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ON PIERCE-LIKE IDEMPOTENTS AND HOPF INVARIANTS
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Given a set K with cardinality ||K|| = n, a wedge decomposition of a space Y
indexed by K, and a cogroup A, the homotopy group G = [A,Y] is shown, by
using Pierce-like idempotents, to have a direct sum decomposition indexed by
P(K) — {¢} which is strictly functorial if G is abelian. Given a class p: X — Y,
there is a Hopf invariant HI, on [A, Y] which extends Hopf’s definition when p is
a comultiplication. Then HI = HI, is a functorial sum of HI; over L C K, |L| = 2.
Each HI;, is a functorial composition of four functors, the first depending only on
A"*1 the second only on d, the third only on p, and the fourth only on Y. There
is a connection here with Selick and Walker’s work, and with the Hilton matrix
calculus, as described by Bokor (1991).

2000 Mathematics Subject Classification: 55025, 55P30, 55P45.

1. Introduction. In an earlier paper [5], to which this may be regarded as a
sequel, the authors introduced a definition of a Hopf invariant which general-
ized most (but not all) existing definitions. We recall that definition.

Working in the pointed homotopy category #, we consider a cogroup A in
7 with comultiplication y: A — Av A. We now suppose givenamap d: A - X
and a map p : X — Y; v Ys. If the projections of p onto Y; and Y, are ; and
o>, respectively, so that «; : X — Yj, then p is referred to as a copairing of o,
and «», which are themselves described as copairable (see [5]).

We have a diagram

A X

ul pl (1.1)
xpdvoeod
AVA———Y1vY,

which does not, in general, commute. However, we may embed (1.1) in the
larger diagram

A X
d d
AvA—2T0T vy, (1.2)

jl jl
xpdxoopd

AXA ———Y1 XYy,
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where j is the canonical map; and, in (1.2), the bottom square and the compos-
ite square both commute. That the composite square commutes follows from
the relations ju=A:A - AXAand jp = {1,002} : X - Y1 X Yo.

Let Y7 bY> be the homotopy fiber of j: Y; VY, — Y1 X Y>. Then it follows from
what we have said that pd — (x1d Vv cxod) u lifts to Y1 bY>. Moreover, analysis of
Jj:Y1VvYs — Yy XY, shows that the lift is unigue. We call this lift, as an element
of [A,Y1bY>], the Hopf invariant of d with respect to p, and write it as Hl, (d).

In this paper, we pursue the study of HI,, but allow ourselves one further
freedom. Instead of starting with a copairing p, which may be thought of as a
kind of a counion of two maps, we consider a counion of n maps, which we call
an n-counion map p: X - Y =Y, VY,V ---VvY,. The rest of the definition of
HI, (d) will be essentially the same, except that, for simplicity, we confine our
attention to the case in which A is a commutative cogroup. Since our principal
interest in defining Hopf invariants in 7 would be in the case in which A is, at
least, a double suspension, we argue that this gain in simplicity is obtained at
relatively low cost.

With [A,Y] commutative—indeed, we write it additively, as is customary
with the higher homotopy groups—we may bring to bear the notion of orthog-
onal idempotents on [A,Y]. Thus let 11; : Y — Y;, (; : Y; — Y be the canonical
projection onto the ith summand in Y and the corresponding injection. Then
T;(; is the identity on Y; and e; = (;71; : Y — Y is an idempotent map. Moreover,

eiej=0, i=/=j. (1.3)

Then e; induces an idempotent endomorphism of [A, Y] which we also call e;;
and if i # j, then e; and e; are orthogonal idempotent endomorphisms.

