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1. Introduction and definitions. In a unifying paper [10], Lee defined an integral

transform �α,β of analytic functionals on an abstract Wiener space. For certain values

of the parameters α and β and for certain classes of functionals, the Fourier-Wiener

transform [2], the Fourier-Feynman transform [3], and the Gauss transform are special

cases of his integral transform �α,β. In [5], Chang et al. established an interesting re-

lationship between the integral transform and the convolution product for functionals

on an abstract Wiener space. In this paper, we study the relationships that exist among

the integral transform, the convolution product, and the first variation [1, 4, 9, 11].

Let C0[0,T ] denote one-parameter Wiener space, that is, the space of all real-valued

continuous functions x(t) on [0,T ] with x(0)= 0. Let � denote the class of all Wiener

measurable subsets of C0[0,T ] and let m denote Wiener measure. Then (C0[0,T ],�,
m) is a complete measure space and we denote the Wiener integral of a Wiener inte-

grable functional F by

∫
C0[0,T ]

F(x)m(dx). (1.1)

Let K = K[0,T ] be the space of complex-valued continuous functions defined on

[0,T ] which vanish at t = 0. Let α and β be nonzero complex numbers. Next we state

the definitions of the integral transform �α,βF , the convolution product (F∗G)α, and

the first variation δF for functionals defined on K.

Definition 1.1. Let F be a functional defined on K. Then the integral transform

�α,βF of F is defined by

�α,β(F)(y)≡�α,βF(y)≡
∫
C0[0,T ]

F(αx+βy)m(dx), y ∈K, (1.2)

if it exists [5, 8, 10].
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Definition 1.2. Let F and G be functionals defined on K. Then the convolution

product (F∗G)α of F and G is defined by

(F∗G)α(y)≡
∫
C0[0,T ]

F
(
y+αx√

2

)
G
(
y−αx√

2

)
m(dx), y ∈K, (1.3)

if it exists [5, 7, 13, 14].

Definition 1.3. Let F be a functional defined on K and let w ∈ K. Then the first

variation δF of F is defined by

δF(y|w)≡ ∂
∂t
F(y+tw)|t=0, y ∈K, (1.4)

if it exists [1, 4, 11].

Let {θ1,θ2, . . .} be a complete orthonormal set of real-valued functions in L2[0,T ].
Furthermore, assume that each θj is of bounded variation on [0,T ]. Also let Var(θj,[0,
T ]) denote the total variation of θj on [0,T ]. Then for each y ∈ K and j ∈ {1,2, . . .},
the Riemann-Stieltjes integral 〈θj,y〉 ≡

∫ T
0 θj(t)dy(t) exists. Furthermore,

∣∣〈θj,y〉∣∣=
∣∣∣∣θj(T)y(T)−

∫ T
0
y(t)dθj(t)

∣∣∣∣≤ Cj‖y‖∞ (1.5)

with

Cj =
∣∣θj(T)∣∣+Var

(
θj,[0,T ]

)
. (1.6)

Next we describe the class of functionals that we work with in this paper. Let E0 be

the space of all functionals F :K→ C of the form

F(y)= f (〈θ1,y
〉
, . . . ,

〈
θn,y

〉)
(1.7)

for some positive integer n, where f(λ1, . . . ,λn) is an entire function of the n complex

variables λ1, . . . ,λn of exponential type; that is to say,

∣∣f (λ1, . . . ,λn
)∣∣≤AF exp


BF

n∑
j=1

∣∣λj∣∣

 (1.8)

for some positive constants AF and BF .

To simplify the expressions, we use the following notations. For �u= (u1, . . . ,un)∈Rn
and �λ= (λ1, . . . ,λn)∈ Cn, we write

‖�u‖2 =
n∑
j=1

u2
j , |�u| =

n∑
j=1

∣∣uj∣∣, |�λ| =
n∑
j=1

∣∣λj∣∣, d�u= du1 ···dun,

f
(
α�u+β�λ)= f (αu1+βλ1, . . . ,αun+βλn

)
,

f
(〈�θ,y〉)= f (〈θ1,y

〉
, . . . ,

〈
θn,y

〉)
.

(1.9)
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Hence (1.7) and (1.8) can be expressed alternatively as

F(y)= f (〈�θ,y〉), ∣∣f(�λ)∣∣≤AF exp
{
BF |�λ|

}
, (1.10)

respectively. In addition, we use the notation

Fj(y)= fj
(〈�θ,y〉), (1.11)

where fj(�λ)= (∂/∂λj)f (λ1, . . . ,λn) for j = 1, . . . ,n.

In Section 2, we show that if F and G are elements of E0, then �α,βF(·), (F∗G)α(·),
δF(·|w), and δF(y|·) are also elements of E0. In Section 3, we examine all relationships

involving exactly two of the three concepts of “integral transform,” “convolution prod-

uct,” and “first variation,” while in Section 4, we examine all relationships involving all

three of these concepts where each concept is used exactly once. For related work, see

[2, 5, 7, 9, 10, 11, 13, 14] and for a detailed survey of previous work, see [12].

