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Hydrodynamic equations for ideal incompressible fluid are written in terms of generalized
stream function. Two-dimensional version of these equations is transformed to the form
of one dynamic equation for the stream function. This equation contains arbitrary function
which is determined by inflow conditions given on the boundary. To determine unique so-
lution, velocity and vorticity (but not only velocity itself) must be given on the boundary.
This unexpected circumstance may be interpreted in the sense that the fluid has more de-
grees of freedom than it was believed. Besides, the vorticity is a less observable quantity as
compared with the velocity. It is shown that the Clebsch potentials are used essentially at
the description of vortical flow.
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1. Introduction. In this paper, we write hydrodynamic equations for the ideal fluid

in terms of Clebsch potentials [4, 5]. This representation admits one to integrate hy-

drodynamic equations and to obtain effective description of rotational stream flow. We

have discovered an unexpected fact that the effective description of the rotational flow

cannot be carried out without introduction of the Clebsch potentials. In general, the

problem of irrotational stream flow and that of rotational stream flow are stated differ-

ently. We show this in an example of stationary two-dimensional flow of incompressible

fluid. In this case, one of Clebsch potentials may coincide with the stream function ψ.

The irrotational flow is described by the equation for stream function ψ:

ψxx+ψyy = 0, (1.1)

where indices mean corresponding partial derivatives. For the rotational stationary two-

dimensional flow, (1.1) transforms to the form

ψxx+ψyy =Ω(ψ), (1.2)

where Ω(ψ) is some function of argument ψ describing the character and intensity of

vorticity. The obtained equation is distinguished from (1.1) in an additional term. Both

(1.1) and (1.2) are the elliptic type equations. To obtain a unique solution of (1.1), it

is sufficient to give value of the stream function ψ on the boundary Σ of the volume

V , where the flow is considered. The same is valid for (1.2), provided that the form of

the function Ω(ψ) is known. But the value of ψ on Σ does not admit one to determine

the form of the function Ω(ψ). For determination of Ω(ψ), one needs some additional

information given on the boundary Σ.
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To state the problem of the rotational stream flow, it is necessary to determine what

kind of information on the boundary is sufficient for the derivation of the unique solu-

tion of (1.2). Theory of rotational flows cannot exist without statement of this problem.

Unfortunately, we have not seen in literature a statement of the problem of the rota-

tional stream flow; we know only single exact solutions [14]. It means that the theory

of rotational flows does not exist.

Equation (1.1) is a special case of (1.2) when Ω(ψ) = 0. Equation (1.2) is obtained

from the conventional hydrodynamic equations for two-dimensional stationary flow of

incompressible fluid, which have the form

ux+vy = 0, ∂y
(
uux+vuy

)= ∂x(uvx+vvy), (1.3)

where u and v are velocity components along x-axis and y-axis, respectively. Intro-

ducing the stream function ψ,

u=−ψy, v =ψx, (1.4)

we satisfy the first equation in (1.3) identically. The second equation in (1.3) takes the

form

∂(ω,ψ)
∂(x,y)

= 0, ω≡ψxx+ψyy. (1.5)

Relation (1.2) is the general solutionω=Ω(ψ) of (1.5), whereΩ is an arbitrary function

of ψ.

The goal of the present paper is the statement of the problem of the rotational stream

flow. The problem is solved effectively in terms of the generalized stream function (GSF)

which has several components. GSF is a generalization of the usual stream function ψ
for two-dimensional flow onto a more complicated n-dimensional case. Unfortunately,

in other more complicated cases, the statement of the problem of the rotational flow

needs a special well-developed technique.

This technique is based on application of Jacobian technique to the descriptions of

hydrodynamic equations written in terms of Clebsch potentials. We will refer to this

technique as the GSF technique. Use of Jacobian technique in application to Clebsch

potentials goes back to papers by Clebsch [4, 5], who obtained his potentials dealing

with Jacobians. In contemporary hydrodynamics, the Clebsch potentials are considered

formally without connection with the Jacobian technique [12]. Clebsch potentials have

also other names (Lagrangian coordinates, Lagrangian variables [20], and labels of fluid

particles). There are several versions of representation of Clebsch potentials. Elements

of Jacobian technique were used by many authors (see [1, 8, 11, 18, 20] and many

others). But in solution of the problem of streamline flow, the Jacobian technique is not

used practically, and so are Clebsch potentials. We are interested only in that version,

which is connected with a use of Jacobian technique (GSF technique). We use space-

time symmetric version of the Jacobian technique which appears to be simple and

effective. It seems that the progress in the investigation of vortical flows is connected

mainly with the developed Jacobian technique used together with Clebsch potentials
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(GSF technique). Presentation of the GSF technique can be found in [15], as well as in

[16], where it is used for description of the fluid flow in terms of the wave functions.

Why are Clebsch potentials important in the statement of the problem on vortical

stream flow? The termΩ(ψ) in the right-hand side of (1.2) describes vorticity. According

to Kelvin’s theorem on circulation, the vorticity is “frozen in the fluid,” and vorticity

travels together with the fluid. Clebsch potentials (labels of the fluid particles), as well as

the GSF are also frozen in the fluid. They also travel together with the fluid and vorticity.

As a result, the Clebsch potentials (labels) and the GSF appear to be an effective tool in

the vorticity description.

A rotational fluid flow has some properties which are absent in irrotational flows.

(1) Consideration of the fluid displacement and a use of Clebsch potentials describing

this displacement is essential in rotational flows because this displacement transfers

vorticity, which influences the velocity field, whereas such a transport is of no impor-

tance in irrotational flows, where the vorticity vanishes.

(2) The boundary conditions for a rotational flow contain more information than the

boundary conditions for irrotational flow. This additional information is information

on vorticity, which conserves in any ideal fluid. Although the field of vorticity

ω=∇×v (1.6)

is determined by the velocity field v, it is valid only inside some 3-volume V , where

vorticity can be determined as a result of differentiation of the velocity field. On the

boundary Σ of 3-volume V , one can calculate only the component ofω along the normal

to Σ. Components of vorticity ω tangent to Σ must be given additionally. It means that

additional (as compared with the irrotational flow) degrees of freedom appear in the

rotational flow, and additional information in boundary conditions is necessary for

their description.

The first property is analyzed in [15]. We present it here also. It is a common practice

to think that the problem of streamline flow can be solved by consideration of only

Euler system of equations

∂ρ
∂t
+∇(ρv)= 0, (1.7)

∂v
∂t
+(v∇)v=− 1

ρ
∇p, p = ρ2 ∂E

∂ρ
, (1.8)

∂S
∂t
+(v∇)S = 0, (1.9)

where p is the pressure and E = E(ρ,S) is the internal energy of a unit mass considered

to be a function of the mass density ρ and the entropy S. The internal energy E = E(ρ,S)
is a unique characteristic of the ideal fluid. Displacement of the fluid particles (i.e., their

trajectories and the law of motion along them) in the given velocity field v is described

by the equations

dx

dt
= v(t,x), x= x(t,ξ), (1.10)
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where v(t,x) is a solution of the system (1.7), (1.8), and (1.9). Equations (1.7), (1.8), (1.9),

and (1.10) form the complete system of hydrodynamic equations, but the form of this

system is not quite consistent because dynamic variables ρ, v, and S in (1.7), (1.8), and

(1.9) are functions of t, x, whereas x in (1.10) is a function of t and of the label ξ of the

fluid particle.

