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THE EIGENVALUE PROBLEM FOR THE p-LAPLACIAN-LIKE
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We consider the eigenvalue problem for the following p-Laplacian-like equation:
—div(a(|Dul?)|Dul?~2Du) = Af(x,u) in Q, u = 0 on 3Q, where Q c R" is a
bounded smooth domain. When A is small enough, a multiplicity result for eigen-
functions are obtained. Two examples from nonlinear quantized mechanics and
capillary phenomena, respectively, are given for applications of the theorems.
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1. Introduction. This paper is devoted to the study of the eigenvalue prob-
lem for the p-Laplacian-like equation

—div(a(|Dul?)|Du|??Du) = Af(x,u), xecQ,

(1.1)
ulx)=0, xe€oQ,
where A > 0 is a real parameter, 1 < p < n, Q is a bounded smooth domain in
R”", and Du denotes the gradient of u, f € C(QxR,R), a € C(R*,R).
We call A an eigenvalue of (1.1) provided (1.1), for this A, has a nontrivial
weak solution, say u,, which is then called an eigenfunction corresponding
to A. Denote

v t
Alr) = JO a(s)ds, F(x,t) = Jof(x,s)ds. 1.2)

We look for nontrivial solutions of (1.1), and this question is reduced to show,
for some A € R, the existence of critical points for the functional

In(u) = lj A(IDulr’)dx—/\J F(x,u)dx, ucE=W"(Q). (1.3)
pJo Q

In [5], Pielichowski discussed the existence and nonnegativity of the first eigen-
value and eigenfunction, in a weak sense, of the p-Laplace equations with some
kind of nonlinear terms below

—div(|Du|?=2Du) +a(x) |u|P~>u = Am(x) |u|?~>u. (1.4)
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Under the assumption that A(o) <¢p(o(x))/|@(o(x))| <B(o) where A(o),
B(o) are constants, Garcia-Huidobro et al. [4] proved the existence of eigen-
values and eigenfunctions for the p-Laplacian-like equation in the radial form

[r" )] +Ar™tp(u) =0, re(0,R),

/ (1.5)
u'(0)=0, u(R)=0.

They used the fixed-point theorem and continuation to techniques. Recently,
Boccardo [2] showed the existence of positive eigenfunctions to a kind of p-
Laplace-like equations
—div(M (x,u)Du) = Au, xecQ,
u>0, xeQ, (1.6)

lullpeqq=7r reR™.

We are especially interested in Ubilla’s paper [7], which studied the solvability
of the boundary value problem for p-Laplacian-like equation in the radial form

—<a<|u’(1’) |p) [u' (r) |p72u’(r))’ =f(ur)) rel=(0,1)
u(0) =u(l)=0.

(1.7)

Under the assumption that

a(|t|?)|t|P~>t € CY(R\{0},R) nC(R,R), (a([t|P)[t|P~2t) >0, Vt+#0,
(1.8)

a multiplicity result was obtained by using energy relations and the shoot-
ing method. The key of our trick is to change this assumption into that the
mapping v — A(|r|?) defined in (1.2) is strictly convex, and then consider
the eigenvalue problem (1.1). Also, the method we used, the mountain pass
theorem and the minimax principle, is different from [7] and some other re-
lated papers (see [7] and the references therein). We got the existence of two
eigenfunctions u,, v, not necessarily radial ones. In addition, we found that
the behaviors of these two eigenfunctions near A = 0 are much different as
limp_o+ [uallg = 400, limp—o [VAllg = 0. Our idea comes partially from [1].

2. Main results. Assume that
(Al) the mapping v — B(v) = A(|r|?P) is strongly convex;
(A2) there exist constants c¢g > 0, T > 0 such that A(t) > ¢ot, for all £ > 0 and
a(s)<T,forall s=0;
(A3) there exist constants by > 0, b; > 0 such that for all x € Q,

| fOc,u) | <bolul™ ' +biul®!, forl<g<p<r<p* p*= nn—_pp; (2.1)
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(A4) there exist constants ty, 0 such that 0 < 0 < co/pT where ¢y, T are con-
stants as in (A2), and

0f(x,t)t >F(x,t) >0, VxeQ, 0<ty<]|t]; (2.2)

(A5) forallx €Q, t =0, f(x,t) =0, it holds that

F(x,t)
= 400
t—0+ tP
Then we have the main results.