Remark 1.4. For any F ∈ E0 and any G ∈ E0, we can always express F by (1.7) and

G by

G(x)= g(〈θ1,x
〉
, . . . ,

〈
θn,x

〉)
(1.12)

using the same positive integer n, where f and g are entire functions of exponential

type. For example, if F ∈ E0 is of the form

F(x)= r(〈θ1,x
〉
,
〈
θ2,x

〉)
, (1.13)

and G ∈ E0 is of the form

G(x)= s(〈θ1,x
〉
,
〈
θ3,x

〉
,
〈
θ4,x

〉)
, (1.14)

where r(λ1,λ2) and s(λ1,λ3,λ4) are entire functions of exponential type, then we can

express F and G by (1.7) and (1.12) with n= 4 by choosing f(λ1,λ2,λ3,λ4)≡ r(λ1,λ2)
and g(λ1,λ2,λ3,λ4) ≡ s(λ1,λ3,λ4). In addition, the positive constants AF , BF , AG, and

BG remain fixed. Thus throughout this paper, we will always assume that F andG belong

to E0 and are given by (1.7) and (1.12), respectively.

Remark 1.5. We considered various other classes of functionals before deciding to

work exclusively with the class E0 throughout this paper. One very natural class we

considered was L2(C) ≡ L2(C0[0,T ]), the space of all complex-valued functionals F
satisfying

∫
C0[0,T ]

∣∣F(x)∣∣2m(dx) <∞. (1.15)

However in [8], Kim and Skoug showed that L2(C) is not invariant under the action of

the integral transform operator. In fact, they showed that for every β∈ C with |β|> 1,

there exists a functional F ∈ L2(C) (the functional F depends on β) with �α,β(F) ∉ L2(C)
even though α2+β2 = 1.
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Another class of functionals we considered was

A= {F ∈ L2(C) : �α,β(F)∈ L2(C) ∀ nonzero α,β∈ C}. (1.16)

But for F ∈A, the first variation δF of F may not exist; in fact, one needs some kind of

a smoothness condition on F to even define δF .

As we will see in Section 2, E0 is a very natural class of functionals in which to study

the relationships that exist among the integral transform, the convolution product, and

the first variation because for F and G in E0, �α,β(F) and (F∗G)α exist and belong to

E0 for all nonzero complex numbers α and β, while δF(y|w) exists and belongs to E0

for all y and w in K. In addition, E0 is a very rich class of functionals. Note that if

E0 is given by (1.7), then the entire function f(λ1, . . . ,λn) is bounded if and only if it

is a constant function. Thus many of the functionals in E0 are unbounded, while for

example, all of the functionals considered in [11] are bounded.

The so-called “tame functionals,” that is, functionals of the form

G(x)= g(x(t1), . . . ,x(tm)), 0< t1 < ···< tm ≤ T (1.17)

as well as functionals of the form (1.7), played a major role in the development of

Wiener space integration theory. But functionals of the form (1.17) are in E0 provided

g(λ1, . . . ,λm) is an entire function of exponential growth. Included of course are all

polynomials of m complex variables λ1, . . . ,λm for all positive integers m, as well as

such polynomials in x(t1), . . . ,x(tm) multiplied by functionals like exp{∑m
j=1ajxj(t)},

and so forth.

2. The integral transform, the convolution product, and the first variation of func-

tionals in E0. In our first theorem, we show that if F is an element of E0, then the

integral transform of F exists and is an element of E0.

Theorem 2.1. Let F ∈ E0 be given by (1.7). Then the integral transform �α,βF exists,

belongs to E0, and is given by the formula

�α,βF(y)= h
(〈�θ,y〉) (2.1)

for y ∈K, where

h(�λ)= (2π)−n/2
∫
Rn
f (α�u+β�λ)exp

{
− 1

2
‖�u‖2

}
d�u. (2.2)

Proof. For each y ∈K, using a well-known Wiener integration theorem, we obtain

�α,βF(y)=
∫
C0[0,T ]

f
(
α〈�θ,x〉+β〈�θ,y〉)m(dx)

= (2π)−n/2
∫
Rn
f
(
α�u+β〈�θ,y〉)exp

{
− 1

2
‖�u‖2

}
d�u

= h(〈�θ,y〉),
(2.3)



INTEGRAL TRANSFORMS, CONVOLUTION PRODUCTS, . . . 583

where h is given by (2.2). By [6, Theorem 3.15], h(�λ) is an entire function. Moreover, by

inequality (1.8), we have

∣∣h(�λ)∣∣≤ (2π)−n/2
∫
Rn
AF exp

{
BF |α�u+β�λ|− 1

2
‖�u‖2

}
d�u

≤A�α,βF exp
{
B�α,βF |�λ|

}
,

(2.4)

where

A�α,βF =AF
(

1√
2π

∫
R

exp
{
− u

2

2
+BF |αu|

}
du

)n
<∞ (2.5)

and B�α,βF = BF |β|. Hence �α,βF ∈ E0.

In our next theorem, we show that the convolution product of functionals from E0 is

an element of E0.

Theorem 2.2. Let F,G ∈ E0 be given by (1.7) and (1.12) with corresponding entire

functions f and g. Then the convolution (F ∗G)α exists, belongs to E0, and is given by

the formula

(F∗G)α(y)= k
(〈�θ,y〉) (2.6)

for y ∈K, where

k
(�λ)= (2π)−n/2

∫
Rn
f
(
�λ+α�u√

2

)
g
(
�λ−α�u√

2

)
exp

{
− 1

2
‖�u‖2

}
d�u. (2.7)

Proof. For each y ∈K, using a well-known Wiener integration theorem, we obtain

(F∗G)α(y)=
∫
C0[0,T ]

F
(
y+αx√

2

)
G
(
y−αx√

2

)
m(dx)

=
∫
C0[0,T ]

f
(
〈�θ,y〉+α〈�θ,x〉√

2

)
g
(
〈�θ,y〉−α〈�θ,x〉√

2

)
m(dx)