Let ξ= ξ(t,x)= {ξα(t,x)},α= 1,2,3, be three independent integrals of (1.10). Values

ξ of three integrals can label fluid particles (Lagrangian coordinates). Then labels ξ
satisfy three equations

∂ξ
∂t
+(v∇)ξ= 0, (1.11)

which are equivalent to three equations (1.10). The system of equations (1.7), (1.8), (1.9),

and (1.10) is hardly perceived as a whole dynamic system because the system (1.7), (1.8),

and (1.9) is closed and its dynamic variables ρ, v, and S are functions of t, x, whereas the

dynamic variables of (1.10) are functions of variables t, ξ. But equivalent system (1.7),

(1.8), (1.9), and (1.11) of equations for variables ρ, v, S, and ξ, which depend on t, x, is

the whole system of dynamic equations. This system is obtained from the variational

principle, whereas the Euler system (1.7), (1.8), and (1.9) of hydrodynamic equations

can be obtained from the variational principle only for the case of irrotational flow.

The system (1.7), (1.8), and (1.9) is a closed subsystem of the whole system of dynamic

equations (1.7), (1.8), (1.9), and (1.11). On the foundation of closure, the Euler system

(1.7), (1.8), and (1.9) is considered conventionally as the complete (full) system of hy-

drodynamic equations, whereas in reality, the Euler system (1.7), (1.8), and (1.9) is only

a curtailed system, that is, only a part of the complete (full) system of hydrodynamic

equations formed by (1.7), (1.8), (1.9), and (1.11). If we work with the Euler system only,

we cannot integrate it, in general. If, nevertheless, we integrate it in some special cases,

the arbitrary functions of Clebsch potentials ξ appear in integrated dynamic equations.

If we use the complete system (1.7), (1.8), (1.9), and (1.11), we can always integrate it and

reduce the number of dynamic equations. This integration is accompanied by appear-

ance of three arbitrary functions g(ξ)= {gα(ξ)}, α= 1,2,3, of Clebsch potentials ξ in

dynamic equations. These functions contain full information on initial and boundary

conditions for the fluid flow.

The integrated dynamic equations have different form for the irrotational and ro-

tational flows. In particular, if ∇× g = 0, what corresponds to irrotational flow of

barotropic fluid (1.11), known as Lin constraints [13], are not dynamic equations in

the integrated system of dynamic equations, and the variables ξ have no relation to

the calculation of the fluid flow. In the general case of rotational flow, when ∇×g ≠ 0

identically, equations (1.11) are dynamic equations for the fluid. We show this as soon

as the corresponding mathematical technique is developed.

In Section 2, Jacobian technique is considered. Section 3 is devoted to derivation of

hydrodynamic equations of the ideal fluid from the variational principle. The varia-

tional principle for incompressible fluid is considered in Section 4. In Section 5, two-

dimensional flow of incompressible fluid is described in terms of GSF. In Section 6, the

inflow conditions for the stationary two-dimensional flow of incompressible fluid are
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introduced. Section 7 is devoted to stationary flow around an obstacle. Some examples

of two-dimensional stationary flow of incompressible fluid are considered in Section 8.

2. Jacobian technique. We consider such a space-time symmetric mathematical ob-

ject as the Jacobian:

J ≡ ∂
(
ξ0,ξ1,ξ2,ξ3

)
∂
(
x0,x1,x2,x3

) ≡ det
∥∥ξi,k∥∥, ξi,k ≡ ∂kξi ≡ ∂ξi

∂xk
, i,k= 0,1,2,3. (2.1)

Here ξ = {ξ0,ξ} = {ξ0,ξ1,ξ2,ξ3} are four scalar considered to be functions of x =
{x0,x}, ξ = ξ(x). The functions {ξ0,ξ1,ξ2,ξ3} are supposed to be independent in the

sense that J ≠ 0. It is useful to consider the Jacobian J as 4-linear function of variables

ξi,k ≡ ∂kξi, i,k = 0,1,2,3. Then one can introduce derivatives of J with respect to ξi,k.
The derivative ∂J/∂ξi,k appears as a result of a replacement of ξi by xk in the relation

(2.1):

∂J
∂ξi,k

≡ ∂
(
ξ0, . . . ,ξi−1,xk,ξi+1, . . . ,ξ3

)
∂
(
x0,x1,x2,x3

) , i,k= 0,1,2,3. (2.2)

For instance,

∂J
∂ξ0,i

≡ ∂
(
xi,ξ1,ξ2,ξ3

)
∂
(
x0,x1,x2,x3

) , i= 0,1,2,3. (2.3)

This rule is valid for higher derivatives of J also:

∂2J
∂ξi,k∂ξs,l

≡ ∂
(
ξ0, . . . ,ξi−1,xk,ξi+1, . . . ,ξs−1,xl,ξs+1, . . . ,ξ3

)
∂
(
x0,x1,x2,x3

)
≡ ∂

(
xk,xl

)
∂
(
ξi,ξs

) ∂
(
ξ0,ξ1,ξ2,ξ3

)
∂
(
x0,x1,x2,x3

) ≡ J
(
∂xk

∂ξi
∂xl

∂ξs
− ∂x

k

∂ξs
∂xl

∂ξi

)
, i,k,l,s = 0,1,2,3.

(2.4)

It follows from (2.1) and (2.2) that

∂xk

∂ξi
≡ ∂

(
ξ0, . . . ,ξi−1,xk,ξi+1, . . . ,ξ3

)
∂
(
ξ0,ξ1,ξ2,ξ3

)
≡ ∂

(
ξ0, . . . ,ξi−1,xk,ξi+1, . . . ,ξ3

)
∂
(
x0,x1,x2,x3

) ∂
(
x0,x1,x2,x3

)
∂
(
ξ0,ξ1,ξ2,ξ3

)
≡ 1
J
∂J
∂ξi,k

, i,k= 0,1,2,3,

(2.5)

and (2.4) may be written in the form

∂2J
∂ξi,k∂ξs,l

≡ 1
J

(
∂J
∂ξi,k

∂J
∂ξs,l

− ∂J
∂ξi,l

∂J
∂ξs,k

)
, i,k,l,s = 0,1,2,3. (2.6)
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The derivative ∂J/∂ξi,k is a cofactor to the element ξi,k of the determinant (2.1). Then

one has the following identities:

ξl,k
∂J
∂ξs,k

≡ δsl J, ξk,l
∂J
∂ξk,s

≡ δsl J, l,s = 0,1,2,3, (2.7)

∂k
∂J
∂ξi,k

≡ ∂2J
∂ξi,k∂ξs,l

∂k∂lξs ≡ 0, i= 0,1,2,3. (2.8)

Here and in what follows, a summation over two repeated indices is produced (0−3)

for Latin indices. The identity (2.8) can be considered as a corollary of the identity (2.6)

and a symmetry of ∂k∂lξs with respect to permutation of indices k, l. Convolution of

(2.6) with ∂k or ∂l vanishes also:

∂k
∂2J

∂ξi,k∂ξs,l
≡ ∂3J
∂ξi,k∂ξs,l∂ξm,n

∂k∂nξm ≡ 0, i, l,s = 0,1,2,3. (2.9)

Relations (2.1), (2.2), (2.3), (2.4), (2.5), and (2.6) are written for four independent vari-

ables x, but they are valid in an evident way for arbitrary number of n+1 variables

x = {x0,x1, . . . ,xn} and ξ = {ξ0,ξ}, ξ= {ξ1,ξ2, . . . ,ξn}.
Application of the Jacobian J to hydrodynamics is founded on the property, which

can be formulated as the property of the GSFξ={ξ1,ξ2, . . . ,ξn} in the (n+1)-dimensional

space of coordinates x = {x0,x1, . . . ,xn}.
On the basis of the GSF ξ, one can construct n-vector ji:

ji =m ∂J
∂ξ0,i

, ji = {ρ,ρv}, m= const (2.10)

in such a way that ji satisfies the continuity equation

∂iji = 0 (2.11)

identically for any choice of variables ξ. Besides, the variables ξ are constant along any

line � tangent to n-vector ji, and can label this line because the set of quantities ξ is

different for different lines �.