THEOREM 2.1. Under assumptions (A1) to (A5), there exists a number A* > 0
such that for each A € (0,A*), there exists an eigenfunction u, of (1.1) satisfying
lima—o [luallg = +oo.

THEOREM 2.2. Assume (Al) to (A5) and f(x,t) = 0, then there is a number
A* > 0 such that for each A € (0,A*), (1.1) has one eigenfunction u, behaving
limy o+ [lualle = 0.

3. Proof of the main results

LEMMA 3.1. Assume (A1) to (A4), then I, defined in (1.3) belongs to C' (E,R).

PROOF. Denote
I4(u) = %J A(|IDul?)dx, Ir(u) :/\J F(x,u)dx, uecE (3.1)
Q Q

so Iy (1) = Ix(u) —Ir(u). We will then complete the proof by the following two
claims.
CLAIM 1 (I, € C*(E,R)). In fact, by (Al), for all A € (0,1), @ € E, we have

[ADu+(1-A)(Du+D@)|?P
J a(s)ds
0
[Du|P |Du+D|? (3.2)
S?\J a(s)ds+(17A)J a(s)ds,
0 0
that is,
|[Du+(1-A)Dp|? |Dul|?
J a(s)ds—J a(s)ds
0 0
[Du+D|P |Du|? (3.3)
s(l—)\)(J a(s)ds—J a(s)ds).
0 0
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Set, in the above inequality, 1 — A = t, we then have

[DulP

Ia(u+tp)—Is(u) 1 <J|Du+tD(pr'

t _tp o\ Jo a(s)ds—J

. a(s)ds) dx

1 |[Du+D|P [Dul|?P (3.4)
s;L(J a(s)ds—J a(s)ds) dx

0 0

< +00,

which is independent of t. Hence, we can apply the Lebesgue dominated con-
vergence theorem to the equality

Ia(utte) —Ia(u) _
t

1
;j a(IDul? +n(|Du+ D@ - |Dul?))
Q

. %(IDu+tDcp|’”— |[Du|?)dx, for some ne (0,1),
(3.5)

and letting t — 0, we then get
I;‘(u)<p=J a(|Dul?)|DulP?-Dpdx. (3.6)
Q

Next, we show that I, is continuous in u. In the following, the constant C may
vary line by line.

Suppose {u,,} C E satisfying |1, —ullp — 0 as m — co. We then claim that
11 (um)—I,(u)|l - 0. In fact,

113 (um) = Iy ()|

~oup “Q (a(|Dum|p) |Dum|p72Dum -D(p—u(\DuI”)lDul”szu-D(p) dx’

peE lele

1 ! 4
< E||B (Dum)—-B (Du)||Lpr(Q),

where
B'(r)=DB(r) =pa(lr|?)|¥|?%r, reR", p' = —f ) (3.8)

Because u,, — u in E, by Egorov theorem, for any n > 0 there exists Q, C Q
such that |Q\Qy| < n and um, Duy, converge uniformly to u, Du, respectively,
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in Q. Also, Q,, can be chosen large enough so that the following holds as well
J \DulPdx < £ (3.9)
\Qy 2

for any given & > 0. By virtue of Du,, — Du in L? (Q), when m is large enough,

J \Dum\pdx<C<J |Dum—Du|pdx+J |Du”dx>
a\Qp Q\Qp a\Qp

(3.10)
< C(J |Dum—Du|”dx+s/2) < Ce.
Q
Then, by (A2), (3.8), and (3.10), when m is large enough, we obtain
(p-1)/p
(J |B’(Dum)|”“”"”dx)
2\ . (3.11)
_1\P/(p-1) p=1)/p
sp(J (T|Dum|” l)p g dx) <T(Ce)P-Vir,
Q\Qp
that is, ||B’(Dum)|\fp, @\ S Ce. Similarly,
||B'(Du)|{’£’p,(mgn) <Ce. (3.12)
Noticing that
IB"(Dum) =B (DW||} ) < IB"(Dum) =B (D[] o)
’ }7/ 7 17’
+ HB (Dum)HLn’ (Q\Qp) + ||B (Du)HLn’ (Q\Qn)'
(3.13)