= (2π)−n/2
∫
Rn
f
(
〈�θ,y〉+α�u√

2

)
g
(
〈�θ,y〉−α�u√

2

)
exp

{
− 1

2
‖�u‖2

}
d�u

= k(〈�θ,y〉),

(2.8)

where k is given by (2.7). By [6, Theorem 3.15], k(�λ) is an entire function and

∣∣k(�λ)∣∣≤ (2π)−n/2
∫
Rn
AFAG exp

{
BF +BG√

2

(|�λ|+|α||�u|)− 1
2
‖�u‖2

}
d�u

=A(F∗G)α exp
{
B(F∗G)α |�λ|

}
,

(2.9)

where B(F∗G)α = (BF +BG)/
√

2 and

A(F∗G)α =AFAG
(

1√
2π

∫
R

exp
{
− u

2

2
+B(F∗G)α |αu|

}
du

)n
<∞. (2.10)

Hence (F∗G)α ∈ E0.
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In Theorem 2.3, we fix w ∈ K and consider δF(y|w) as a function of y , while in

Theorem 2.4, we fix y ∈K and consider δF(y|w) as a function of w.

Theorem 2.3. Let F ∈ E0 be given by (1.7) and let w ∈K. Then

δF(y|w)= p(〈�θ,y〉) (2.11)

for y ∈K, where

p(�λ)=
n∑
j=1

〈
θj,w

〉
fj(�λ). (2.12)

Furthermore, as a function of y ∈K, δF(y|w) is an element of E0.

Proof. For y ∈K,

δF(y|w)= ∂
∂t
f
(〈�θ,y〉+t〈�θ,w〉)∣∣t=0

=
n∑
j=1

〈
θj,w

〉
fj
(〈�θ,y〉)= p(〈�θ,y〉), (2.13)

where p is given by (2.12). Since f(�λ) is an entire function, fj(�λ) and so p(�λ) are entire

functions. By the Cauchy integral formula, we have

fj
(
λ1, . . . ,λj, . . . ,λn

)= 1
2πi

∫
|ζ−λj |=1

f
(
λ1, . . . ,ζ, . . . ,λn

)
(
ζ−λj

)2 dζ. (2.14)

By inequality (1.8), for any ζ with |ζ−λj| = 1, we have

∣∣∣∣∣f
(
λ1, . . . ,ζ, . . . ,λn

)
(
ζ−λj

)2

∣∣∣∣∣≤AF exp
{
BF
(∣∣λ1

∣∣+···+|ζ|+···+∣∣λn∣∣)}

≤AF exp
{
BF |�λ|+BF

}
.

(2.15)

Hence

∣∣fj(�λ)∣∣≤AFeBF exp
{
BF |�λ|

}
, (2.16)

and so

∣∣p(�λ)∣∣≤ n∑
j=1

∣∣〈θj,w〉∣∣∣∣fj(�λ)∣∣≤AδF(·|w) exp
{
BδF(·|w)|�λ|

}
, (2.17)

where

AδF(·|w) =AFeBF ‖w‖∞
n∑
j=1

Cj <∞ (2.18)

with Cj given by (1.6) and BδF(·|w) = BF .
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Theorem 2.4. Let y ∈K and let F ∈ E0 be given by (1.7). Then

δF(y|w)= q(〈�θ,w〉) (2.19)

for w ∈K, where

q(�λ)=
n∑
j=1

λjfj
(〈�θ,y〉). (2.20)

Furthermore, as a function of w, δF(y|w) is an element of E0.

Proof. Equations (2.19) and (2.20) are immediate from the first part of the proof of

Theorem 2.3. Clearly q(�λ) is an entire function. Next, using (2.16) we obtain

∣∣q(�λ)∣∣≤ n∑
j=1

∣∣λjfj(〈�θ,y〉)∣∣

≤AFeBF exp
{
BF
[∣∣〈θ1,y

〉∣∣+···+∣∣〈θn,y〉∣∣]}
n∑
j=1

∣∣λj∣∣
<AFeBF exp

{
BF‖y‖∞

[
C1+···+Cn

]}
e|�λ|

=AδF(y|·) exp
{
BδF(y|·)|�λ|

}
,

(2.21)

where BδF(y|·) = 1 and

AδF(y|·) =AFeBF exp
{
BF‖y‖∞

[
C1+···+Cn

]}
. (2.22)

Hence, as a function of w, δF(y|w)∈ E0.

We finish this section with some observations which we use later in this paper. First

of all, (1.2) implies that

�α,βF
(
y√
2

)
=�α,β/

√
2F(y) (2.23)

for all y ∈K. Next, a direct calculation using (1.4), (1.2), (2.11), and (2.23) shows that

δ�α,βF
(
y√
2

∣∣∣∣ w√2

)
= δ�α,β/

√
2F(y|w)=

β√
2

n∑
j=1

〈
θj,w

〉
�α,β/

√
2Fj(y) (2.24)

for all y and w in K. Finally, by similar calculations, we obtain that

�α,β
(
δF(·|w))( y√

2

)
=
√

2
β
δ�α,β/

√
2F(y|w) (2.25)
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for all y and w in K, and for all y ∈K,

(
�α,βF

)
j(y)= β�α,β

(
Fj
)
(y)= β�α,βFj(y). (2.26)

3. Relationships involving two concepts. In this section, we establish all of the

various relationships involving exactly two of the three concepts of integral transform,

convolution product, and first variation for functionals belonging to E0. The seven dis-

tinct relationships, as well as alternative expressions for some of them, are given by

(3.1), (3.2), (3.4), (3.7), (3.9), (3.11), and (3.13).

