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THE EIGENVALUE PROBLEM FOR THE p-LAPLACIAN-LIKE
EQUATIONS

ZU-CHI CHEN and TAO LUO

Received 16 February 2001

We consider the eigenvalue problem for the following p-Laplacian-like equation:
−div(a(|Du|p)|Du|p−2Du) = λf(x,u) in Ω, u = 0 on ∂Ω, where Ω ⊂ Rn is a
bounded smooth domain. When λ is small enough, a multiplicity result for eigen-
functions are obtained. Two examples from nonlinear quantized mechanics and
capillary phenomena, respectively, are given for applications of the theorems.
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1. Introduction. This paper is devoted to the study of the eigenvalue prob-

lem for the p-Laplacian-like equation

−div
(
a
(|Du|p)|Du|p−2Du

)= λf(x,u), x ∈Ω,
u(x)= 0, x ∈ ∂Ω, (1.1)

where λ > 0 is a real parameter, 1< p <n, Ω is a bounded smooth domain in

Rn, and Du denotes the gradient of u, f ∈ C(Ω×R,R), a∈ C(R+,R).
We call λ an eigenvalue of (1.1) provided (1.1), for this λ, has a nontrivial

weak solution, say uλ, which is then called an eigenfunction corresponding

to λ. Denote

A(r)=
∫ r

0
a(s)ds, F(x,t)=

∫ t
0
f(x,s)ds. (1.2)

We look for nontrivial solutions of (1.1), and this question is reduced to show,

for some λ∈R, the existence of critical points for the functional

Iλ(u)= 1
p

∫
Ω
A
(|Du|p)dx−λ

∫
Ω
F(x,u)dx, u∈ E =W 1,p

0 (Ω). (1.3)

In [5], Pielichowski discussed the existence and nonnegativity of the first eigen-

value and eigenfunction, in a weak sense, of the p-Laplace equations with some

kind of nonlinear terms below

−div
(|Du|p−2Du

)+a(x)|u|p−2u= λm(x)|u|p−2u. (1.4)
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Under the assumption that A(σ)≤φ(σ(x))/|ψ(σ(x))|≤B(σ) where A(σ),
B(σ) are constants, Garcia-Huidobro et al. [4] proved the existence of eigen-

values and eigenfunctions for the p-Laplacian-like equation in the radial form

[
rn−1φ(u′)

]′ +λrn−1ψ(u)= 0, r ∈ (0,R),
u′(0)= 0, u(R)= 0.

(1.5)

They used the fixed-point theorem and continuation to techniques. Recently,

Boccardo [2] showed the existence of positive eigenfunctions to a kind of p-

Laplace-like equations

−div
(
M(x,u)Du

)= λu, x ∈Ω,
u > 0, x ∈Ω,

‖u‖L2(Ω) = r r ∈R+.
(1.6)

We are especially interested in Ubilla’s paper [7], which studied the solvability

of the boundary value problem for p-Laplacian-like equation in the radial form

−
(
a
(∣∣u′(r)∣∣p)∣∣u′(r)∣∣p−2u′(r)

)′ = f (u(r)) r ∈ I = (0,1)
u(0)=u(1)= 0.

(1.7)

Under the assumption that

a
(|t|p)|t|p−2t ∈ C1(R\{0},R)∩C(R,R), (

a
(|t|p)|t|p−2t

)′ > 0, ∀t �= 0,
(1.8)

a multiplicity result was obtained by using energy relations and the shoot-

ing method. The key of our trick is to change this assumption into that the

mapping r � A(|r |p) defined in (1.2) is strictly convex, and then consider

the eigenvalue problem (1.1). Also, the method we used, the mountain pass

theorem and the minimax principle, is different from [7] and some other re-

lated papers (see [7] and the references therein). We got the existence of two

eigenfunctions uλ,vλ not necessarily radial ones. In addition, we found that

the behaviors of these two eigenfunctions near λ = 0 are much different as

limλ→0+‖uλ‖E =+∞, limλ→0+‖vλ‖E = 0. Our idea comes partially from [1].

