1n}^{(n)} \) (Lemma 2.2), we can obtain the first row. Once the first row is known, using Lemma 2.5, all other rows can be derived. Therefore, we see that from one element of \(Q^{(n)} \), namely, \(Q_{1n}^{(n)} \) we can generate the whole SO\((n)\) matrix by performing suitable operations. Thus we have proved the following theorem.

Theorem 2.7. Consider an \(n \times n \) SO\((n)\) matrix \(Q^{(n)} \) \((n \geq 3)\). The expression for \(Q_{1n}^{(n)} \) is given by

\[
Q_{1n}^{(n)} = \sum_{j_{n-2}=2}^{3} \sum_{j_{n-3}=2}^{4} \prod_{j_2=2}^{n-1} \sum_{j_1=2}^{n} R_{1j_1}^{(1)} R_{j_1-j_2}^{(2)} R_{j_2-j_3}^{(3)} \cdots R_{j_{n-2}-1,2}, \tag{2.42}
\]

where \(j_{n-1} = 2 \) and the matrices \(R^{(k)} \) are given by (2.9), (2.10), (2.11), and (2.12). All other elements of \(Q^{(n)} \) can be derived from this single element. Elements of the first row are given by

\[
Q_{1, n-1}^{(n)} = \frac{\partial Q_{1n}^{(n)}}{\partial \theta_{p(n,n-1)}}, \tag{2.43}
\]

\[
Q_{1l}^{(n)} = \frac{\partial (\varphi_{1l}^{(n)})}{\partial \theta_{p(n,l)}}, \quad l = 1, 2, \ldots, n-2, \tag{2.44}
\]

where \(\varphi_{1l}^{(n)} \) is the coefficient of \(\prod_{m=l+1}^{n-1} \cos \theta_{p(n,m)} \) in \(Q_{1n}^{(n)} \). Elements of the second row are given by

\[
Q_{2l}^{(n)} = \frac{\partial Q_{1l}^{(n)}}{\partial \theta_1}, \quad l = 1, 2, \ldots, n. \tag{2.45}
\]
Elements of the remaining rows are given by

\[Q_{il}^{(n)} = \frac{\partial R_{il}^{(n)}}{\partial \theta_{l-1}}, \quad i = 3, 4, \ldots, n; \ l = 1, 2, \ldots, n, \quad (2.46) \]

where \(R_{il}^{(n)} \) = Coefficient of \(\prod_{r=1}^{i-2} \cos \theta_r \) in \(Q_{1l}^{(n)} \).

3. Example: SO(3). We will now derive the SO(3) matrix using Theorem 2.7. We will first get the expression for \(Q_{13}^{(3)} \) (see (2.42)):

\[Q_{13}^{(3)} = R_{12}^{(1)} R_{12}^{(2)} + R_{13}^{(1)} R_{22}^{(2)}. \quad (3.1) \]

From (2.9) and (2.10), we have

\[R_{12}^{(1)} = \sin \theta_1, \quad R_{13}^{(1)} = \cos \theta_1 \sin \theta_2. \quad (3.2) \]

From (2.9) and (2.11), we get

\[R_{12}^{(2)} = \sin \theta_3, \quad R_{22}^{(2)} = \cos \theta_3. \quad (3.3) \]

Therefore, we obtain

\[Q_{13}^{(3)} = \sin \theta_1 \sin \theta_3 + \cos \theta_1 \sin \theta_2 \cos \theta_3. \quad (3.4) \]

From (2.43), \(Q_{12}^{(3)} \) is given as

\[Q_{12}^{(3)} = \frac{\partial Q_{13}^{(3)}}{\partial \theta_3} = \sin \theta_1 \cos \theta_3 - \cos \theta_1 \sin \theta_2 \sin \theta_3, \quad (3.5) \]

and from (2.44), \(Q_{11}^{(3)} \) is given as

\[Q_{11}^{(3)} = \frac{\partial Q_{11}^{(3)}}{\partial \theta_2}, \quad (3.6) \]

where \(Q_{11}^{(3)} \) = Coefficient of \(\prod_{m=2}^{3} \cos \theta_{p(3,m)} \) in \(Q_{13}^{(3)} \). Thus,

\[Q_{11}^{(3)} = \cos \theta_1 \cos \theta_2. \quad (3.7) \]

The second row of \(Q^{(3)} \) is given by (2.45):

\[Q_{2l}^{(3)} = \frac{\partial Q_{1l}^{(3)}}{\partial \theta_1}, \quad l = 1, 2, 3. \quad (3.8) \]

Therefore,

\[Q_{21}^{(3)} = -\sin \theta_1 \cos \theta_2, \]
\[Q_{22}^{(3)} = \cos \theta_1 \cos \theta_3 + \sin \theta_1 \sin \theta_2 \sin \theta_3, \]
\[Q_{23}^{(3)} = \cos \theta_1 \sin \theta_3 - \sin \theta_1 \sin \theta_2 \cos \theta_3. \quad (3.9) \]
The last row is given by (2.46):

\[Q^{(3)}_{3l} = \frac{\partial \mathcal{B}^{(3)}_{3l}}{\partial \theta^2}, \quad l = 1, 2, 3, \]

where \(\mathcal{B}^{(3)}_{3l} \) = Coefficient of \(\prod_{r=1}^{1} \cos \theta_r \) in \(Q^{(3)}_{1l} \). Therefore, we have

\[Q^{(3)}_{31} = - \sin \theta_2, \]
\[Q^{(3)}_{32} = - \cos \theta_2 \sin \theta_3, \]
\[Q^{(3)}_{33} = \cos \theta_2 \cos \theta_3. \]

The \(Q^{(3)} \) matrix that we have derived agrees with the standard representation as expected.

Acknowledgment. The work of G. Rangarajan was supported in part by a research grant from ISRO and DRDO, India through the Nonlinear Studies Group, Indian Institute of Science.

References

T. M. Janaki: Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India

Govindan Rangarajan: Department of Mathematics and Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India

E-mail address: rangaraj@math.iisc.ernet.in
Space dynamics is a very general title that can accommodate a long list of activities. This kind of research started with the study of the motion of the stars and the planets back to the origin of astronomy, and nowadays it has a large list of topics. It is possible to make a division in two main categories: astronomy and astrodynamics. By astronomy, we can relate topics that deal with the motion of the planets, natural satellites, comets, and so forth. Many important topics of research nowadays are related to those subjects. By astrodynamics, we mean topics related to spaceflight dynamics.

It means topics where a satellite, a rocket, or any kind of man-made object is travelling in space governed by the gravitational forces of celestial bodies and/or forces generated by propulsion systems that are available in those objects. Many topics are related to orbit determination, propagation, and orbital maneuvers related to those spacecrafts. Several other topics that are related to this subject are numerical methods, nonlinear dynamics, chaos, and control.

The main objective of this Special Issue is to publish topics that are under study in one of those lines. The idea is to get the most recent researches and published them in a very short time, so we can give a step in order to help scientists and engineers that work in this field to be aware of actual research. All the published papers have to be peer reviewed, but in a fast and accurate way so that the topics are not outdated by the large speed that the information flows nowadays.

Before submission authors should carefully read over the journal's Author Guidelines, which are located at http://www.hindawi.com/journals/mpe/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>July 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>October 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>January 1, 2010</td>
</tr>
</tbody>
</table>