On the other hand, itis not true thate; +e> +- - - +e, = 1.Indeed,if f: A - Y,
the mapping f — fo = f— >, eif is an endomorphism of [A, Y] and, in fact,
is itself idempotent. For

eifo=eif-> ejeif=eif—ejf =0, (1.4)

i=1

80 fo— >, eifo = fo. We call this idempotent ep. Then ege; = e;— 1" eie; =0
and ejeg = 0, as shown above. Thus ey, e1,...,e, form a complete Pierce-like
system of orthogonal idempotents on [A, Y], and we may say that it is the non-
triviality of eq which allows us, or requires us, to define a Hopf invariant. Notice
that the commutativity of [A, Y] has greatly facilitated this last discussion.
In Section 2, we define the Hopf invariant of d : A — X with respect to the
n-counion map p : X — Y as the lift of eg(pd) to the homotopy fiber of the
canonical map j:Y — Y; X Y» X - -+ X Y,,. We show in what sense the Hopf
invariant—which is a homomorphism of commutative groups—is natural and
we analyse it as a sum of 2" —n — 1 elements, each factoring through a given
space determined by a summand Y;; VY, vV---VvY; of Y with k > 2. Notice



ON PIERCE-LIKE IDEMPOTENTS AND HOPF INVARIANTS 3905

that such an analysis is vacuous in the case n = 2. We also relate our Hopf
invariant to the one given in [4] in connection with the calculation of relative
attaching maps for Thom spaces.

In Section 3, we make an entirely different analysis of the Hopf invariant,
representing it as the composition of four maps, each depending on some
aspect of the original data. One of the constituent maps appears to be closely
related to a very general kind of Hopf invariant defined by Walker [11].

The constructions and arguments in this paper are all carried out in the
pointed homotopy category 9. However, they may be couched in category-
theoretic language and executed, with minor modifications, in a general cate-
gory possessing pullbacks, coproducts, and zero object (see [5]). In particular,
we might, as in [5], study these ideas in the category of groups. We might also
consider the dual concepts. Indeed, the dual concept is related to a paper of
Selick [10].

In Section 4, we show the relationship of the idempotents of this paper, of
span 2, to the matrix calculus introduced in [7] and exploited in [2].

Since we always work on %, we do not regard it as always necessary to
mention the base point explicitly nor to insist on distinguishing notationally
between a map and its homotopy class.

2. The Hopf invariant and naturality. Let the space Y be given as a wedge
(coproduct)

Y=Y,VvYov---VY,. (2.1)

We may describe Y as a costructured space, with summands Y;. Thus we asso-
ciate with Y the projections

TT; © Y — Yl' (2-2)
and injections
L Yi —Y. (2.3)

Then mt; =1d; : Y; — Y; and e; = (3713 1 Y — Y is an idempotent map, i =
1,2,...,mn. We say that the idempotents e; are associated with the costructure
on Y. Notice that these idempotents are orthogonal, that is, e;e; = 0, i # j.

Let A be a commutative cogroup in ¥ (e.g., a double suspension). Then [A, Y]
is a commutative group and the idempotents e; induce an orthogonal system
of idempotent endomorphisms, which we also denote by e;,

ei:[AY] —[AY]. (2.4)

In general, the system {e;} of idempotents on [A,Y] is not complete; for
example, if A =83 and Y = S? v S?, then there is a Whitehead product ele-
ment [Id;,Id>] € 13(S2 v §2) of infinite order, not expressible as e; &1 + e, .
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However, for any f € [A,Y], we set
fo=f-2ef€lAY] (2.5)
i=1

PROPOSITION 2.1. The function f — fy is an idempotent endomorphism e
of [A,Y]. Moreover, the system {eg,e1,...,en} is a complete system of orthogonal
idempotents on [A,Y].

PROOE. Write fy = eof. Then eo(f+g) = f+g—->i,ei(f+9) = f+g—
Siileif +eig) = (f - eif) +(g—-Zilieig) = eof +eog. Thus ep is an
endomorphism. Also

n n
eofo=rfo— > eifo=rfo, ejfo=eif—> ejeif=eif—eif=0, j=1,2,...,n.
i=1 i=1
(2.6)

Thus, eo fo = fo, S0 eg is idempotent; and, by the argument above, e;eq = 0,
j=1,2,...,n. The formal calculation

ejeg=ej(l—e—---—ey)=ej—eje1—---—ejep=ej—e; =0 (2.7)

would indeed have sufficed, and it shows equally well that epe; = 0. We con-
clude that {eg,ei,...,en} constitutes a system of orthogonal idempotents on
[A,Y] such thateg+e;+---+e, =1, as was to be proved. O

Now let j be the natural inclusion
JiY=Y1VYov- VY, — [[Y =Y XYox XYy, (2.8)

and let b(Y) be the homotopy fiber of j. For any f € [A,Y], consider the
diagram

b(Y)

\Lk (2.9)
ALy oy,

Now j = {111,102, ..., T}, 80 jfo = {1T1.f0, 2. f0,...,TTnfo}. Moreover,

0, 1i=+s,
;e = i (210)
s, 1=,
so that s fy = (1 —ey — - - - —ey) f = (s — 115) f = 0. Hence jfy =0 and fj

lifts into b (Y).