2. Main results. Assume that

(A1) the mapping r � B(r)=A(|r |p) is strongly convex;

(A2) there exist constants c0 > 0, T > 0 such that A(t)≥ c0t, for all t ≥ 0 and

a(s)≤ T , for all s ≥ 0;

(A3) there exist constants b0 > 0, b1 > 0 such that for all x ∈Ω,

∣∣f(x,u)∣∣≤ b0|u|r−1+b1|u|q−1, for 1< q < p < r < p∗, p∗ = np
n−p ; (2.1)
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(A4) there exist constants t0, θ such that 0< θ < c0/pT where c0,T are con-

stants as in (A2), and

θf(x,t)t > F(x,t) > 0, ∀x ∈Ω, 0< t0 < |t|; (2.2)

(A5) for all x ∈Ω, t ≥ 0, f(x,t)≥ 0, it holds that

lim
t→0+

F(x,t)
tp

=+∞. (2.3)

Then we have the main results.

Theorem 2.1. Under assumptions (A1) to (A5), there exists a number λ∗ > 0

such that for each λ∈ (0,λ∗), there exists an eigenfunctionuλ of (1.1) satisfying

limλ→0‖uλ‖E =+∞.

Theorem 2.2. Assume (A1) to (A5) and f(x,t)≥ 0, then there is a number

λ∗ > 0 such that for each λ ∈ (0,λ∗), (1.1) has one eigenfunction uλ behaving

limλ→0+‖uλ‖E = 0.

3. Proof of the main results

Lemma 3.1. Assume (A1) to (A4), then Iλ defined in (1.3) belongs to C1(E,R).

Proof. Denote

IA(u)= 1
p

∫
Ω
A
(|Du|p)dx, IF(u)= λ

∫
Ω
F(x,u)dx, u∈ E (3.1)

so Iλ(u)= IA(u)−IF (u). We will then complete the proof by the following two

claims.

Claim 1 (IA ∈ C1(E,R)). In fact, by (A1), for all λ∈ (0,1), ϕ ∈ E, we have

∫ |λDu+(1−λ)(Du+Dϕ)|p
0

a(s)ds

≤ λ
∫ |Du|p

0
a(s)ds+(1−λ)

∫ |Du+Dϕ|p
0

a(s)ds,
(3.2)

that is,

∫ |Du+(1−λ)Dϕ|p
0

a(s)ds−
∫ |Du|p

0
a(s)ds

≤ (1−λ)
(∫ |Du+Dϕ|p

0
a(s)ds−

∫ |Du|p
0

a(s)ds
)
.

(3.3)
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Set, in the above inequality, 1−λ= t, we then have

IA(u+tϕ)−IA(u)
t

= 1
tp

∫
Ω

(∫ |Du+tDϕ|p
0

a(s)ds−
∫ |Du|p

0
a(s)ds

)
dx

≤ 1
p

∫
Ω

(∫ |Du+Dϕ|p
0

a(s)ds−
∫ |Du|p

0
a(s)ds

)
dx

<+∞,

(3.4)

which is independent of t. Hence, we can apply the Lebesgue dominated con-

vergence theorem to the equality

IA(u+tϕ)−IA(u)
t

= 1
p

∫
Ω
a
(|Du|p+η(|Du+tDϕ|p−|Du|p))

· 1
t
(|Du+tDϕ|p−|Du|p)dx, for some η∈ (0,1),

(3.5)

and letting t→ 0, we then get

I′A(u)ϕ =
∫
Ω
a
(|Du|p)|Du|p−2 ·Dϕdx. (3.6)

Next, we show that I′A is continuous in u. In the following, the constant C may

vary line by line.

Suppose {um} ⊂ E satisfying ‖um−u‖E → 0 as m→∞. We then claim that

‖I′A(um)−I′A(u)‖→ 0. In fact,

∥∥I′A(um)−I′A(u)∥∥

= sup
ϕ∈E

∣∣∣∫Ω (a(∣∣Dum∣∣p)∣∣Dum∣∣p−2Dum ·Dϕ−a
(|Du|p)|Du|p−2Du·Dϕ

)
dx
∣∣∣

‖ϕ‖E

≤ 1
p
∥∥B′(Dum)−B′(Du)∥∥Lp′ (Ω),

(3.7)

where

B′(r)≡DB(r)= pa(|r |p)|r |p−2r , r ∈Rn, p′ = p
p−1

. (3.8)