In the case of dynamical system (1.7), (1.8), (1.9), and (1.11), we have ji = {ρ,ρv}.
It means that (1.7), (1.11) are satisfied at any choice of the GSF (Clebsch potentials) ξ.

Substituting the flux vector ji = {ρ,ρv}, expressed via ξ, in the remaining hydrody-

namic equations, we obtain dynamic equations for determination of the GSF ξ. This

procedure is insignificant in the case of irrotational flow, when Lin constraints (1.11)

are of no importance. But it is a very effective procedure in the case of rotational flow

because it reduces the number of dynamic equations to be solved.

The continuity equation (2.11) is used without approximation in all hydrodynamic

models, and the change of variables {ρ,ρv} ↔ ξ described by (2.10) appears sometimes

to be useful. In particular, in the case of two-dimensional established flow of incom-

pressible fluid, the GSF ξ reduces to one variable ξ2 =ψ, known as the stream function.

In this case, there are only two essential independent variables x0 = x and x1 =y , and
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the relations (2.10) and (2.11) reduce to relations

ρ−1jx =u=−∂ψ∂y , ρ−1jy = v = ∂ψ∂x ,
∂u
∂x

+ ∂v
∂y

= 0. (2.12)

Defining the stream line as a line tangent to the flux j:

dx
jx

= dy
jy
, (2.13)

we deduce that the stream function is constant along the stream line because according

to two first equations of (2.12), ψ=ψ(x,y) is an integral of (2.13).

In the general case, when the space dimension is n, x = {x0,x1, . . . ,xn}, and ξ =
{ξ0,ξ}, ξ = {ξ1,ξ2, . . . ,ξn}, the quantities ξ = {ξα}, α = 1,2, . . . ,n, are constant along

the line � : x = x(τ) tangent to the flux vector j = {ji}, i= 0,1, . . . ,n:

� :
dxi

dτ
= ji(x), i= 0,1, . . . ,n, (2.14)

where τ is a parameter along the line �. This statement is formulated mathematically

in the form

dξα
dτ

= ji∂iξα =m ∂J
∂ξ0,i

∂iξα = 0, α= 1,2, . . . ,n. (2.15)

The last equality follows from the first identity (2.7) taken for s = 0, and l= 1,2, . . . ,n.

Interpretation of the line (2.14) tangent to the flux is different for different cases.

If x = {x0,x1, . . . ,xn} contains only spatial coordinates, the line (2.14) is a line in the

usual space. It is regarded as a stream line, and ξ can be interpreted as quantities

which are constant along the stream line (i.e., as a GSF). If x0 is the time coordinate,

(2.14) describes a line in the space-time. This line (known as a world line of a fluid

particle) determines a motion of the fluid particle. Variables ξ= {ξ1,ξ2, . . . ,ξn}which are

constant along the world line are different, generally, for different particles. If ξα, α=
1,2, . . . ,n, are independent, they may be used for the fluid particle labeling. When one

of coordinates x is time-like, the set of variables ξ is not perceived as a generalization

of the stream function ψ. Nevertheless, we will use the term GSF in all cases because

from mathematical viewpoint, it is of no importance whether coordinate x0 is time-like

or space-like.

Thus, although interpretation of the relation (2.10) considered as a change of depen-

dent variables j by ξ may be different, from the mathematical viewpoint, this transfor-

mation means a replacement of the continuity equation by some equations for the GSF

ξ. Difference of the interpretation is of no importance in this context.

Note that the expressions

ji =mρ0(ξ)
∂J
∂ξ0,i

≡mρ0(ξ)
∂
(
xi,ξ1,ξ2,ξ3

)
∂
(
x0,x1,x2,x3

) , i= 0,1,2,3, (2.16)
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can be also considered as four-flux satisfying the continuity equation (2.11). Herem is

a constant and ρ0(ξ) is an arbitrary function of ξ. It follows from the identity

mρ0(ξ)
∂
(
xi,ξ1,ξ2,ξ3

)
∂
(
x0,x1,x2,x3

) ≡m ∂
(
xi, ξ̃1,ξ2,ξ3

)
∂
(
x0,x1,x2,x3

) , ξ̃1 =
∫ ξ1

0
ρ0(ξ′1,ξ2,ξ3)dξ′1. (2.17)

The Jacobian technique is very useful for manipulation with hydrodynamic equations

(1.7), (1.8), (1.9), and (1.11). For instance, one can integrate the complete system of 5+3

dynamic equations (1.7), (1.8), (1.9), and (1.11), reducing it to the system of five dynamic

equations written in the form [15]

S(t,x)= S0(ξ), (2.18)

ρ(t,x)= ρ0(ξ)
∂
(
ξ1,ξ2,ξ3

)
∂
(
x1,x2,x3

) ≡ ρ0(ξ)
∂(ξ)
∂(x)

, (2.19)

v(t,x)= u(ϕ,ξ,η,S)≡∇ϕ+gα(ξ)∇ξα−η∇S, (2.20)

where S0(ξ), ρ0(ξ), and g(ξ)= {gα(ξ)}, α= 1,2,3, are arbitrary integration functions

of argument ξ. The quantities ϕ, η are new dependent variables satisfying dynamic

equations

∂ϕ
∂t
+u(ϕ,ξ,η,S)∇ϕ− 1

2

[
u(ϕ,ξ,η,S)

]2+ ∂(ρE)
∂ρ

= 0, (2.21)

∂η
∂t
+u(ϕ,ξ,η,S)∇η=−∂E

∂S
. (2.22)

If five dependent variables ϕ, ξ, and η satisfy the system of equations (1.11), (2.21),

and (2.22), five dynamic variables S, ρ, v in (2.18), (2.19), and (2.20) satisfy dynamic

equations (1.7), (1.8), and (1.9). Indefinite functions S0(ξ), ρ0(ξ), and gα(ξ) can be

determined from initial and boundary conditions in a way such that the initial and

boundary conditions for variables ϕ, ξ, and η were universal in the sense that they do

not depend on the fluid flow [15]. Further dynamic equations (1.11), (2.21), and (2.22)

will be derived directly from the variational principle.