LEMMA 2.2. The lift of f, into b(Y) is unique.
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PROOF. We have the fiber sequence
QYY) — QY — Q[ [Y —bY — YV —[]Y (2.11)
inducing the exact sequence
(A1 [A0][y] — (A by] == (A Y] [A]]Y]. 12

Now [A,[]Y] = B;[A,Y;] and j. obviously maps [A,Y] onto [A,Y;]. Thus
Jx 1 [A, Y] — [A,]1Y] is surjective. Equally well j, : [A,QY] — [A,Q]]Y] is
surjective, so k4 1 [A,bY] — [A, Y] is injective. O

REMARK 2.3. Clearly j.:[A,Y] — [A,[]Y] has a right inverse m, given by

m | [A, Yl'] = lix- (2.13)
Thus
[A,bY] 5 [A,Y] -2 [A[]Y] (2.14)

is a split short exact sequence. Notice that the validity of this remark depends
on the commutativity of A; so does much of the preceding reasoning.

We write £(f) for the lift of fy into b(Y). Since ey and k. are homomor-
phisms, it follows that

L:[AY]— [A,b(Y)] (2.15)

is a homomorphism.

We now analyse £(f). Let Y’ = Yiyveeo VY, 1<ip<iz <--- <ig <n. We
call Y’ a summand or simply a subspace of the costructured space Y of span
k and write |Y'| = k. We plainly have maps

m:Yy —Y', Y —Y, Tr:l_[Y—»l_[Y’, L:]_[Y’—»HY

(2.16)
and inducing maps
Ty :bY — bY’, ty :bY — bY (2.17)
such that
Ty tyr = 1Id, Ly Tty = ey :bY — bY, (2.18)

with ey an idempotent map.

In particular, suppose that |Y’| = 2. Then, as Y’ ranges over the subspaces
of Y of span 2, we obtain a system of orthogonal idempotents ey on bY. We
also obtain a map

m:bY — [ bY (2.19)
[Y']=2
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with components 7ry-. Thus (compare the definition of £( f) above) for any map
{:A - bY, we may lift

- Z eyl (2.20)

[Y"[=2

to the homotopy fiber of 7 (2.19), which we call »2Y. Moreover, the lift is
unique so that

= > ey l+k?¢?, (2.21)

[Y’|=2
where £?) is the lift of £ -y, |_, ey so that

(2) (2)
AL ey Ky (2.22)

is a fiber sequence. Note that ey £ factors through bY’.

We now continue the process of analysing £. We next have to analyse £,
We now allow Y’ to range over all subspaces of Y of span 3. We thus obtain
maps

Ty 1 b2Y — b2Y', 1y 1 b2Y — b2Y (2.23)
such that
Tyty =1d,  tymy = ey 1 b2Y — b2Y, (2.24)
with ey an idempotent map. As before, we obtain a map

b2y — [] »2Y (2.25)
[Y'|=3

with components 11y-. The maps ey’ on b?Y constitute a system of orthogonal
idempotents so that the map £ : A — b2Y may be written as

0 = > eyl + k¥ + 03, (2.26)
[Y"|=3

where £©) is the lift of £ -3/ _3 ey € to b3Y, the homotopy fiber of 7 of
(2.25).

The process terminates when we arrive at the set of subspaces of span (n—
1). We will then write £ as a sum of 2" —n — 1 maps, corresponding to the
subspaces of Y of span greater that or equal to 2 (including Y itself). Thus, we
have proved the following proposition.
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PROPOSITION 2.4. The set {ey' | Y C Y,|Y'| = 2} is a complete system of
2" —n — 1 orthogonal idempotents on the group [A,bY ] even though bY is not
given as a wedge of spaces. As a corollary, any map £ : A — bY may be uniquely
expressed as the sum of 2" —n —1 terms Uy, each factoring through a subspace
bk=1Y’ of bY that corresponds to a subspace Y' of Y of span k = 2.