Because um → u in E, by Egorov theorem, for any η > 0 there exists Ωη ⊂ Ω
such that |Ω\Ωη|< η and um,Dum converge uniformly to u,Du, respectively,
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in Ωη. Also, Ωη can be chosen large enough so that the following holds as well

∫
Ω\Ωη

|Du|pdx < ε
2

(3.9)

for any given ε > 0. By virtue of Dum →Du in Lp(Ω), whenm is large enough,

∫
Ω\Ωη

∣∣Dum∣∣pdx < C
(∫

Ω\Ωη

∣∣Dum−Du∣∣pdx+
∫
Ω\Ωη

|Du|pdx
)

<C
(∫

Ω

∣∣Dum−Du∣∣pdx+ε/2
)
<Cε.

(3.10)

Then, by (A2), (3.8), and (3.10), when m is large enough, we obtain

(∫
Ω\Ωη

∣∣B′(Dum)∣∣p/(p−1)dx
)(p−1)/p

≤ p
(∫

Ω\Ωη

(
T
∣∣Dum∣∣p−1

)p/(p−1)
dx

)(p−1)/p
≤ T(Cε)(p−1)/p,

(3.11)

that is, ‖B′(Dum)‖p
′
Lp′ (Ω\Ωη) ≤ Cε. Similarly,

∥∥B′(Du)∥∥p′Lp′ (Ω\Ωη) ≤ Cε. (3.12)

Noticing that

∥∥B′(Dum)−B′(Du)∥∥p′Lp′ (Ω) ≤ ∥∥B′(Dum)−B′(Du)∥∥p′Lp′ (Ωη)
+∥∥B′(Dum)∥∥p′Lp′ (Ω\Ωη)+

∥∥B′(Du)∥∥p′Lp′ (Ω\Ωη).
(3.13)

We then get ‖I′A(um)− I′A(u)‖ → 0 as m → ∞. Therefore, I′A is continuous at

the point u, that is, IA ∈ C1(E,R).
Claim 2 (IF ∈ C1(E,R)). The proof is similar to Claim 1 and we then omit it.

This completes the proof of Lemma 3.1.

Lemma 3.2. Assume (A1) to (A4), then Iλ satisfies (PS) condition.

Proof. From Lemma 3.1, we know that

I′λ(u)ϕ =
∫
Ω

[
a
(|Du|p)|Du|p−2Du·Dϕ−λf(x,u)ϕ]dx ∀u,v ∈ E. (3.14)
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Suppose that S = {um} ⊂ E satisfies that for some M > 0,

Iλ
(
um

)≤M, ∀um ∈ S, (3.15)

I′λ
(
um

)
�→ 0. (3.16)

We prove below that there exists a subsequence of {um} converging strongly

in E.

(a) At first, we show that S is bounded in E. From (3.16), for all ϕ ∈ E, it

holds that

∫
Ω

[
a
(∣∣Dum∣∣p)∣∣Dum∣∣p−2Dum ·Dϕ−λf

(
x,um

)
ϕ
]
dx = o(1)‖ϕ‖E. (3.17)

Using (A4) and (A2), we have

Iλ
(
um

)−θI′λ(um)um = 1
p

∫
Ω
A
(∣∣Dum∣∣p)dx−θ

∫
Ω
a
(∣∣Dum∣∣p)∣∣Dum∣∣pdx

+λ
∫
Ω

[
θf
(
x,um

)
um−F

(
x,um

)]
dx

>
1
p

∫
Ω
A
(∣∣Dum∣∣p)dx−θ

∫
Ω
a
(∣∣Dum∣∣p)∣∣Dum∣∣pdx

>
c0

p

∫
Ω

∣∣Dum∣∣pdx−θ
∫
Ω
T
∣∣Dum∣∣pdx.

(3.18)

Combining this with (3.17) yields

(
c0

p
−θT

)∫
Ω

∣∣Dum∣∣pdx <M+o(1)θ∥∥um∥∥E, (3.19)

which implies

∥∥um∥∥E ≤ C. (3.20)

Hence, there exists a subsequence of S, still denoted by {um}, such that um ⇀
u in E and hence Dum ⇀Du in Lp(Ω), um →u in Ls(Ω), 1< s < p∗.