3. Variational principle. The ideal (nondissipative) fluid is a continuous dynamical

system whose dynamic equations can be derived from the variational principle with the

action functional

�L[x]=
∫ {
m
2

(
dx

dt

)2

−V
}
ρ0(ξ)dtdξ, (3.1)

where the fluid particle coordinates x = {xα(t,ξ)}, α = 1,2,3, are dependent vari-

ables considered to be functions of time t and of labels (Lagrangian coordinates) ξ =
{ξ1,ξ2,ξ3}, dx/dt is a derivative of x with respect to t taken at fixed ξ:

dxα

dt
≡ ∂

(
xα,ξ1,ξ2,ξ3

)
∂
(
t,ξ1,ξ2,ξ3

) ≡ ∂
(
xα,ξ

)
∂(t,ξ)

, α= 1,2,3, (3.2)
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ρ0(ξ) is some nonnegative weight function, and V is a potential of a self-consistent

force field which depends on ξ, x, and derivatives of x with respect to ξ. A mass of

the fluid particle m = const. The value of mass is unessential, and without loss of

generality, one may set m= 1. For the ideal fluid, the potential V is such a function of

ξ and ∂x/∂ξ which can be represented in the form

V
(
ξ,
∂x
∂ξ

)
=mE(ρ,S), ρ = ρ0(ξ)

(
∂
(
x1,x2,x3

)
∂
(
ξ1,ξ2,ξ3

)
)−1

, S = S0(ξ), (3.3)

where the entropy per unit mass S = S0(ξ) is a given function of ξ determined by the

initial conditions, ρ is the fluid density, and E(ρ,S) is the internal energy of the fluid

per unit mass of the fluid. The quantity E(ρ,S) is considered to be a given function of

its arguments.

The variational principle (3.1) generates the sixth-order system of dynamic equations

for six dependent variables x, dx/dt, considered to be functions of independent vari-

ables t, ξ. Such a way of description is known as the Lagrangian description of the

fluid. If the variables t, x are considered to be independent variables, and six variables

ξ, ∂ξ/∂t, are considered to be dependent variables, the sixth-order system of dynamic

equations for ξ, ∂ξ/∂t, arises. It is known as the Eulerian description of the fluid.

The partial choice of labeling the fluid particles by variables ξ is unessential from a

physical point of view. This circumstance is displayed in an existence of the relabeling

group

ξα �→ ξ̃α = ξ̃α(ξ), D ≡ det
∥∥∥∥∂ξ̃α∂ξβ

∥∥∥∥≠ 0, α,β= 1,2,3. (3.4)

The action (3.1) appears to be invariant with respect to the relabeling group, provided

that V has the form (3.3), where S is a scalar and ρ(ξ) is a scalar density, that is, under

the transformations (3.4), ρ0(ξ) transforms as follows:

ρ0(ξ) �→ ρ̃0
(
ξ̃
)
, ρ(ξ) �→ ρ̃(ξ̃)= ρ(ξ)D. (3.5)

The relabeling group is used in hydrodynamics comparatively recently [2, 3, 7, 8, 10,

17, 20].

The relabeling group is a symmetry group of the dynamical system. It may be used

to simplify a description of the fluid. There are at least two different ways of usage of

the relabeling group. The first (conventional) way of such a simplification is a use of

five relabeling-invariant variables v = dx/dt, ρ, and S, considered to be functions of

independent variables t, x. This way of description will be referred to as the relabeling

invariant description (RID). The variables ξ, describing labeling, are eliminated. At this

elimination of ξ, the dynamic equation (1.11) is eliminated also on the foundation that

the remaining Eulerian system of dynamic equations (1.7), (1.8), and (1.9) for five depen-

dent dynamic variables v, ρ, and S is closed. Conventionally, most researchers use RID,
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and hence the Eulerian system of dynamic equations. Another way of simplification is a

use of the relabeling group for integration of the complete system of dynamic equations

(1.7), (1.8), (1.9), and (1.11) and application of the system (1.11), (2.21), and (2.22).

In general, equivalency of the system (1.11), (2.21), and (2.22) and the system (1.7),

(1.8), (1.9), and (1.11) can be verified by a direct substitution of variables ρ, S, and v,

defined by the relations (2.18), (2.19), and (2.20), into equations (1.7), (1.8), and (1.9).

Using (1.11), (2.21), and (2.22), one obtains identities after subsequent calculations.

But such computations do not display a connection between the integration and the

invariance with respect to the relabeling group (3.4). Besides, a meaning of new variables

ϕ, η is not clear.

We will use for our investigations the variational principle (3.1). Note that for a long

time, a derivation of a variational principle for hydrodynamic equations (1.7), (1.8), and

(1.9) existed as an independent problem [2, 6, 8, 11, 13, 18, 19]. Existence of this problem

was connected with a lack of understanding that the system of hydrodynamic equations

(1.7), (1.8), and (1.9) is a curtailed system, and the full system of dynamic equations (1.7),

(1.8), (1.9), and (1.11) includes (1.11) that describes a motion of the fluid particles in the

given velocity field. The variational principle can generate only the complete system of

dynamic variables (but not its closed subsystem). Without understanding, this one tried

to form the Lagrangian for the system (1.7), (1.8), and (1.9) as a sum of some quantities

taken with Lagrange multipliers. The left-hand side of dynamic equations (1.7), (1.8),

and (1.9) and some other constraints were taken as such quantities.

Now this problem has been solved (see review by Salmon [18]) on the basis of the

Eulerian version of the variational principle (3.1), where (1.11) appear automatically

and cannot be ignored. In our version of the variational principle, we follow Salmon

[18] with some modifications which underline a curtailed character of hydrodynamic

equations (1.7), (1.8), and (1.9) because the understanding of the curtailed character of

the system (1.7), (1.8), and (1.9) removes the problem of derivation of the variational

principle for the hydrodynamic equations (1.7), (1.8), and (1.9).

The starting point is the action (3.1). We prefer to work with Eulerian description

when Lagrangian coordinates (particle labeling) ξ = {ξ0,ξ}, ξ = {ξ1,ξ2,ξ3}, are con-

sidered to be dependent variables and Eulerian coordinates x = {x0,x} = {t,x}, x =
{x1,x2,x3}, are considered to be independent variables. Here ξ0 is a temporal La-

grangian coordinate which evolves along the particle trajectory in an arbitrary way.

Now ξ0 is a fictitious variable, but after integration of equations, the variable ξ0 ceases

to be fictitious and turns into the variable ϕ appearing in the integrated system (1.11),

(2.21), and (2.22).

Further, mainly space-time symmetric designations will be used that simplifies con-

siderably all computations. In the Eulerian description, the action functional (3.1) is to

be represented as an integral over independent variables x = {x0,x} = {t,x}. We use

the Jacobian technique for such a transformation of the action (3.1).

We note that according to (2.5), the derivative (3.2) can be written in the form

vα = dx
α

dt
≡ ∂J
∂ξ0,α

(
∂J
∂ξ0,0

)−1

, α= 1,2,3. (3.6)
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Then components of the four-flux j = {j0, j} ≡ {ρ,ρv} can be written in the form (2.16),

provided that the designation (2.19):

j0 = ρ =mρ0(ξ)
∂J
∂ξ0,0

≡mρ0(ξ)
∂
(
x0,ξ1,ξ2,ξ3

)
∂
(
x0,x1,x2,x3

) (3.7)

is used.

At such a form of the mass density ρ, the four-flux j = {ji}, i = 0,1,2,3, satisfies

identically the continuity equation (2.11) which takes place in virtue of identities (2.7),

(2.8). Besides, in virtue of identities (2.7), (2.8), the Lin constraints (1.11) are fulfilled

identically:

ji∂iξα =mρ0(ξ)
∂J
∂ξ0,i

∂iξα ≡ 0, α= 1,2,3. (3.8)

Components ji are invariant with respect to the relabeling group (3.4), provided that

the function ρ0(ξ) transforms according to (3.5).