Notice that the mystery of the number 2" —n —1 is dissolved if one observes
the corollary or the equivalent statement.

THEOREM 2.5. The set {key{ | Y CY,|Y'| =1} is a complete system of
2" — 1 orthogonal idempotents on the group [A,Y ], obtained from the fact that
Y is a wedge of n subspaces. Thus any map f : A — Y may be uniquely expressed
as the sum of 2" —1 terms fy', each factoring through a subspace b*='Y’' of Y
that corresponds to a subspace Y' of Y of span k > 1.

REMARK 2.6. In Theorem 2.5, the idempotent key £ simply means ey if
[Y'| =1.

We next discuss the naturality of £. Let g : A — B be a homomorphism of
commutative cogroups andlet Y =Yy vYov---vY,and Z=Z1vZy V.-V Zy
be two costructured spaces. Finally, let h: Y — Z be a costructure-preserving
map, thatis, h(Y;) € Z;, i =1,2,...,n. We then prove

THEOREM 2.7. If the diagram

f

-

A Y
gl hl (2.27)
B VA

f,
.
commutes, then so does the diagram

[4%3)
A——=bY

gl bhl (2.28)
o)

B——=bZ.
PROOF. We first remark that b is obviously a functor b : #" — ¥, so bh

is defined. Now, to prove the commutativity of (2.28), we first consider the
diagram

fo
_J
h

A
|
p
B

N

(2.29)

<~~~

N
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Then hfy = h(f = Xis1eif) = hf = X1 heif. But he; = hym = (ihiTt; =
(;11;h = e;h, where h; : Y; — Z; is obtained by restricting h. Thus
hfo = hffzeihf
=f'g-2eif'g
= (f’ - Zeif')g, since g is a homomorphism
= fog,

(2.30)

establishing the commutativity of (2.29).
Now we have an obvious commutative diagram (used, in fact, to present b
as a functor)

Y Sy oy

bhl hl ]—Ihl (2.31)
k J

bZ —— 7 ——[]Z,

so the commutativity of (2.28) follows from (2.29) and (2.31), using the fact
that k is a monomorphism.

We may further refine the naturality as follows. Let Y’ be a summand of Y of
span k > 2 and let £y (f) be the corresponding component of £(f), regarded
asamap £y (f): A — b*¥1Y’. Let Z’ be the corresponding summand of Z and
define €7 (f’) : B — b*~1Z’ similarly. Then h induces b¥"1h: bk-1y’ — Lk-17’
and the diagram

Lyr (f)

A ——pkly’

gl bklhl (2.32)
zz’ (f/)

B——= k17’

commutes. We leave the details to the reader, remarking that we may reexpress
this refinement by asserting the naturality of the idempotents and summation
described in Proposition 2.4.

We now formally introduce the Hopf invariant. A map p : X — Y is called
an n-counion map or, more precisely, an n-counion of the maps m;p : X — Y,
i=1,2,...,n.If n = 2, this is called a copairing (see [5]). Now p induces a homo-
morphism p:[A,X] — [A,Y] and, for d : A — X, we define the Hopf invariant
of d, relative to p, to be {(pd) € [A, bY]. Plainly this defines a homomorphism

HI=HI,:[A,X] — [AbY]. (2.33)
|

We may now invoke Proposition 2.4, applied to the map ¢ = £(pd) = Hl,(d),
to conclude



ON PIERCE-LIKE IDEMPOTENTS AND HOPF INVARIANTS 3911

THEOREM 2.8. The Hopf invariant Hl,, : [A,X] — [A,bY] may be expressed
as the sum of 2" —n — 1 homomorphisms Hly-, each factoring through a group
[A, b*=1Y"] corresponding to a subspace Y' of Y of span k = 2.

We say that the Hopf invariant is thereby expressed as a sum of constituent
subinvariants.