(b) Set

pm(x)≡
(
a
(∣∣Dum∣∣p)∣∣Dum∣∣p−2Dum−a

(|Du|p)|Du|p−2Du
)(
Dum−Du

)
,

(3.21)
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then

Im ≡
∫
Ω
pm(x)dx

=
∫
Ω
a
(∣∣Dum∣∣p)∣∣Dum∣∣p−2Dum

(
Dum−Du

)
dx

−
∫
Ω
a
(|Du|p)|Du|p−2Du

(
Dum−Du

)
dx

≡ I(1)m +I(2)m .

(3.22)

We show below that pm(x)→ 0 a.e. in Ω. As Dum ⇀Du in Lp(Ω), it is obvious

that I(2)m → 0. We choose in (3.17) ϕ =um−u, then

I(1)m = λ
∫
Ω
f
(
x,um

)(
um−u

)
dx+o(1)∥∥um−u∥∥E. (3.23)

By (A3) and the Sobolev imbedding theorem,

∣∣∣∣
∫
Ω
f
(
x,um

)(
um−u

)
dx

∣∣∣∣≤ ∥∥f (x,um)∥∥r ′∥∥um−u∥∥r , r ′ = r/r −1

≤
(
b0

∥∥ur−1
m

∥∥
r ′ +b1

∥∥uq−1
m

∥∥
r ′
)∥∥um−u∥∥r

≤ c
(∥∥um∥∥r−1

E +∥∥um∥∥q−1
E

)∥∥um−u∥∥r
�→ 0, as m �→∞.

(3.24)

Therefore, from (3.23), I(1)m → 0 and so Im → 0 as m → ∞. Because B(r) is

strictly convex, then for all r1,r2 ∈Rn, it holds that

(
B′
(
r1
)−B′(r2

))·(r1−r2
)≥ 0, (3.25)

where the equality sign holds if and only if r1 = r2. From this and the definition

of pm(x), we then get pm(x) ≥ 0, which with Im → 0 gives pm(x) → 0, a.e.

x ∈Ω. So we can find Ω0 ⊂Ω such that meas(Ω−Ω0)= 0, um(x)→u(x) and

pm(x)→ 0 on Ω0.

(c) Based on (3.25) and the fact that pm(x)≥ 0, very similar to the first part

of the proof of [3, Lemma 1], we can get Dum(x)→Du(x), for all x ∈Ω0.

(d) At last, we prove ‖um−u‖E → 0. From the step (c),Dum →Du, a.e. x ∈Ω.

By Egorov theorem, for any δ > 0, there existsΩδ ⊂Ω such that meas(Ω−Ωδ) <
δ and Dum converges uniformly to Du on Ωδ. Because B(r) is convex, then

for any r1,r2 ∈Rn we have

B′
(
r1
)·(r1−r2

)≥ B(r1
)−B(r2

)
. (3.26)
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Choosing r2 = 0, with B(0)=A(0)= 0, then

B′
(
r1
)·r1 ≥ B

(
r1
)=A(∣∣r1

∣∣p)≥ c0

∣∣r1

∣∣p. (3.27)

Suppose Ω′ ⊂Ω, by (3.27) and (3.8). Using (A2) and Young’s inequality, we get

c0

p

∫
Ω′

∣∣Dum(x)∣∣pdx ≤
∫
Ω′
a
(∣∣Dum∣∣p)∣∣Dum∣∣pdx

=
∫
Ω′
pm(x)dx+

∫
Ω′
a
(∣∣Dum∣∣p)∣∣Dum∣∣p−2Dum ·Dudx

+
∫
Ω′
a
(|Du|p)|Du|p−2Du·Dumdx

−
∫
Ω′
a
(|Du|p)|Du|pdx

≤
∫
Ω′
pm(x)dx+T

∫
Ω′

∣∣Dum∣∣p−1|Du|dx

+T
∫
Ω′
|Du|p−1

∣∣Dum∣∣dx+T
∫
Ω′
|Du|pdx

≤
∫
Ω′
pm(x)dx+ε1

∫
Ω′

∣∣Dum∣∣pdx+C(ε1
)∫

Ω′
|Du|pdx

+ε2

∫
Ω′

∣∣Dum∣∣pdx+C(ε2
)∫

Ω′
|Du|pdx

+T
∫
Ω′
|Du|pdx.