In view of Theorem 2.1 through Theorem 2.4, all of the functionals that occur in this

section are elements of E0. For example, let F and G be any functionals in E0. Then

by Theorem 2.2, the functional (F∗G)α belongs to E0, and hence by Theorem 2.1, the

functional �α,β(F∗G)α also belongs to E0. By similar arguments, all of the functionals

that arise in (3.1) through (3.14) and (3.16) through (3.20) exist and belong to E0.

Our first formula (3.1) is useful because it permits one to calculate �α,β(F ∗G)α
without ever actually calculating (F∗G)α.

Formula 3.1. The integral transform of the convolution product of functionals

from E0 is given by the formula

�α,β(F∗G)α(y)=�α,βF
(
y√
2

)
�α,βG

(
y√
2

)
=�α,β/

√
2F(y)�α,β/

√
2G(y) (3.1)

for all y in K.

Proof. Formula 3.1 is a special case of [5, Theorem 3.1].

Formula 3.2. The convolution product of the integral transform of functionals

from E0 is given by the formula

(
�α,βF∗�α,βG

)
α(y)

= (2π)−3n/2
∫
R3n

f
(
α�r + β√

2
〈�θ,y〉+ βα√

2
�u
)

·g
(
α�s+ β√

2
〈�θ,y〉− βα√

2
�u
)

exp

{
− ‖�u‖

2+‖�r‖2+‖�s‖2

2

}
d�ud�r d�s

(3.2)

for all y in K.

Proof. Using (1.3) and (1.2), we see that

(
�α,βF∗�α,βG

)
α(y)

=
∫
C0[0,T ]

�α,βF
(
y+αx√

2

)
�α,βG

(
y−αx√

2

)
m(dx)

=
∫
C0[0,T ]

[∫
C0[0,T ]

F
(
αz1+ β(y+αx)√

2

)
m
(
dz1

)]
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·
[∫

C0[0,T ]
G
(
αz2+ β(y−αx)√

2

)
m
(
dz2

)]
m(dx)

=
∫
C3

0 [0,T ]
f
(
α
〈�θ,z1

〉+ β√
2
〈�θ,y〉+ αβ√

2
〈�θ,x〉

)

·g
(
α
〈�θ,z2

〉+ β√
2
〈�θ,y〉− αβ√

2
〈�θ,x〉

)
m(dx)m

(
dz1

)
m
(
dz2

)
.

(3.3)

Formula (3.2) now follows upon evaluating the above Wiener integrals.

Formula 3.3. The integral transform with respect to the first argument of the vari-

ation is given by the formula

�α,β
(
δF(·|w))(y)= 1

β
δ�α,βF(y|w)=

n∑
j=1

〈
θj,w

〉
�α,βFj(y) (3.4)

for all y and w in K.

Proof. By applying Theorem 2.1 to expression (2.11), we obtain

�α,β
(
δF(·|w))(y)= (2π)−n/2

∫
Rn
p
(
α�u+β〈�θ,y〉)exp

{
− 1

2
‖�u‖2

}
d�u

= (2π)−n/2
n∑
j=1

〈
θj,w

〉∫
Rn
fj
(
α�u+β〈�θ,y〉)exp

{
− 1

2
‖�u‖2

}
d�u.

(3.5)

On the other hand, by applying Theorem 2.3 to expression (2.1) and then using (2.2),

we obtain

1
β
δ�α,βF(y|w)= 1

β

n∑
j=1

〈
θj,w

〉
hj
(〈�θ,y〉)

= 1
β

n∑
j=1

〈
θj,w

〉
(2π)−n/2β

∫
Rn
fj
(
α�u+β〈�θ,y〉)exp

{
− 1

2
‖�u‖2

}
d�u

= (2π)−n/2
n∑
j=1

〈
θj,w

〉∫
Rn
fj
(
α�u+β〈�θ,y〉)exp

{
− 1

2
‖�u‖2

}
d�u,

(3.6)

and so (3.4) is established.

Formula 3.4. The Integral transform with respect to the second argument of the

variation is given by the formula

�α,β
(
δF(y|·))(w)= βδF(y|w) (3.7)

for all y and w in K.
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Proof. By applying Theorem 2.1 to expression (2.19), we obtain

�α,β
(
δF(y|·))(w)= (2π)−n/2

∫
Rn
q
(
α�u+β〈�θ,w〉)exp

{
− 1

2
‖�u‖2

}
d�u

= (2π)−n/2
n∑
j=1

∫
Rn

(
αuj+β

〈
θj,w

〉)
fj
(〈�θ,y〉)exp

{
− 1

2
‖�u‖2

}
d�u

= β
n∑
j=1

〈
θj,w

〉
fj
(〈�θ,y〉)= βδF(y|w).

(3.8)

Formula 3.5. The first variation of the convolution product of functionals from E0

is given by the formula

δ(F∗G)α(y|w)=
n∑
j=1

〈
θj,w

〉
√

2

[(
Fj∗G

)
α(y)+

(
F∗Gj

)
α(y)

]
(3.9)

for all y and w in K.

Proof. By applying Theorem 2.3 to (2.6) and then using (2.7), we obtain

δ(F∗G)α(y|w)

=
n∑
j=1

〈
θj,w

〉
kj
(〈�θ,y〉)

= (2π)−n/2
n∑
j=1

〈
θj,w

〉
√

2

∫
Rn

[
fj

(
〈�θ,y〉+α�u√

2

)
g
(
〈�θ,y〉−α�u√

2

)

+f
(
〈�θ,y〉+α�u√

2

)
gj

(
〈�θ,y〉−α�u√

2

)]
exp

{
− 1

2
‖�u‖2

}
d�u

=
n∑
j=1

〈
θj,w

〉
√

2

[(
Fj∗G

)
α(y)+

(
F∗Gj

)
α(y)

]
.