The naturality of the Hopf invariant now expresses itself as follows. We
suppose a given commutative diagram

A$X1$‘Y

yl tl hl (2.34)
d’ o'

B——Xo ——= 7,

where g is a homomorphism of commutative cogroups and h is costructure-
preserving. Then (2.33) induces a commutative diagram

HI, (d)
A——=bY

gl bhl (2.35)
Hlp/ (da
B> 7.

There is also a refined form of this naturality statement, based on (2.32),
involving the constituent subinvariants. It is further of interest to interpret
the vanishing of the Hopf invariant; thus

THEOREM 2.9. The vanishing of Hl, (d) is equivalent to the assertion that
pd=epd+epd+---+eypd. (2.36)

PROOF. {(pd) =0 < (pd)o=0 < pd—eipd—epd—---—e,pd = 0.Notice
that e;pd = 11 &;d, where p is a counion of &y, x2,..., 0, with &; : X - Y;. O

A version of Theorems 2.5, 2.7, 2.8, and 2.9 appeared in [3].

The above definition of the Hopf invariant generalizes that given in the
case n = 2 in [5], where it is further related to a number of existing defini-
tions. Staying always with the case n = 2, but confining attention to coactions
(or cooperations, see [6]) p, there is a treatment in [4] which is specialized
to a stage in the version of Hilton and Milnor [1, 8] when the coaction is a
comultiplication.

EXAMPLE 2.10. Let P;,P»,...,P, be spaces and let TV = T (P, Ps,...,Py)
be the fat wedge of > P;,> Ps,...,> Py, in the terminology of Ganea. Thus T
is the subspaces of > P; x > P> X... X >. P, consisting of points with at least
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one coordinate at the base point. There is then a relative homeomorphism

C(Pi#Pysk--%Py),PikPysk---%Py— > P x> Pyx---x> Py, TV,
(2.37)

where P; % P, x - - - x Py, is the (iterated) join. Let w,, be the associated attaching
map, that is,

Wy P %kPys - %Py — TW (2.38)

is the restriction of the map (2.37).

In the same way, we may consider, for each Q; = Py % Py * - - - % 13J- ke ek Py,
the attaching map

Wn-1,;:Qj — TY(Py,Py,...,Pj,...,Py), j=12,...,n. (2.39)

Now the union of the spaces TV (Py,Ps,...,P;,...,Py) is T® (Py,Pa,...,Py) “the
next fattest wedge,” that is, the subspace of > P; x> P> X - - - X > P, consisting
of points with at least two coordinates at the base point. Moreover, the maps
wWy-1,j combine to produce a map

Wp1:Q1VQaV--VQy — T? (2.40)

whose mapping cone is precisely T,

In general, given amap f : A — B with mapping cone Cy, there is, as explained
in [6], a cooperation or coaction p : Cy — > Av Cr of > A on Cy. In our case,
with f = w,_1 in (2.40), p becomes a map

p:TH —>0Q1v>Qov---v>QuvTW (2.41)

and thus an (n+ 1)-counion map. The map (2.41) may be fed into our definition
to produce essentially the Hopf invariant of [4] and to motivate our definition
in this paper.

3. A canonical factorization of the Hopf invariant. In this section we de-
scribe a canonical expression for HI,(d) as a composition of four maps, each
depending on a particular ingredient of the definition of the Hopf invariant.

Given f:A—-Y =Y, VY Vv:--VY,, where A is a commutative cogroup, we
may express fj as the composition

H(VHI)

\/A (f,—e1f,.,—enf) Y, (31)

n+1
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where p: A — AV A is the comultiplication. Further factorizing the right-hand
map in (3.1) and slightly modifying the relevant factors yield the composition

AL\ AL\ y Leten) y (3.2)

n+1 n+1

of fo, where o is the sum of the identity 1, mapping A to the first summand in
Vi1 A, and maps —1, mapping A into the second, third, ..., (n+1)th summand
of V.1 A. We could write 0 =11 —1p— - - - — 141.