We then get [|I}(um) —I4(w)|l — 0 as m — co. Therefore, I, is continuous at
the point u, that is, I, € C*(E,R).
CLAIM 2 (Ir € C1(E,R)). The proof is similar to Claim 1 and we then omit it.
This completes the proof of Lemma 3.1. |

LEMMA 3.2. Assume (Al) to (A4), then I, satisfies (PS) condition.

PROOF. From Lemma 3.1, we know that

I/’\(u)cp:LZ [a(|Dul?)|Dul??Du-De —-Af(x,u)pldx VYu,vcE. (3.14)
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Suppose that S = {u,,} C E satisfies that for some M > 0,

In(um) <M, Yuy,€s, (3.15)
I (um) — O. (3.16)

We prove below that there exists a subsequence of {u,,} converging strongly
in E.

(a) At first, we show that S is bounded in E. From (3.16), for all ¢ € E, it
holds that

JQ [a(|Dum|’”> | DUy | *Dutm -Dcp—)\f(x,um)cp]dx =o()@lg. (3.17)
Using (A4) and (A2), we have

I (Um) = O (U ) Um IJ |Dum| dx QJ | DUy, | )|Du |”dx
+2\J [0F (%, Um ) Um — F (x,um)] dx
>—j | Dt |”) dx ej (1Dt |7) [ Dt |Pdx

>—OJ |Dum|pdx—0J T|Dum|"dx.
p Ja Q

(3.18)
Combining this with (3.17) yields
(5 -or) | 1Dwn|”dox <M +00lheml, (3.1
which implies
|[umllp = C. (3.20)

Hence, there exists a subsequence of S, still denoted by {u,,}, such that u,, —
u in E and hence Du,,, — Du in L? (Q), Uy — u in L5 (Q), 1 <s < p*.
(b) Set

pm(x) = (a(|Dum|p) |Dum|’”72Dum—a(|Du|”)IDMI”’ZDM)(Dum—Du),
(3.21)
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then
Ly, = J Pm(x)dx
o
- J a(|Dum|p) | Dtim | P 2Dty (Dt — Dut) dx
o

(3.22)
,J a(|Dul?)|DulP~2Du(Du, — Du) dx
o

=1V +I§,‘%).

We show below that p,, (x) — 0 a.e.in Q. As Du,, — Du in L? (Q), it is obvious
that Iﬁyzl) — 0. We choose in (3.17) @ = U, — u, then

Iy = /\Llf(xlum)(um—u)dx“‘o(l)num_uHE- (3.23)

By (A3) and the Sobolev imbedding theorem,

‘ sz(x,um)(um—u)dx = ||f(x!um)||r’”um_u”7’ T, =T/T—1

\7”)

-1 -1
<c(llumlly™ + ) s — ull,

o+ by lud !

< (bollu; [—]

(3.24)
— 0, asm — oo,

Therefore, from (3.23), ﬁ,ll) — 0 and so I,, — 0 as m — oo. Because B(r) is
strictly convex, then for all 71,7, € R", it holds that

(B'(r1) =B (12)) - (r1—12) 20, (3.25)

where the equality sign holds if and only if ; = #>. From this and the definition
of pm(x), we then get p,,(x) > 0, which with I,,, — 0 gives p,,(x) — 0, a.e.
x € Q. So we can find Qg C Q such that meas(Q —Qg) =0, Uy, (x) — u(x) and
pm(x) — 0 on Q.

(c) Based on (3.25) and the fact that p,,(x) > 0, very similar to the first part
of the proof of [3, Lemma 1], we can get Du, (x) — Du(x), for all x € Q.