(3.10)

Formula 3.6. The convolution product, with respect to the first argument of the

variation, of the variation of functionals from E0 is given by the formula

(
δF(·|w)∗δG(·|w))α(y)=

n∑
j=1

n∑
l=1

〈
θj,w

〉〈
θl,w

〉(
Fj∗Gl

)
α(y) (3.11)

for all y and w in K.

Proof. Applying the additive distribution properties of the convolution product to

the expressions

δF(y|w)=
n∑
j=1

〈
θj,w

〉
Fj(y), δG(y|w)=

n∑
l=1

〈
θl,w

〉
Gl(y) (3.12)

yields (3.11) as desired.
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Formula 3.7. The convolution product, with respect to the second argument of the

variation, of the variation of functionals from E0 is given by the fromula

(
δF(y|·)∗δG(y|·))α(w)= 1

2
δF(y|w)δG(y|w)− α

2

2

n∑
j=1

Fj(y)Gj(y) (3.13)

for all y and w in K.

Proof. Upon applying Theorem 2.2 to the expressions

δF(y|w)=
n∑
j=1

〈
θj,w

〉
fj
(〈�θ,y〉), δG(y|w)=

n∑
l=1

〈
θl,w

〉
gl
(〈�θ,w〉), (3.14)

and using the fact that

∫
Rn
ujul exp

{
− 1

2
‖�u‖2

}
d�u=



(2π)n/2 if j = l,
0 if j �= l,

(3.15)

we obtain

(
δF(y|·)∗δG(y|·))α(w)

= (2π)−n/2
∫
Rn


 n∑
j=1

〈
θj,w

〉+αuj√
2

fj
(〈�θ,y〉)




·

 n∑
l=1

〈
θl,w

〉−αul√
2

gl
(〈�θ,y〉)


exp

{
− 1

2
‖�u‖2

}
d�u

= 1
2
(2π)−n/2

n∑
j=1

n∑
l=1

fj
(〈�θ,y〉)gl(〈�θ,y〉)

·
∫
Rn

(〈
θj,w

〉+αuj)(〈θl,w〉−αul)exp
{
− 1

2
‖�u‖2

}
d�u

= 1
2

n∑
j=1

n∑
l=1

〈
θj,w

〉〈
θl,w

〉
fj
(〈�θ,y〉)gl(〈�θ,y〉)− α2

2

n∑
j=1

fj
(〈�θ,y〉)gj(〈�θ,y〉)

= 1
2


 n∑
j=1

〈
θj,w

〉
fj
(〈�θ,y〉)




 n∑
l=1

〈
θl,w

〉
gl
(〈�θ,y〉)


− α2

2

n∑
j=1

Fj(y)Gj(y)

= 1
2
δF(y|w)δG(y|w)− α

2

2

n∑
j=1

Fj(y)Gj(y).

(3.16)
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Finally, letting G = F in (3.1), (3.9), (3.11), and (3.13) yields the formulas

�α,β(F∗F)α(y)=
[
�α,β/

√
2F(y)

]2, (3.17)

δ(F∗F)α(y|w)=
√

2
n∑
j=1

〈
θj,w

〉(
F∗Fj

)
α(y), (3.18)

(
δF(·|w)∗δF(·|w))α(y)=

n∑
j=1

n∑
l=1

〈
θj,w

〉〈
θl,w

〉(
Fj∗Fl

)
α(y), (3.19)

(
δF(y|·)∗δF(y|·))α(w)= 1

2

[
δF(y|w)]2− α

2

2

n∑
j=1

[
Fj(y)

]2
(3.20)

for all y and w in K.

It is interesting to note that the left-hand side of each of the formulas (3.1), (3.2),

(3.4), (3.7), (3.9), (3.11), (3.13), (3.17), (3.18), (3.19), and (3.20) involve exactly two of

the operations of transform, convolution and first variation, while each right-hand side

involves at most one of these three operations.

4. Relationships involving three concepts. In this section, we examine all of the

various relationships involving the integral transform, the convolution product, and

the first variation, where each concept is used exactly once. There are more than six

possibilities since one can take the transform or the convolution with respect to either

the first or the second argument of the variation. However, in view of formula (3.4)

and (3.7), there are some repetitions. To exhaust all possibilities, we need to take the

variation of the expressions in (3.1) and (3.2), the convolution of the expressions in (3.4)

and (3.7), and the transform of the expressions in formulas (3.9), (3.11), and (3.13). It

turns out that there are ten distinct formulas, and these are given by (4.1) through

(4.10) below. We omit the details of the calculations used to obtain (4.1) through (4.10)

because the techniques needed are similar to those used above in Sections 2 and 3.

Again, because of the theorems in Section 2, all of the functionals that arise in this

section are automatically elements of E0. As usual, F and G in E0 are given by (1.7) and

(1.12), respectively.

Formula 4.1. Taking the first variation of the expressions in (3.1) or taking the

transform of the expressions in (3.9) with respect to the first argument of the variation

and then using (2.23) and (2.24) yields the formula

δ�α,β(F∗G)α(y|w)= β�α,βδ(F∗G)α(·|w)(y)

=�α,βF
(
y√
2

)
δ�α,βG

(
y√
2

∣∣∣∣∣ w√2

)

+δ�α,βF
(
y√
2

∣∣∣∣∣ w√2

)
�α,βG

(
y√
2

)

=�α,β/
√

2F(y)δ�α,β/
√

2G(y|w)
+δ�α,β/

√
2F(y|w)�α,β/

√
2G(y)

(4.1)

for all y and w in K.