Now let j, as before, be the canonical map from V/; B; to [ [; B;. We may then
embed (3.2) in the commutative diagram

l.e1,..., n
A - \hﬁlAv%' VY %‘ Y
l(A,j) l(&j) \L.i (3.3)
If [T
HnA HnY HYi-

Here A: A — [[A and A:Y — []Y are diagonal maps. The commutativity
of the left-hand square in (3.3) is obvious. As for the right-hand square, we
observe that ([[11)) Ay = (k,..., %, Vi, *,...,%) = jyi if yx € Yy; and that, if
vy e (m+1)thcopyof Yin\,,; Y, m=>1, then

(Hm)jy =[miGk, %0, %),
= (ke K, T0n Y, K, ety %) (3.4)

=jemy,

where y appears in the mth factor Y in [[,, Y. Further, it is clear that (A, j)o =
0:A—-[[,Afor j(1p+13+4 -+ 1y4+1) = A. Thus o lifts to kK : A — F4, where
F4 is the homotopy fiber of (A, j), and we may embed (3.3) in the commutative
diagram

Fy
Fa Fy A LY
/ | | l
A 7 > Vn+1A i) > \/n+l Qe eni Y (3'5)
l (AJ) l (AJ) lj
If [1m;
[1.A [1.Y [1Y;

and obviously

AEf) Kk = 0(f). (3.6)
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We now revert to the Hopf invariant. We only have to replace f in (3.5) by
f=rd,

AL x Ly, 3.7)

Thus it is a matter of factoring the (Fy, Vv f,[] f)-column of (3.5) in the obvious
way to obtain

F F

Fa d Fx ’ Fy A LY

/ \L l \L (1,e1,mny ) \L

A" Vi A SELLE Vi1 X — Vit i, Y (3.8)

l(AJ) T(AJ) l(A,J') lj

[1d [1p [1m;
HnA HnX Hn Y HYi
and the factorization

HI,(d) = A(Fp) (Fa) K. (3.9

This is the canonical factorization of the title of this section.
If the counion of size n is assumed to be given, then we notice that, in (3.9),
(i) k depends only on A;
(ii) F4 depends only on d;
(iii) F, depends only on p;
(iv) A depends only on Y, with its costructure.
Without going into details, we make the obvious remark that a similar factor-
ization is available for each of the 2" —n — 1 constituent subinvariants of the
Hopf invariant in the sense of Theorem 2.8.

REMARKS. (i) The factor F, of the Hopf invariant HI, (d) in (3.9) is related to

Walker’s version of the Hopf invariant [11]. Walker starts with a pair of maps

R

B A—C (3.10)

and constructs the double mapping cylinder Z = Z¢ 4. There is thus a commu-
tative square

(3.11)

B

wéb
=
N=—-nN
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Let P be the homotopy pullback of i and i¢ in (3.11), creating a commutative
diagram

N<—®

P/ \A (3.12)
N4

o ——

We now pinch A to a point in (3.11). We think of B and C in (3.11) as hav-
ing been replaced by the mapping cylinders of f and g, respectively, so that
(3.11) becomes a strict pushout of inclusion maps. When we pinch A to a point
throughout (3.11), the mapping cylinders become mapping cones Cy and Cy
and Z becomes the one-point union (coproduct) Cr v Cy. Thus (3.11) turns into
the diagram

% %—Cg
l Lgl (3.13)
Cy $— Crv(Cy.

Following Walker, we designate the homotopy pullback of ¢ and t4 by Cr%
Cy4. We thus obtain the diagram

Cy

1IN

Cr%Cy CrvCy * (3.14)
Co

and the pinching maps induce a map of diagram (3.12) to diagram (3.14). The
component

P — Cr%C, (3.15)

of this map of the diagrams is Walker’s Hopf invariant. If we write p for the
component

p:Z — CrvCy (3.16)

of this map of diagrams, then this p is a two-counion map and plays the same
role as in our definition of the Hopf invariant.
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We conjecture that Walker’s Hopf invariant is closely related to the map F,
of 3.8),with X =Zand Y = Cr Vv Cy.