(3.28)

Setting ε1 = ε2 = c0/4p in the above inequality yields

c0

2p

∫
Ω′

∣∣Dum(x)∣∣pdx ≤
∫
Ω′
pm(x)dx+C

∫
Ω′
|Du|pdx. (3.29)

Let |Ω′| be small enough so that for a given ε > 0 there holds

∫
Ω′
|Du|pdx < ε. (3.30)

Since Im → 0 and pm(x) > 0, then when m is large enough we have

∫
Ω′
pm(x)dx ≤

∫
Ω
pm(x)dx < ε. (3.31)
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Combining this with (3.29), we get
∫
Ω′ |Dum(x)|pdx < Cε when m become

large enough. Noticing Dum →Du uniformly on Ω\Ω′, then

∥∥Dum−Du∥∥Lp(Ω) = ∥∥Dum−Du∥∥Lp(Ω\Ω′)+∥∥Dum−Du∥∥Lp(Ω′)
≤ ∥∥Dum−Du∥∥Lp(Ω\Ω′)+∥∥Dum∥∥Lp(Ω′)+∥∥Du∥∥Lp(Ω′)
≤ Cε as m is large enough.

(3.32)

This completes the proof of Lemma 3.2.

Proof of Theorem 2.1. We complete the proof by three steps.

Step 1. In fact, from (A3) we find

∣∣F(x,u)∣∣≤ b0

r
|u|r + b1

q
|u|q, x ∈Ω. (3.33)

Condition (A2) and the Sobolev imbedding theorem yield

Iλ(u)≥ c0

p

∫
Ω
|Du|pdx−λ

∫
Ω

(
b0

r
|u|r + b1

q
|u|q

)
dx

≥ c0

p
‖u‖E−k0λ‖u‖rE−k1λ‖u‖qE,

(3.34)

where k0 > 0, k1 > 0 are constants and independent of u.

Suppose u∈ E satisfying that ‖u‖E = λ−α, 0<α< 1/(r −p), then by (3.34)

we have

Iλ(u)≥ c0

p
λ−αp−k0λ1−αr −k1λ1−αq. (3.35)

Because 0 < α < 1/(r −p), then αλ ≡ (c0/p)λ−αp −k0λ1−αr −k1λ1−αq → +∞
as λ → 0+. Hence, there exists λ∗ > 0 small enough such that αλ > 0 for all

λ∈ (0,λ∗). Then, we get

Iλ(u)≥αλ > 0 for ‖u‖E = ρλ, (3.36)

where ρλ = λ−α.

Step 2. Condition (A4) implies that

F(x,t) > d0t1/θ−d1, ∀(x,t)∈Ω×R, (3.37)



584 Z.-C. CHEN AND T. LUO

where d0,d1 are positive constants. Using (3.37) and condition (A2), we find

Iλ(tv)= 1
p

∫
Ω
A
(
tp|Dv|p)dx−λ

∫
Ω
F(x,tv)dx

≤ T
p

∫
Ω
tp|Dv|pdx−λ

∫
Ω

(
d0t1/θv1/θ−d1

)
dx

= T
p
tp‖v‖pE −λd0t1/θ‖v‖1/θ

1/θ+λd̃1.

(3.38)

Condition (A2) implies that c0 ≤ T , and then by (A4) we get p < 1/θ. Thus as

t→+∞, Iλ(tv)→−∞.

Step 3. By Lemma 3.2, Iλ satisfies the (PS) condition. Then, by the results

of Steps 1 and 2, we can apply the mountain pass theorem to get that there

exists a nontrivial critical point uλ of Iλ such that

Iλ
(
uλ
)= cλ ≥αλ > 0, (3.39)

and then

Iλ
(
uλ
)≤ 1

p

∫
Ω
T
∣∣Duλ∣∣pdx+λ

∫
Ω

(
b0

r
∣∣uλ∣∣r + b1

q
∣∣uλ∣∣q

)
dx

= T
p
∥∥uλ∥∥pE + λb0

r
∥∥uλ∥∥rr + λb1

q
∥∥uλ∥∥qq

≤ T
p
∥∥uλ∥∥pE + b̃0

∥∥uλ∥∥rE+ b̃1

∥∥uλ∥∥qE.
(3.40)

Let λ→ 0+ in (3.40) as αλ→+∞, then we obtain ‖uλ‖E →+∞. This completes

the proof.