One has

ρ0(ξ)dtdξ= ρ0(ξ)
∂J
∂ξ0,0

dtdx= ρ
m
dtdx,

m
2

(
dxα

dt

)2

= m
2

(
∂J
∂ξ0,α

)2(
∂J
∂ξ0,0

)−2

,
(3.9)

and the variational problem with the action functional (3.1) is written as a variational

problem with the action functional

�E[ξ]=
∫ {

1
2

(
∂J
∂ξ0,α

)2(
∂J
∂ξ0,0

)−2

−E
}
ρdtdx, (3.10)

where ρ is a fixed function of ξ = {ξ0,ξ} and of ξα,i ≡ ∂iξα, α = 1,2,3, i = 0,1,2,3,

defined by (3.7), and E is the internal energy of the fluid which is supposed to be a fixed

function of ρ and S0(ξ):

E = E(ρ,S0(ξ)
)
, (3.11)

where ρ is defined by (3.7) and S0(ξ) is some fixed function of ξ, describing initial

distribution of the entropy over the fluid.

The action (3.10) is invariant with respect to subgroup �S0 of the relabeling group

(3.4). The subgroup �S0 is determined in such a way that any surface S0(ξ) = const

is invariant with respect to �S0 . In general, the subgroup �S0 is determined by two

arbitrary functions of ξ.

The action (3.10) generates the sixth-order system of dynamic equations, consist-

ing of three second-order equations for three dependent variables ξ. Invariance of the

action (3.10) with respect to the subgroup �S0 allows one to integrate the system of

dynamic equations. The order of the system becomes reduced, and two arbitrary in-

tegration functions appear. The order of the system reduces to five (but not to four)
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because the fictitious dependent variable ξ0 ceases to be fictitious as a result of the

integration.

Unfortunately, the subgroup �S0 depends on the form of the function S0(ξ) and

cannot be obtained in a general form. In the special case when S0(ξ) does not depend

on ξ, the subgroup �S0 coincides with the whole relabeling group �, and the order of

the integrated system reduces to four.

In the general case, it is convenient to introduce a new dependent variable

S = S0(ξ). (3.12)

Addition of the new variable increases the number of dynamic variables, but at the

same time, this addition makes the action to be invariant with respect to the whole

relabeling group �. It allows one to integrate the dynamic system and to reduce the

number of dynamic variables. According to (3.8), the variable S satisfies the dynamic

equation (1.9):

ji∂iS = 0. (3.13)

In virtue of designations (2.16) and identities (2.7), (2.8), equations (3.8) and (3.13) are

fulfilled identically. Hence, they can be added to the action functional (3.10) as side

constraints without a change of the variational problem. Adding (3.13) to the Lagrangian

of the action (3.10) by means of a Lagrange multiplier η, one obtains

�E[ξ,η,S]=
∫ {
ρ
2

(
∂J
∂ξ0,α

)2( ∂J
∂ξ0,0

)−1

−ρE+η ∂J
∂ξ0,k

∂kS
}
dtdx, (3.14)

where E = E(ρ,S). The action (3.14) is invariant with respect to the relabeling group �

which is determined by three arbitrary functions of ξ.

To obtain the dynamic equations, it is convenient to introduce new dependent vari-

ables ji, defined by (2.16). We introduce the new variables ji by means of designations

(2.16) taken with the Lagrange multipliers pi, i = 0,1,2,3. Consideration of (2.16) as

side constraints does not change the variational problem because conditions (2.16) are

always compatible with dynamic equations generated by the action (3.14). Then the

action (3.14) takes the form

�E[ρ, j,ξ,p,η,S]=
∫ {

j2

2ρ
−ρE−pk

(
jk−mρ0(ξ)

∂J
∂ξ0,k

)
+ηjk∂kS

}
dtdx. (3.15)

For obtaining dynamic equations, the variables ρ, j, ξ, p, η, and S are to be varied.

We eliminate the variables pi from the action (3.15). Dynamic equations arising as a

result of a variation with respect to ξα have the form

δ�E

δξα
≡ �̂αp =−m∂k

(
ρ0(ξ)

∂2J
∂ξ0,i∂ξα,k

pi
)
+m∂ρ0(ξ)

∂ξα
∂J
∂ξ0,k

pk = 0, α= 1,2,3,

(3.16)
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where �̂α are linear operators acting on variables p = {pi}, i= 0,1,2,3. These equations

can be integrated in the form

pi = g0(ξ0
)
∂iξ0+gα(ξ)∂iξα, i= 0,1,2,3, (3.17)

where ξ0 is some new variable (temporal Lagrangian coordinate), gα(ξ), α = 1,2,3,

are arbitrary functions of the label ξ, and g0(ξ0) is an arbitrary function of ξ0. The

relations (3.17) satisfy (3.16) identically. Indeed, substituting (3.17) into (3.16) and using

identities (2.6) and (2.7), we obtain

−m∂k
{
ρ0(ξ)

[
∂J
∂ξα,k

g0(ξ0
)− ∂J
∂ξ0,k

gα(ξ)
]}
+m∂ρ0(ξ)

∂ξα
Jg0(ξ0

)= 0, α= 1,2,3.

(3.18)

Differentiating braces and using identities (2.7), (2.8), one concludes that (3.18) is an

identity.

Setting for simplicity

∂kϕ = g0(ξ0
)
∂kξ0, k= 0,1,2,3, (3.19)

we obtain

pk = ∂kϕ+gα(ξ)∂kξα, k= 0,1,2,3. (3.20)

Note that integration of (3.16) by means of the Jacobian technique and appearance

of arbitrary functions gα(ξ) is a result of invariance of the action with respect to the

relabeling group (3.4).

Substituting (3.20) in (3.15), one can eliminate variables pi, i = 0,1,2,3, from the

functional (3.15). The term gα(ξ)∂kξα∂J/∂ξ0,k vanishes, the term ∂kϕ∂J/∂ξ0,k makes

no contribution to the dynamic equations. The action functional takes the form

�g[ρ, j,ξ,η,S]=
∫ {

j2

2ρ
−ρE−jk(∂kϕ+gα(ξ)∂kξα−η∂kS)

}
dtdx, (3.21)

where gα(ξ) are considered to be fixed functions of ξwhich are determined from initial

conditions. Varying the action (3.21) with respect to ϕ, ξ, η, S, j, and ρ, we obtain

dynamic equations

δϕ : ∂kjk = 0, (3.22)

δξα :Ωαβjk∂kξβ = 0, α= 1,2,3, (3.23)
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where Ωαβ is defined by the relations

Ωαβ = ∂g
α(ξ)
∂ξβ

− ∂g
β(ξ)
∂ξα

, α,β= 1,2,3, (3.24)

δη : jk∂kS = 0, (3.25)

δS : jk∂kη=−ρ ∂E∂S , (3.26)

δj : v≡ j

ρ
=∇ϕ+gα(ξ)∇ξα−η∇S, (3.27)

δρ :− j2

2ρ2
− ∂(ρE)

∂ρ
−∂0ϕ−gα(ξ)∂0ξα+η∂0S = 0. (3.28)

Deriving relations (3.23) and (3.26), the continuity equation (3.22) is used. It is easy to

see that (3.32) is equivalent to the Lin constraints (1.11), provided that

det
∥∥Ωαβ∥∥≠ 0. (3.29)

If condition (3.29) is obtained and (1.11) are satisfied, (3.22) and (3.25) can be in-

tegrated in the form of (2.18) and (2.19), respectively. Equations (3.26) and (3.27) are

equivalent to (2.20) and (2.22). Finally, eliminating ∂0ξα and ∂0S from (3.28) by means of

(1.11) and (3.25), we obtain (2.21) and, hence, the system of dynamic equations (1.11),

(2.21), and (2.22), where designations (2.18), (2.19), and (2.20) are used.