(ii) It is plain that the maps k of the factorization (3.9) for various values
of n may be related. We write k;, and o, for the maps k and o of (3.8). Then
op=1;-12:A - AV A and there are maps

=0 Vv1zv--vigo: \/A—\/4A r:\/A—\/A4 (3.17)

n+l n+2 n+2 n+1

where » projects off the second summand A. Then

ra=1:\/A— \/ A, qon=0n1:4— \/ A (3.18)

n+1 n+1 n+2

Now let g:[[,A — [],.1 A map a to (x,a) and let 7 : [[,,; A — [[,, A project
off the first component. Then the diagram

a
\/n+1 A -r% \/n+2 A
l(A,j) lm,j) (3.19)
a

Hn A e Hn+1 A
v
commutes so that there are induced maps, which we again write as g, 7, thus
a
FA,n -%1’ FA,n+l (3-20)

such that
v¥q=1:Fan — Fan, qKn = Knt1: A — Fanq. (3.21)

We may use the maps g to pass to the limit F 4., obtaining amap K« : A = Fae
which is independent of n and thus truly universal.

(iii) There is a relation between the duals of the constructions in this paper
and some aspects of Selick’s paper [10]. In [10, Section 3, page 408], Selick’s D is
a dual for the present Hopf invariant based on two summands for the particular
case of a multiplication. Selick’s D, is a sum of duals of the Hopf invariant
associated to ey, |Y’| > 2, in the case of a multiplication. Selick’s f; is the dual
of our ey f for the case |Y'| = i and multiplication. In [10, Lemma 1, page 408],
he proves that the n-fold multiplication of f is a sum of 2" — 1 summands. In
the proof of [10, Lemma 5, page 410], he starts with the summands of [10,
Lemma 1] and then moves the n summands that correspond to ey, |Y'| =1,
to the side of f, getting on the right-hand side a sum of 2" —»n — 1 summands
that correspond to ey, |Y’| = 2, mirroring our result in Theorem 2.8.
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4. The Hilton quadratic matrix calculus. The quadratic matrix calculus de-
fined in [7] and used in [2, 7, 9] can be obtained by using the present paper
idempotents of span 2. We here use [2] as a source and deduce some of the
results of [2, Section 4].

Let :S4mM-1 = A= X — §2my§2my ... v §2Mm = \/ §2Mm — Y be given as on
[2, page 373]. Then « is a K-counion map as defined in the introduction and
thus induces idempotents {ey,|Y’| = 2} on the group [S*" 1, bY].

It can be observed that for |Y’| = 2, bY” is the fiber of the map $2™ v §2™ —
S§2m x §2m which, as in [4], is equivalent to Q(S2™) % Q(S2™), which, by James’
celebrated formula [8], equals ¥ L uetm-2y. .. Thus [S4m 1, LY’] = [S4m-1
Sam-17 =9,

Also, for |Y'| = 3, say Y’ = {a,b,c}, bY’ can be embedded in the following
commutative diagram:

Yy pe ———= bV, . bYap X bYaeXbYpe

| |

S2M oy S2My §IM s (§2my S2M) 5 (S2M  §2M) x (§2M v §2m)

l l

S2M X SEM X §FM ——> (§2M X SEM) X (S2M x §2™M) X (S§2™ x §2™)
(4.1)

and by the well-known Hilton-Milnor Theorem, the first cellin b Y, p  is (S27 1%
§2m=1) A §2m-1 which is (6m — 3)-connected so that [A, bY. 1= 0. Thus the
only idempotents in Theorem 2.5 correspond to span less than three. In par-
ticular, on [A, Y], we have

K
1= Zei+ Z €ijy (4.2)
i=1 l<i<j<K
and in particular
K
f=>fit+ > fii (4.3)
i=1 1<i<j<K
where f; ; factors as
Sl Ly S Mol 22 g2my g2 D,y (4.4)

Thus f; j is determined completely by the degree of the map $4m-1 — g4m-1,
denoted by a;; on [2, page 373].
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For i=j, fi; = fj factors as
inCJ'

S mj
A=giml oy = \/szm —L gim L.
K

Y. (4.5)

Now 1r; f : $4m~1 — §2M has a Hilton-Milnor invariant obtained by consider-
ing pf:S§4m-1 - §2my §2m where p is the comultiplication map. The invariant
of fis amap a;;:S4m"! — §4m-1 Thus the following matrix is obtained:

aij = aji, 1+ ],

H(f)={"9 "4 (4.6)
Aii, 1=17,
defined on [2, page 373] and called the Hilton-Hopf quadratic form of f.