Proof of Theorem 2.2. For 0<α< 1/p, let ‖u‖E = λα. By (3.34), we have

Iλ(u)≥ c0

p
λαp−k0λ1+αr −k1λ1+αq = λ

(
c0

p
λαp−1−k0λαr −k1λαq

)
. (3.41)

As αp− 1 < 0, then there exists λ∗ > 0 small enough so that Iλ(u) > 0 for

λ∈ (0,λ∗), that is,

Iλ(u) > 0, ∀0< λ< λ∗, ‖u‖E = ρλ, (3.42)

where ρλ = λα. Set Bρλ = {u ∈ E : ‖u‖E < ρλ}, then for u ∈ Bρλ , by (3.34), we

find

Iλ(u)≥ c0

p
‖u‖pE −k0λ‖u‖rE−k1λ‖u‖qE

≥−k0λρrλ−k1λρ
q
λ ≥−k0

(
λ∗
)1+rα−k1

(
λ∗
)1+qα,

(3.43)
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then Iλ is bounded blow on Bρλ . Choosing v ∈ C∞0 (Ω), 0< v < 1, 0≤ |Dv| ≤ 1,

t ≥ 0, then

Iλ(tv)= 1
p

∫
Ω
A
(
tp|Dv|p)dx−λ

∫
Ω
F(x,tv)dx

≤ T
p

∫
Ω
tp|Dv|pdx−λ

∫
Ω
F(x,tv)dx

≤ tp
[
T
p

∫
Ω
|Dv|pdx−λ infx∈Ω F(x,t)

tp

∫
Ω

F(x,tv)
F(x,t)

dx
]
.

(3.44)

From (A5), we know that f(x,t) ≥ 0, for all x ∈ Ω, t ≥ 0 and hence F(x,tv)/
F(x,t) ≤ 1. By (3.44), (A5), and applying the dominated convergence theorem

to (3.44), we find that there exist δ > 0, 0< t < δ, tv ∈ Bρλ such that

Iλ(tv) < 0. (3.45)

Because Iλ satisfies the (PS) condition, the minimax theorem on Bρλ claims that

Iλ has a nontrivial critical point uλ ∈ Bρλ , which is a local minimum and

Iλ(uλ) < 0. Then ‖uλ‖E < ρλ = λα, ‖uλ‖E → 0 as λ→ 0+. This ends the proof.

4. Examples

Example 4.1. Let Ω ⊂ Rn be a bounded smooth domain. We consider the

p-Laplacian problem from nonlinear quantized mechanics as

−div
(|Du|p−2Du

)= λ(|u|q−2u+|u|r−2u
)
, x ∈Ω,

u(x)= 0, x ∈ ∂Ω,
(4.1)

where λ > 0, 1 < p < n, Ω ⊂ Rn is a bounded smooth domain, 1 < q < p <
r < p∗, p∗ = np/(n−p). In this case, a(s)= 1, B(r)= |r |p is strictly convex,

and conditions (A2) and (A4) are satisfied for c0 = T = 1 while 0 < θ < 1/p.

Obviously, (A3) also holds. These conditions have been posted directly on the

given functions in some papers which dealt with the solvability of the bound-

ary value or eigenvalue problem for the p-Laplacian equation (see [6] and

the references therein). Then, by virtue of Theorems 2.1 and 2.2, when λ is

small enough, problem (4.1) possesses at least two eigenfunctions uλ and vλ,
and

lim
λ→0

∥∥uλ∥∥E =+∞, lim
λ→0

∥∥vλ∥∥E = 0. (4.2)
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Example 4.2. Consider the eigenvalue problem for generalized capillarity

equation originated from the capillary phenomena

−div

((
1+ |Du|p√

1+|Du|2p
)
|Du|p−2Du

)
= λ(|u|q−2u+|u|r−2u

)
, x ∈Ω,

u(x)= 0, x ∈ ∂Ω,
(4.3)

where λ > 0, 1< q < p, 2p < r < p∗, p∗ =np/(n−p). We also can check that

(A1) to (A5) are satisfied. By Theorems 2.1 and 2.2, there exist two eigenfunc-

tions uλ and vλ and limλ→0‖uλ‖E =+∞, limλ→0‖vλ‖E = 0.
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