(d) Atlast, we prove ||u,, —ullg — 0. From the step (c), Duy, — Du, a.e. x € Q.
By Egorov theorem, for any 6 > 0, there exists Q5 C Q such that meas(Q—Qs) <
6 and Du,, converges uniformly to Du on Qs. Because B(r) is convex, then
for any 71,72 € R"™ we have

B' (1) - (r1—72) = B(r1) —B(r2). (3.26)
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Choosing > = 0, with B(0) = A(0) = 0, then
B'(r)-n zB(rl):A(|n|p)zco|h{p. (3.27)

Suppose Q' C Q, by (3.27) and (3.8). Using (A2) and Young’s inequality, we get

Co

|Dum(x)\’”dxsj a(|Dup |*) | Dup |Pdx
p Jo o

- L} pm(x)dx+JQ’ a(|Dum|p) |Dup|” *Dup - Dudx
J (IDu|?)|DulP=2Du - Duy, dx
J (|DulP)|Dul|Pdx
< L} pm(x)dx+TLY | Du |7 DUl dx
+TJQ’ [Du|P~! | Duy, | dx+TJQ’ |Du|?dx
< L} P (X) dx + & JQ | Duy, |Pdx +C(e1) JQ |DulPdx
+& L} |Dum|pdx+C(sg)JQ, |DulPdx

+TJ |[Dul?Pdx.
o

(3.28)
Setting &1 = €2 = ¢o/4p in the above inequality yields
ﬂf \Dum(x)|’”dxsj pm(x)dx+CJ DulPdx.  (3.29)
2p Jor Q Q
Let |Q’| be small enough so that for a given € > 0 there holds
J IDulPdx < e. (3.30)
o

Since I,;, — 0 and p, (x) > 0, then when m is large enough we have

J Pm(x)dxsj Pm(x)dx < &. (3.31)
o Q
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Combining this with (3.29), we get [ [Duy, (x)|Pdx < Ce when m become
large enough. Noticing Du,, — Du uniformly on Q\Q’, then

[[Dwm —Dullpp ) = ||Dum_DuHLV(Q\Q’) +|[Dum —Dul|pp o)
< |[Dum —Dul|rp gy + [DUm||p o) + 1DU| o) (3.32)
< Ce as mislarge enough.

This completes the proof of Lemma 3.2. |

PROOF OF THEOREM 2.1. We complete the proof by three steps.
STEP 1. In fact, from (A3) we find

| F(x,u)| s%lu\’+—|u|q, x € Q. (3.33)

Condition (A2) and the Sobolev imbedding theorem yield

IA(u)zC—OJ IDuIde—AJ (%\muﬁmw)dx
f “ ¢ a (3.34)
> ;OHMHE—k()?\||u||}75—k1?\||u||g,

where ko > 0, k; > 0 are constants and independent of u.
Suppose u € E satisfying that ||[ul[f =A% 0 < x < 1/(r —p), then by (3.34)
we have

Lu) = %A""” — koAl _f A1, (3.35)

Because 0 < & < 1/(r —p), then &y = (co/pP)A %P — koAl =% — k1A% — + o
as A — 0*. Hence, there exists A* > 0 small enough such that «; > 0 for all
A € (0,A*). Then, we get

In(u) = ox >0 for [[ullg = pa, (3.36)

where py = A7%.
STEP 2. Condition (A4) implies that

F(x,t) >dot'? —d,, V(x,t) € QxR, (3.37)
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where dg,d; are positive constants. Using (3.37) and condition (A2), we find

L(tv) = lj A(t”lel”’)dx—/\J F(x,tv)dx
pJa Q

SZJ t”\Dvl”dxf/\J (dot'0v19 —d,) dx (3.38)
pJa Q

T ~
= ;tvnvn;’—Adot1/9\|v||}j3+2\d1.

Condition (A2) implies that ¢y < T, and then by (A4) we get p < 1/6. Thus as
t — +oo, [\(tv) — —o0.