INTEGRAL TRANSFORMS, CONVOLUTION PRODUCTS, . . . 591

Formula 4.2. Taking the first variation of the expressions in (3.2) or replacing F
with �α,βF and G with �α,βG in (3.9) yields the formula

δ
(
�α,βF∗�α,βG

)
α
(
y|w)

= β√
2

n∑
j=1

〈
θj,w

〉[(
�α,βFj∗�α,βG

)
α(y)+

(
�α,βF∗�α,βGj

)
α(y)

] (4.2)

for all y and w in K.

Formula 4.3. Taking the integral transform of the expressions in (3.9) with re-

spect to the second argument of the variation yields the formula

�α,βδ(F∗G)α(y|·)(w)= βδ(F∗G)α(y|w)

= β√
2

n∑
j=1

〈
θj,w

〉[(
Fj∗G

)
α(y)+

(
F∗Gj

)
α(y)

] (4.3)

for all y and w in K.

Formula 4.4. Taking the integral transform of the expressions in (3.11) with respect

to the first argument of the variation and then using (3.1) and (2.25) yields the formula

�α,β
(
δF(·|w)∗δG(·|w))α(y)=�α,βδF(·|w)

(
y√
2

)
�α,βδG(·|w)

(
y√
2

)

= 2
β2
δ�α,β/

√
2F(y|w)δ�α,β/

√
2G(y|w)

(4.4)

for all y and w in K.

Formula 4.5. Taking the integral transform of the expressions in (3.11) with respect

to the second argument of the variation yields the formula

∫
C0[0,T ]

(
δF
(·|βw+αx)∗δG(·|βw+αx))α(y)m(dx)

= β2(δF(·|w)∗δG(·|w))α(y)+α2
n∑
j=1

(
Fj∗Gj

)
α(y)

(4.5)

for all y and w in K.

Formula 4.6. Taking the integral transform of the expressions in (3.13) with respect

to the first argument of the variation yields the formula

∫
C0[0,T ]

(
δF
(
βy+αx|·)∗δG(βy+αx|·))α(w)m(dx)

= 1
2

n∑
j=1

n∑
l=1

〈
θj,w

〉〈
θl,w

〉
�α,β

(
FjGl

)
(y)− α

2

2

n∑
j=1

�α,β
(
FjGj

)
(y)

(4.6)

for all y and w in K.
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Formula 4.7. Taking the integral transform of the expressions in (3.13) with respect

to the second argument of the variation yields the formula

�α,β
(
δF(y|·)∗δG(y|·))α(w)= β2

2
δF(y |w)δG(y |w) (4.7)

for all y and w in K.

Formula 4.8. Taking the convolution product of the expressions in (3.4) with re-

spect to the first argument of the variation yields the formula

(
�α,βδF(·|w)∗�α,βδG(·|w)

)
α(y)=

1
β2

(
δ�α,βF(·|w)∗δ�α,βG(·|w)

)
α(y)

=
n∑
j=1

n∑
l=1

〈
θj,w

〉〈
θl,w

〉(
�α,βFj∗�α,βGl

)
α(y)

(4.8)

for all y and w in K.

Formula 4.9. Taking the convolution product of the expressions in (3.4) with re-

spect to the second argument of the variation, or replacing F with �α,βF and G with

�α,βG in (3.13) and using (2.26) yields the formula

(
δ�α,βF(y|·)∗δ�α,βG(y|·)

)
α(w)

= 1
2
δ�α,βF(y|w)δ�α,βG(y|w)− α

2

2

n∑
j=1

(
�α,βF

)
j(y)

(
�α,βG

)
j(y)

= 1
2
δ�α,βF(y|w)δ�α,βG(y|w)− α

2β2

2

n∑
j=1

�α,βFj(y)�α,βGj(y)

(4.9)

for all y and w in K.

Formula 4.10. Taking the convolution product of the expressions in formula

(3.7) with respect to the second argument of the variation yields the formula

(
�α,βδF(y|·)∗�α,βδG(y|·)

)
α(w)= β2(δF(y|·)∗δG(y|·))α(w)

= β
2

2


δF(y|w)δG(y|w)−α2

n∑
j=1

Fj(y)Gj(y)




(4.10)

for all y and w in K.

For completeness, note that taking the convolution product of the expressions in

(3.7) with respect to the first argument of the variation, does not yield a new formula;

we simply get formula (3.11) again.

Again it is interesting to note that the left-hand side of each of the formulas (4.1),

(4.2), (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), (4.9), and (4.10) involve all three of the opera-

tions of transform, convolution, and first variation, while each right-hand side involves

at most two. Also note that formulas (3.1), (3.13), (4.4), (4.7), (4.9), and (4.10) are useful
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because they permit one to calculate �α,β(F ∗G)α(y), (δF(y|·)∗δG(y|·))α(w), . . . ,
and (�α,βδF(y|·)∗�α,βδG(y|·))α(w) without actually having to calculate the con-

volution products on the left-hand sides of formulas (3.1), (3.13), . . . , and (4.10). It is

usually harder to calculate convolution products than transforms and first variations.