Given any map f :\/;S4m-! - \/(§2™ it is determined by the inclusions
S Sam-t 2, \/,§am-t ER Vk S?™, each of which is determined by a K x K
integer matrix as above. Then f is determined by J integer matrices which can
be written using juxtaposition as a single K x JK integer matrix composed of
J blocks:

H(f) = (H(f1),H(f2),....H(f7)) 4.7)

as described on [2, page 375].

Finally, for a cogroup A and Y = \/xS™, any map ¢ : A — Y has a decom-
position as above: ¢ = >y . 1ey P . If A=Y =/ S™, then every ey, |Y'| > 1,
factors through a multiconnected space and is thus null. Thus we have ¢ =
Zle ¢;, where ¢pjisamap ¥ - Y R S;" = Y. Each map out of a wedge is
determined by the restrictions Sit=Y & Si" sothat ¢:Y — Y is determined
by K x K maps S" Jy sy S, which are determined by degrees. Thus
¢ = {deg(¢ji)} = A(¢) is a K X K matrix, defined exactly as in [2, Lemma
4.5(iii)]. (The reader may find, in what follows, some superficial changes of
notation from that of [2].) We now describe the matrix calculus.

Suppose the following given composition:

\/§HmL L\ [ gamet . \/s2m 2. \/s2m. (4.8)
T J K K

Then y is determined by a J X J integer degree matrix A(y), ¢ by a K XK
integer degree matrix A(¢), and f leads to an integer K x JK matrix of the
Hilton quadratic form H(f). Also ¢ fy creates an integer K x JK matrix of
the quadratic form H (¢ fy). Then, for i < j, the (i, j)th term of the matrix
H(¢fw) is given by using the projection 11; jpf s : Vg S¥M~1 — §7™ v §2™ and

a lifting \/, S4m-1 — g4m-1 LW/, gom, g2m,
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Map (4.8) can be presented using inclusions in the following way:
com¥ ; : sgm1 B\ / gamot IV jgamo1 0l gomy gom - (4,9)
) T K
forl<i<j<Kandl<k<].

Thus there are K x JK terms as above. Then we have the composition

k . 1 incy 1w 1 f [ Tij o 2
Comi,j : S;m 1 \J/54m 1_ Y, \J/S4m 1_J \K/S,Zm N \K/52m L Sllm VSJm
(4.10)

This last map equals
K J
i fpinc = TTi,jCl)( > epat . es)f( > er)tpinck. 4.11)
1<p<gq=<K s=1 r=1

As e factors through S$%™ and is null into S#™~1, then comf’ ; equals

> T, jpep qferwincy. (4.12)

l<p<gq=K, 1=<r<]

Any of the summands is a composition of three maps:

T, ingg : SEm-1 K\ fgam-1 L\ [ gam-1 T gdm-1, (4.13)
J J
Ty afing, : Sim-1 2\ gam=1 L\ / gam T, g2m\, gam, (4.14)
J K
e . g2m ., g2m Mpa \ fom b\ [ gom T gom , gom 415
i, jpincy q: S3mv Sam —24\/ \/ VST, (4.15)
K K

The map in (4.13) is by definition A(([J)’y‘. The second part (4.14) defines a
lifting $}™~1 — §3™~1 which s, by definition, H(f)}, ;; and the map of the fibers
Sam-1 — g}m=1 obtained from (4.14) is induced by applying the matrix 55’]@,
which is a 2 x 2 submatrix of A(¢).

Thus we get the formula

H(pf)t ;= AP)TH()], JAW)E. (4.16)

Recall that A((b)ff =A(p)Y ®A(¢)?. Now we consider the matrices as writ-
ten in [2].

Thus ﬂ(f){,,q is written in the (p, (¥ — 1)K + g) th spot. While ﬂ(f)’i"j is writ-
ten in the (i,(k — 1)K + j)th spot. The way to express the indices of matrices
so as to accord with the multiplication is

(i,p)(p, r —DK+q)((r =K +q, (k—=1)K + j). 4.17)

The correct matrix setup for this is A(P)H (f) (A(yp) ® A(x)!), which is the
first line of [2, Lemma 4.8].
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