STEP 3. By Lemma 3.2, I, satisfies the (PS) condition. Then, by the results
of Steps 1 and 2, we can apply the mountain pass theorem to get that there
exists a nontrivial critical point u, of I such that

In(up) =cpx = o > 0, (3.39)

and then

I;\(u;\)slj T|Du;\\pdx+2\J (@|u;\|r+ﬂ|u;\|q>dx
pJa a\r a

Aby

lTually + == lluallg (3.40)
v

T p
= —||UA +
ol

< —luallf + bol[ual [z + bafful[£-

=S

Let A — 0+ in (3.40) as &y — +oo, then we obtain |[u)||g — +o0. This completes
the proof. 0O

PROOF OF THEOREM 2.2. For0 < « < 1/p,let|lullg = A% By (3.34), we have
L) > %O/\""” — koAl _ Al — A(%’A‘XH —koA®T —klw>. (3.41)

As ap —1 < 0, then there exists A* > 0 small enough so that In(u) > 0 for
A € (0,A*), that is,

In(u) >0, VO<A<A* llullg=pa, (3.42)

where p) = A% Set By, = {u € E: ||lullg < pa}, then for u € Em, by (3.34), we
find

C
In(u) = HlE = kol —kidlu
v a %\ L+7a x\ 1+qa (3'43)
> —koApy —kidpy = —ko(A*) " — ki (A%) T,



THE EIGENVALUE PROBLEM FOR THE p-LAPLACIAN-LIKE EQUATIONS 585

then I, is bounded blow on FpA. Choosing v € Cy°(Q),0<v <1,0=< [Dv| <1,
t >0, then

_1 P P _
IA(tv)—pJQA(t |Dv|?)dx AJQF(x,tv)dx

< IJ t”leI’”dx—)\J Flx,tv) dx (3.44)
pJa Q

stl”[£J |Dv|pdx_;\mfxe§F(X:t) F(X,tv)d ]
Q

tp o F(x,t)

From (A5), we know that f(x,t) = 0, for all x € Q, t = 0 and hence F(x,tv)/
F(x,t) < 1. By (3.44), (A5), and applying the dominated convergence theorem
to (3.44), we find that there exist 6 > 0, 0 <t < 6, tv € B,, such that

I\(tv) <O0. (3.45)

Because I, satisfies the (PS) condition, the minimax theorem on Ep‘\ claims that
Iy has a nontrivial critical point uy € B,,, which is a local minimum and
In(up) < 0. Then ||luallg < pa = A%, |luallg — 0 as A — 0+. This ends the proof.

O

4. Examples

EXAMPLE 4.1. Let Q C R" be a bounded smooth domain. We consider the
p-Laplacian problem from nonlinear quantized mechanics as

—div(|Du|??Du) = A(Jul9%u+ul"?u), xecqQ,
4.1)
u(x) =0, xe€oQ,

where A > 0,1 <p <n, Q Cc R" is a bounded smooth domain, 1 < g < p <
r <p* p*=np/(n—p).In this case, a(s) = 1, B(r) = |r|? is strictly convex,
and conditions (A2) and (A4) are satisfied for co = T =1 while 0 < 0 < 1/p.
Obviously, (A3) also holds. These conditions have been posted directly on the
given functions in some papers which dealt with the solvability of the bound-
ary value or eigenvalue problem for the p-Laplacian equation (see [6] and
the references therein). Then, by virtue of Theorems 2.1 and 2.2, when A is
small enough, problem (4.1) possesses at least two eigenfunctions u, and v,,
and

}\1113||u;\||5:+oo, %\i{r{}Hw\HE:O. 4.2)
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EXAMPLE 4.2. Consider the eigenvalue problem for generalized capillarity
equation originated from the capillary phenomena

14 - . .
—div ((1 + %) |Du|V—2Du) = )\(Iu|"1—2u+ ul"2u), xeq,
u
ulx)=0, xe€oQ,
(4.3)

where A >0,1<g<p,2p <r <p*, p*=np/(n—p). We also can check that
(A1) to (A5) are satisfied. By Theorems 2.1 and 2.2, there exist two eigenfunc-
tions uy and vy and limp_¢ |luallg = + o0, limp_g llvallg = O.
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