5. Further results. It is well known, see for example [5, 10], that for all F ∈ E0, all

y ∈K, and all a, b, and c in C,

∫
C0[0,T ]

(∫
C0[0,T ]

F(aw+bx+cy)m(dw)
)
m(dx)

=
∫
C0[0,T ]

F
(√
a2+b2z+cy

)
m(dz)

=
∫
C0[0,T ]

(∫
C0[0,T ]

F(aw+bx+cy)m(dx)
)
m(dw),

(5.1)

and that

�α,β
(
�α′,β′F

)
(y)= F(y)=�α′,β′

(
�α,βF

)
(y) (5.2)

provided ββ′ = 1 and α2+(βα′)2 = 0. In particular, for all y ∈K,

�α,β
(
�iα/β,1/βF

)
(y)= F(y)=�iα/β,1/β

(
�α,βF

)
(y) (5.3)

for all nonzero complex numbers α and β.

If in (1.3) we replace α with iα/β, then (5.3) enables us to express the convolution

product of the transforms of F and G as a transform of the product of F with G.

Theorem 5.1. Let α and β be nonzero complex numbers and let F and G be func-

tionals from E0 given by (1.7) and (1.12), respectively. Then for all y ∈K,

(
�α,βF∗�α,βG

)
iα/β(y)=�α,β

(
F
( ·√

2

)
G
( ·√

2

))
(y)

=�α,β/
√

2(FG)(y).
(5.4)

Proof. Let α′ = iα/β and β′ = 1/β. Using (3.1), it follows that the formula

�α′,β′
(
L1∗L2

)
α′(y)=�α′,β′L1

(
y√
2

)
�α′,β′L2

(
y√
2

)
(5.5)

holds for all L1 and L2 in E0 and all y ∈ K. Letting L1 = �α,βF and L2 = �α,βG in (5.5)

and then using (5.3) yields the formula

�α′,β′
(
�α,βF∗�α,βG

)
α′(y)=�α′,β′

(
�α,βF

)( y√
2

)
�α′,β′

(
�α,βG

)( y√
2

)

= F
(
y√
2

)
G
(
y√
2

) (5.6)

for all y ∈K. Next taking the integral transform �α,β of each side of (5.6) yields formula

(5.4) as desired.
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Theorem 5.2. Let α, β, F , and G be as in Theorem 5.1. Then for all y and w in K,

δ
(
�α,βF∗�α,βG

)
iα/β(y|w)=

β√
2

�α,β
(
δF(·|w)G(·)+F(·)δG(·|w))( y√

2

)
. (5.7)

Proof. Using (5.4) and (2.25), we see that for all y and w in K,

δ
(
�α,βF∗�α,βG

)
iα/β(y|w)= δ�α,β

(
F
( ·√

2

)
G
( ·√

2

))
(y|w)

= δ�α,β/
√

2

(
F(·)G(·))(y|w)

= β√
2

�α,β
(
δF(·|w)G(·)+F(·)δG(·|w))( y√

2

)
.

(5.8)

Next, using (5.4), we obtain the following analogue of Formula 4.8.

Theorem 5.3. Let F , G, α, and β be as in Theorem 5.1. Then for all y and w in K,

(
δ�α,βF(·|w)∗δ�α,βG(·|w)

)
iα/β(y)

= β2
n∑
l=1

n∑
j=1

〈
θj,w

〉〈
θl,w

〉
�α,β/

√
2

(
FjGl

)
(y).

(5.9)

Proof. Using (3.4), (5.4), Theorem 2.3, and (2.23), we obtain

(
δ�α,βF(·|w)∗δ�α,βG(·|w)

)
iα/β(y)

= β2(�α,βδF(·|w)∗�α,βδG(·|w)
)
iα/β(y)

= β2�α,β

(
δF
( ·√

2

∣∣∣∣w
)
δG

( ·√
2

∣∣∣∣w
))
(y)

= β2�α,β




 n∑
j=1

〈
θj,w

〉
Fj
( ·√

2

)

 n∑
l=1

〈
θl,w

〉
Gl
( ·√

2

)

(y)

= β2
n∑
l=1

n∑
j=1

〈
θj,w

〉〈
θl,w

〉
�α,β/

√
2

(
FjGl

)
(y)

(5.10)

for all y and w in K.

It is interesting to note that we can obtain analogues of Formulas 4.9 and 4.10 directly

by use of (3.13) and (3.7) rather than using Theorem 5.1 as we did in Theorem 5.3 to

obtain an analogue of Formula 4.8.

Theorem 5.4. Let F , G, α, and β be as in Theorem 5.1. Then for all y and w in K,

(
δ�α,βF(y|·)∗δ�α,βG(y|·)

)
iα/β(w)

= 1
2
δ�α,βF(y|w)δ�α,βG(y|w)+ α

2

2

n∑
j=1

�α,βFj(y)�α,βGj(y),

(
�α,βδF(y|·)∗�α,βδG(y|·)

)
iα/β(w)

= β
2

2
δF(y|w)δG(y|w)+ α

2

2

n∑
j=1

Fj(y)Gj(y).

(5.11)
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Example 5.5. Next, we briefly discuss the functionals F(x) =∑n
j=1〈θj , x〉, G(x) =

exp{F(x)}, H(x) = F(x)exp{F(x)}, M(x) = [F(x)]2 = [
∑n
j=1〈θj,x〉]2, and N(x) =∑n

j=1[〈θj,x〉]2, all of which are elements of E0. The following formulas follow quite

readily for all y and w in K:

�α,βF(y)= βF(y), (5.12)

δF(y|w)= F(w), (5.13)

δ�α,βF(y|w)= βF(w), (5.14)

�α,βG(y)= exp
{
nα2

2
+βF(y)

}
, (5.15)

δG(y|w)= F(w)exp
{
F(y)

}
, (5.16)

δ�α,βG(y|w)= βF(w)exp
{
nα2

2
+βF(y)

}
, (5.17)