The curtailed system (1.7), (1.8), and (1.9) can be obtained from (3.22), (3.23), (3.24),

(3.25), (3.26), (3.27), and (3.28) as follows. Equations (3.22), (3.25) coincide with (1.7),

(1.9). For deriving (1.8), we note that the vorticity ω ≡ ∇×v and v×ω are obtained

from (3.27) in the form

ω=∇×v= 1
2
Ωαβ∇ξβ×∇ξα−∇η×∇S,

v×ω=Ωαβ∇ξβ(v∇)ξα+∇S(v∇)η−∇η(v∇)S.
(3.30)

We form a difference between the time derivative of (3.27) and the gradient of (3.28).

Eliminating Ωαβ∂0ξα, ∂0S, and ∂0η by means of (3.23), (3.25), and (3.26), one obtains

∂0v+∇v2

2
+ ∂

2(ρE)
∂ρ2

∇ρ+ ∂
2(ρE)
∂ρ∂S

∇S−ρ ∂E
∂S
∇S

−Ωαβ∇ξβ(v∇)ξα+∇η(v∇)S−∇S(v∇)η= 0.
(3.31)

Using (3.30), the expression (3.31) reduces to

∂0v+∇v2

2
+ 1
ρ
∇
(
ρ2 ∂E
∂ρ

)
−v×(∇×v)= 0. (3.32)

In virtue of the identity

v×(∇×v)≡∇v2

2
−(v∇)v, (3.33)

the last equation is equivalent to (1.8). Note that at derivation of the curtailed system

(1.7), (1.8), and (1.9), condition (3.29) is not used, and the system (1.7), (1.8), and (1.9)

is valid in any case.
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In the general case (3.29), differentiating equations (3.27), (3.28) and eliminating the

variables ϕ, ξ, and η, we obtain the curtailed system (1.7), (1.8), and (1.9), whereas the

system (1.11), (2.21), and (2.22) follows from the system (3.22), (3.23), (3.24), (3.25),

(3.26), (3.27), and (3.28) directly (i.e., without differentiating). It means that the system

(1.11), (2.21), and (2.22) is an integrated system, whereas the curtailed system (1.7),

(1.8), and (1.9) is not, although formally they have the same order.

The action of the form (3.21), or close to this form, was obtained by some authors

[18, 19], but the quantities gα, α = 1,2,3, are always considered as additional depen-

dent variables (but not as indefinite functions of ξ which can be expressed via initial

conditions). The action was not considered as a functional of fixed indefinite functions

gα(ξ).
Thus, five equations (1.11), (2.21), (2.22) with S, ρ, and v, defined, respectively, by

(2.18), (2.19), and (2.20), constitute the fifth-order system for five dependent variables

ξ = {ξ0,ξ}, η. Equations (1.7), (1.9), (1.11), (2.21), and (2.22) constitute the seventh-order

system for seven variables ρ, ξ, ϕ, η, and S.

If Ωαβ ≡ 0, it follows from (3.24) that

gα(ξ)= ∂
∂ξα

Φ(ξ). (3.34)

Then it follows from (3.27) and (3.34) that

v= j

ρ
=∇(ϕ+Φ(ξ))−η∇S. (3.35)

In the case of isentropic flow (∇S = 0), the quantities Ωαβ coincide with vorticity, and

the fluid flow is irrotational, as it follows from (3.25). In this case, as well as at the

fulfillment of (3.35), the dynamic equations (3.23) are satisfied due to relationsΩαβ ≡ 0,

and Lin constraints (1.11) do not follow from dynamic equations (3.23). In this partial

case, an addition of the Lin constraints (1.11) to the curtailed system (1.7), (1.9) is not

necessary.

The system of equations (3.22), (3.23), (3.24), (3.25), (3.26), (3.27), and (3.28) as well

as the system (1.11), (2.18), (2.19), (2.20), (2.21), and (2.22) contain full information on

the fluid flow in the infinite space V . The system of equations (1.11), (2.21), and (2.22)

is a system of five partial differential equations for five dynamic variables ϕ, η, and ξ,

and one needs to give initial data for them. But the initial values for variablesϕ, η, and

ξ can be given in the universal form, which is the same for all fluid flows. For instance,

one can set

ξ(0,x)= ξin(x)= x, ϕ(0,x)= 0, η(0,x)= 0. (3.36)

Then according to (2.18), (2.19), and (2.20), the initial values of variables ρ, S, and v

have the form

v(0,x)= vin(x)= g(ξ)= g(x),

ρ(0,x)= ρin(ξ)= ρin(x),

S(0,x)= Sin(ξ)= Sin(x),
(3.37)
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where ρin(x), Sin(x), and vin(x) are given initial values which determine the fluid flow.

Variables ξ label the fluid particles, and a choice of the form of labeling is unessential.

Let now the form ofϕ(0,x) and η(0,x) be changed, and we haveϕ(0,x)=ϕin(x) and

η(0,x) = ηin(x), where ϕin(x) and ηin(x) are some given functions. This replacement

can be compensated by the change of g(x):

g(x) �→ vin(x)−∇ϕin(x)+ηin(x)∇Sin(x) (3.38)

in a way such that the initial values of ρ, S, and v remain the same. All this means that

dynamic equations (1.11), (2.18), (2.19), (2.20), (2.21), and (2.22) contain complete (full)

information on the fluid flow because the choice of initial values for variablesϕ, η, and

ξ is unimportant for calculation of the fluid flow in the infinite space V .

This is valid also for the fluid flow in the space region x3 ≥ 0, as it is shown in [15].

In this case, the boundary conditions for v at the boundary x3 = 0 are expressed via

the arbitrary functions g(ξ), ξ = x ∈ {x | x3 < 0}, whereas the initial conditions are

expressed via the arbitrary functions g(ξ), ξ = x ∈ {x | x3 ≥ 0}. Apparently, functions

g(x) determine the initial and boundary conditions for the velocity v also in the case

of the fluid flow in any finite volume V , although it is not yet proved.

Thus, the information, which is essential for the fluid flow determination, is described

by functions ρin(x), Sin(ξ), and g. This information is introduced in dynamic equations

in the form of arbitrary functions. Unessential information concerning the methods of

the fluid description is given by initial and boundary conditions for variablesϕ, η, and

ξ. The variables ξ, ϕ, and η are auxiliary variables which represent a method of the

fluid flow description. The Clebsch potentials ξ label the fluid particles. At the same

time, the variables ξ describe displacement of the fluid along their trajectories, and this

description does not depend on the method of labeling. Variables ϕ, η describe sepa-

ration of the velocity field v into parts. The form of this separation is inessential. The

auxiliary variables ξ, ϕ, and η are described by partial differential equations, whereas

the fluid flow in itself is described by finite relations containing arbitrary functions

ρin(ξ), Sin(ξ), and g(ξ) (at fixed variables ϕ, η, and ξ, given as functions of t,x).

The situation is rather unexpected and unusual. One can obtain a result of calculation

of the fluid flow, but it refers to the method of description (variables ξ, ϕ, and η), and

this method of description is determined by partial differential equations. It is not clear

how to resolve and to use this situation effectively.