�α,βH(y)=
[
nα2+βF(y)]exp

{
nα2

2
+βF(y)

}
, (5.18)

δH(y|w)= [1+F(y)]F(w)exp
{
F(y)

}
, (5.19)

δ�α,βH(y|w)= βF(w)
[
nα2+βF(y)+1

]
exp

{
nα2

2
+βF(y)

}
, (5.20)

�α,βM(y)=nα2+[βF(y)]2, (5.21)

δM(y|w)= 2F(w)F(y), (5.22)

δ�α,βM(y|w)= 2β2F(w)F(y), (5.23)

�α,βN(y)=nα2+β2N(y), (5.24)

δN(y|w)= 2
n∑
j=1

〈
θj,w

〉〈
θj,y

〉= n∑
j=1

Nj(y)Fj(w), (5.25)

δ�α,βN
(
y|w)= β2δN(y|w)= β2

n∑
j=1

Nj(y)Fj(w). (5.26)

Finally, note that by using the various formulas in Sections 3 and 4 together with the

formulas (5.12) through (5.26), we can immediately write down many additional formu-

las involving the specific functionals F , G, H, M , and N defined above in Example 5.5.

For example, using (3.1), (5.15), and (5.21), we observe that

�α,β(M∗G)α(y)=
[
nα2+ β

2

2
F2(y)

]
exp

{
nα2

2
+ β√

2
F(y)

}
, (5.27)

and hence using (5.13), (5.16), and (5.22),

δ�α,β(M∗G)α(y|w)=
[
nα2+ β

2

2
F2(y)

]
β√
2
F(w)exp

{
nα2

2
+ β√

2
F(y)

}

+β2F(y)F(w)exp
{
nα2

2
+ β√

2
F(y)

}
.

(5.28)

Remark 5.6. For σ ∈ [0,1), let Eσ be the space of all functionals F : K → C of the

form (1.7) for some positive integer n, where f(λ1, . . . ,λn) is an entire function of the
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n complex variables λ1, . . . ,λn such that

∣∣f (λ1, . . . ,λn
)∣∣≤AF exp


BF

n∑
j=1

∣∣λj∣∣1+σ

 (5.29)

for some positive constants AF and BF . Note that if σ = 0, then Eσ = E0 and for 0 <
σ1 <σ2 < 1, E0 � Eσ1 � Eσ2 � L2(C0[0,T ]).

A careful examination of the proofs of Theorems 2.1, 2.2, 2.3, and 2.4 shows that

the conclusions of all four of these theorems hold for all F and G in Eσ , 0≤ σ < 1. For

example, to show that the conclusions of Theorem 2.1 hold for Eσ , let F ∈ Eσ be given

by (1.7) with f satisfying (5.29). Then proceeding as in the proof of Theorem 2.1, we

obtain that �α,βF is given by (2.1) with h defined by (2.2) satisfying

∣∣h(λ1, . . . ,λn
)∣∣≤A�α,βF exp


B�α,βF

n∑
j=1

∣∣λj∣∣1+σ

 (5.30)

with

A�α,βF =AF
(

1√
2π

∫
R

exp
{
− u

2

2
+BF

(
2|αµ|)1+σ

}
du

)n
<∞, (5.31)

and with B�α,βF = BF(2|β|)1+σ . Hence �α,βF exists and belongs to Eσ .

Some possible extensions. It seems likely that using the functionals in E0 (or Eσ )

as building blocks, one could show that the results established in this paper hold for

larger classes of functionals.

For example, let {Fm}∞m=1 be a sequence from E0 such that limm→∞Fm(y) exists for

all y ∈K and let F(y)= limm→∞Fm(y). Now the condition

∣∣Fm(y)∣∣≤Aexp
{
B‖y‖∞

}
(5.32)

for all y ∈ K and all m= 1,2, . . . ensures the existence of the integral transform �α,βF
since by the dominated convergence theorem,

lim
m→∞�α,βFm(y)= lim

m→∞

∫
C0[0,T ]

Fm(αx+βy)m(dx)

=
∫
C0[0,T ]

F(αx+βy)m(dx)
=�α,βF(y)

(5.33)

for each y ∈K. Example 5.7 shows that F need not belong to Eσ for any σ ∈ [0,1).
It seems as though finding appropriate conditions to put on the sequences {Fm}∞m=1

and {Gm}∞m=1 from E0 to ensure the existence of (F ∗G)α should not be too difficult.

However to proceed further, a major key would be to find appropriate conditions to

put on the functionals {Fm}∞m=1 in order to ensure the existence of δF .
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Example 5.7. Let {θj}∞j=1 be a complete orthonormal sequence of functions in L2[0,
T ], each of bounded variation on [0,T ]. For m= 1,2, . . . and y ∈K, let

Fm(y)= exp




m∑
j=1

〈
θj,y

〉
2jCj


 (5.34)

with Cj given by (1.6). Clearly Fm ∈ E0 for each m= 1,2, . . . .
Also for each m= 1,2, . . . and each y ∈K,

∣∣Fm(y)∣∣≤ exp


‖y‖∞

m∑
j=1

1
2j


≤ exp

{‖y‖∞}. (5.35)

But limm→∞Fm(y)= exp{∑∞
j=1(〈θj,y〉/2jCj)} ≡ F(y) is not an element of E0 (or Eσ

for 0≤ σ < 1) because it depends upon 〈θm,y〉 for everym∈ {1,2, . . .} and so it cannot

be written in the form (1.7) for any positive integer n; recall that {θj}∞j=1 is a complete

orthonormal set of functions in L2[0,T ].
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