4. Variational principle for incompressible fluid. Inviscid incompressible fluid of

constant density is a special case of the ideal fluid when one may set ρ = ρ0 = const.

In this case, the continuity equation (3.22), containing time derivative of density ρ and

determining time evolution of ρ, becomes

∇v= 0. (4.1)

Equation (4.1) does not contain time derivatives at all. It is rather a constraint imposed

on initial values of velocity v than a dynamic equation describing evolution of one

of dynamic variables. Formally it means that the system of hydrodynamic equations
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ceases to be hyperbolic and becomes elliptic. This circumstance changes the statement

of the fluid flow problem.

We set ρ = ρ0 = const in the action (3.21) and introduce new variables:

v= j

ρ0
, ρ0 = const. (4.2)

It is easy to verify that η = η(ξ) and S = S0(ξ), and the last term of (3.21) can be

incorporated with the term jkgα(ξ)∂kξα. Thus, the action for the incompressible fluid

looks as follows:

�E[v,ξ,ϕ]= ρ0

∫ {
v2

2
−v∇ϕ−gα(ξ)∂0ξα−gα(ξ)v∇ξα

}
dtdx, (4.3)

where gα(ξ) are arbitrary fixed functions of ξ.

Variation with respect to v, ξ, and ϕ gives

δv : v=∇ϕ+gα(ξ)∇ξα, (4.4)

ρ−1
0
δ�E

δξα
=Ωαβ(∂0ξβ+v∇ξβ

)= 0, α= 1,2,3, (4.5)

ρ−1
0
δ�E

δϕ
=∇v= 0. (4.6)

In the general case, condition (3.29) is satisfied, and the multiplier Ωαβ in (4.5) may

be omitted.

Substituting (4.4) into (4.5) and (4.6), one obtains

Ωαβ
(
∂0ξβ+

(∇ϕ+gγ(ξ)∇ξγ)∇ξβ)= 0, α= 1,2,3, (4.7)

∇2ϕ+gα,β(ξ)∇ξβ∇ξα+gα(ξ)∇2ξα = 0, gα,β ≡ ∂g
α

∂ξβ
. (4.8)

The dynamic equation for ϕ does not contain temporal derivative. If Ωαβ ≡ 0, the fluid

flow is irrotational and dynamic equations (4.7) are fulfilled independently of the Lin

constraints which have the form

∂0ξβ+
(∇ϕ+gγ(ξ)∇ξγ)∇ξβ = 0, α= 1,2,3. (4.9)

Lin constraints (4.9) are not dynamic equations in this case.

Conventional hydrodynamic equations for the incompressible fluid

∇v= 0, ∂0v+(v∇)v=−∇p
ρ0

(4.10)

are obtained from relations (4.4), (4.5), and (4.6). Differentiating (4.4) with respect to t,
we obtain

∂0v=∇[∂0ϕ+gα(ξ)∂0ξα
]−Ωαβ∂0ξβ∇ξα, (4.11)
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where Ωαβ is defined by (3.24). It follows from (4.4) that

v×(∇×v)=Ωαβ(ξ)∇ξβ(v∇)ξα. (4.12)

In virtue of (4.5), the last term in the right-hand side of (4.11) coincides with the right-

hand side of (4.12). Then using identity (3.33), one obtains

∂0v+(v∇)v=∇
(
∂0ϕ+gα(ξ)∂0ξα+ 1

2
v2
)
. (4.13)

Equation (4.13) coincides with the second equation (4.10), provided that we use desig-

nation

p
ρ0
= p0

ρ0
− 1

2
v2−∂0ϕ−gα(ξ)∂0ξα, p0 = const. (4.14)

Here the pressure p is determined after the solution of the system of hydrodynamic

equations (4.4), (4.5), and (4.6), or (4.10).

We stress that the conventional form (4.10) of hydrodynamic equations is obtained

from the hydrodynamic equations (4.4), (4.5), and (4.6) by means of differentiation. It

means that the form of hydrodynamic equations (4.4), (4.5), and (4.6) is a result of

integration of hydrodynamic equations (4.10) together with the Lin constraints (1.11).

It is interesting also that the system of equations (4.4), (4.5), and (4.6) contains time

derivatives only in dynamic equations (4.5).

5. Two-dimensional flow of incompressible fluid. We have mentioned in the intro-

duction that the statement of the problem of stream flow is different for the irrotational

and rotational cases. This difference appears only after integration. The statement of

the problem is different not only for two-dimensional flow of incompressible fluid, but

also for any inviscid fluid, and the source of this difference lies in the dynamic equa-

tions (3.23) (or (4.5)) which exclude the degrees of freedom connected with rotation in

the case Ωαβ ≡ 0. The method used for derivation of (1.2) cannot be used in general

case. So in the following, we present the method in a form which can be expanded to any

ideal fluid. The method is based on a use of the GSF (mutual application of the Jacobian

technique and description in terms of potentials). To avoid technical complexities, we

apply this method to the case of two-dimensional flow of incompressible fluid when

the GSF has only one component.

Equations (1.1) and (1.2) are different. The first equation is linear, whereas the second

one is quasilinear. The first one can be solved rather easily, whereas the second one

can be solved only by means of an iteration procedure. Difference in complexity of (1.1)

and (1.2) is technical, whereas the difference in statement of the problem is conceptual.

The idea of our investigation is simple. Introducing the GSF ξ2, we solve (4.5), (4.6) for

any ξ2. Then from (4.4), we obtain a dynamic equation for the determination of ξ2 and

necessary boundary conditions for this equation.

Although it is possible to deal with (4.4), (4.5), and (4.6) for incompressible fluid, we

prefer to consider dynamic equations for slightly compressible fluid, whose internal
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energy has the form

E(ρ)= E0

(
ρ
ρ0

)1/ε
, E0,ρ0 = const, ε� 1. (5.1)

The incompressible fluid appears in the limit ε → 0. We consider dynamic equations

obtained from the action (3.21) with the entropy S = const and η= 0. These equations

have the form

∂kjk = 0, j0 ≡ ρ, (5.2)

Ωαβjkξβ,k = 0, α= 1,2, (5.3)

where Ωαβ is defined by the relation (3.24):

jµ

ρ
= ∂µϕ+gα(ξ)ξα,µ, µ = 1,2, (5.4)

ξα,µ ≡ ∂µξα, µ,α= 1,2, (5.5)

∂(ρE)
∂ρ

=− j2

2ρ2
−∂0ϕ+gα(ξ)ξα,0. (5.6)

Here and in what follows, a summation is produced over repeating Greek indices (1,2)
and over repeating Latin indices (0− 2). We use designations (x0,x1,x2) = (t,x,y).
The comma before index k denotes differentiation with respect to xk, for instance,

ξα,k ≡ ∂kξα.

We set

J = ∂
(
ξ0,ξ1,ξ2

)
∂
(
x0,x1,x2

) , jk = ∂J
∂ξ0,k

= ∂
(
xk,ξ1,ξ2

)
∂
(
x0,x1,x2

) , k= 0,1,2, (5.7)

where ξ1, ξ2 are some functions of (t,x,y). Equations (5.2), (5.3) are satisfied by (5.7)

for any functions ξ1, ξ2 because of the identities

∂k
∂J
∂ξ0,k

≡ 0,
∂J
∂ξ0,k

ξα,k ≡ 0, α= 1,2. (5.8)

Substituting (5.1) in (5.6), we obtain

(
E0
)ε(

1+ 1
ε

)ε( ρ
ρ0

)
=
(
− j2

2ρ2
−∂0ϕ+gα(ξ)ξα,0

)ε
. (5.9)

In the limit ε→ 0, (5.9) becomes

ρ
ρ0
= 1
ρ0

∂
(
ξ1,ξ2

)
∂
(
x1,x2

) = 1. (5.10)

In the case of stationary flow, we can assume that ξ2 does not depend on the time t

ξ1 = ξ1(t,x,y), ξ2 = ξ2(x,y), (5.11)

ξ2,0 ≡ 0. (5.12)
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Equation (5.10) takes the form

ξ2,2ξ1,1−ξ2,1ξ1,2−ρ0 = 0. (5.13)

We consider (5.13) as an equation for dependent variable ξ1 with a given function ξ2 =
ξ2(x,y). The first-order partial differential equation is equivalent to the system of

ordinary equations

dx
ξ2,2

= dy
−ξ2,1

,
dx
ξ2,2

= dξ1

ρ0
. (5.14)

It is easy to see that

C2 = ξ2(x,y) (5.15)

is an integral of the first equation of (5.14). Resolving (5.15) with respect to y , one

obtains

y = F2
(
x,C2

)
, ξ2

(
x,F2

(
x,C2

))= C2. (5.16)

Substituting (5.16) in the second equation (5.14), one can integrate it in the form

ξ1 = ρ0

[
C1
(
t,C2

)+
∫ x
−L

dx
ξ2,2

(
x,F2

(
x,C2

))
]
C2=ξ2(x,y)

, (5.17)

where C1 is an arbitrary function of arguments (t,C2). Here x =−L is the inflow surface

�in, where the inflow conditions are given. The inflow surface is placed in the fluid, and

all dynamic equations must be satisfied on �in.

Differentiating the second equation (5.16) with respect to C2, we obtain

ξ2,2
(
x,F2

(
x,C2

))
F2;2

(
x,C2

)= 1. (5.18)

Here and in what follows, the symbol “;” denotes differentiation with respect to one of

arguments of the function. Index after symbol “;” denotes the ordinal number of the

argument. By means of (5.18), the integral in (5.17) may be written in the form

∫ x
−L

dx
ξ2,2

(
x,F2

(
x,C2

)) = ∂
∂C2

∫ x
−L
F2
(
x,C2

)
dx. (5.19)

The relation (5.17) takes the form

ξ1 = ρ0

[
C1
(
t,C2

)+ ∂
∂C2

∫ x
−L
F2
(
x,C2

)
dx

]
C2=ξ2(x,y)

. (5.20)

Differentiating (5.17) with respect to t, we obtain

ξ1,0 = ρ0

[
∂C1

(
t,C2

)
∂t

]
C2=ξ2(x,y)

= ρ0C1;1
(
t,ξ2

)
. (5.21)
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According to (5.11) and (5.7), we have

j1 =− ∂
(
ξ1,ξ2

)
∂
(
x0,x2

) =−ξ1,0ξ2,2, j2 = ∂
(
ξ1,ξ2

)
∂
(
x0,x1

) = ξ1,0ξ2,1, (5.22)

and (5.4) take the form

u= v1 =−ξ1,0ξ2,2

ρ0
= ∂1ϕ+gα(ξ)ξα,1,

v = v2 = ξ1,0ξ2,1

ρ0
= ∂2ϕ+gα(ξ)ξα,2.

(5.23)

The compatibility condition of (5.23) has the form

−∂2
ξ1,0ξ2,2

ρ0
−∂1

ξ1,0ξ2,1

ρ0
= (gα,β(ξ)−gβ,α(ξ))ξα,1ξβ,2, gα,β ≡ ∂g

α

∂ξβ
. (5.24)

Substituting (5.21) and using designation (3.24), we obtain

ψ11+ψ22 =−ρ0Ω12(ξ1,ξ2
)
, (5.25)

where the stream function ψ is defined by the relation

ψ= C0
(
t,ξ2

)=
∫
C1;1

(
t,ξ2

)
dξ2. (5.26)

Relation (5.26) is chosen in such a way that (5.23) coincide with (1.4). We resolve relation

(5.26) with respect to ξ2 in the form ξ2 =Q(t,ψ), whereQ(t,ψ) is the functional inverse

of C0(t,ξ2)

C0
(
t,Q(t,ψ)

)=ψ. (5.27)

Substituting ξ2 in (5.17), we obtain Clebsch potentials ξ1 and ξ2 expressed via ψ by

means of relations

ξ2 =Q(t,ψ), ξ1 = ξ1(t,x,ψ)= ρ0

[
C1
(
t,C2

)+ ∂
∂C2

∫ x
−L
F2
(
x,C2

)
dx

]
C2=Q(t,ψ)

.

(5.28)

According to (5.22), (5.21), and (5.26), we obtain

j1 =−ρ0ψ2, j2 = ρ0ψ1. (5.29)

Dynamic equation (5.25) for the stream functionψ is the second-order partial differen-

tial equation of elliptic type. It contains indefinite functions Ω12(ξ1,ξ2), C0(t,ξ2) which

are determined from the inflow conditions. The time t appears in dynamic equation only

as a parameter describing evolution of the Clebsch potential ξ1. The dynamic equation

(5.25) is applicable for arbitrary two-dimensional flow of ideal incompressible fluid.
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Remark 5.1. Equation (5.25) can be obtained by direct integration of Euler equations

for two-dimensional flow of incompressible fluid. Indeed, eliminating pressure from

(4.10) for two-dimensional flow, we obtain

u1+v2 = 0, ∂2
(
u0+uu1+vu2

)= ∂1
(
v0+uv1+vv2

)
, (5.30)

where u and v are velocity components along x-axis and y-axis, respectively. Intro-

ducing the stream function ψ,

u=−ψ2, v =ψ1, (5.31)

we satisfy the first equation of (5.30) identically. The second equation of (5.30) takes

the form

∂0ω− ∂(ω,ψ)∂(x,y)
= 0, ω≡ψ11+ψ22. (5.32)

In the stationary case, the result of integration is considered in the introduction.

In the case of arbitrary flow, (5.32) is reduced to the form

dω
dt

= ∂0ω+u∂1ω+v∂2ω= 0. (5.33)

Solution of (5.33) can be presented in the form

ω=ψ11+ψ22 =Ω
(
ξ1,ξ2

)
, (5.34)

where ξ1 and ξ2 are two independent solutions of (5.33), that is, ξ1 and ξ2 are Clebsch

potentials satisfying (1.11). Thus, the problem of the Euler system integration appears

to be connected with consideration of the Lin constraints. The statement that we can

investigate the fluid motion, considering only the Euler system of dynamic equations

and ignoring completely Lin constraints, is valid only in the case Ω ≡ 0. In the general

case, it is only an illusion. In reality, the Lin constraints are hidden inside the Euler

system and appear after integration.

In the simplest case, when all fluid particles cross boundary, and there are no closed

stream lines, the function Ω(ξ1,ξ2) is determined from the inflow conditions on the

boundary of the considered flow. If the flow contains fluid particles which move all the

time inside the considered volume and do not cross its boundary, the functionΩ(ξ1,ξ2)
is to be given for these particles also, although such an assignment is impossible via

boundary conditions. Here we will consider only the simplest case of rotational flow

when there are no closed stream lines. The case with closed stream lines of rotational

flow inside the irrotational flow is considered in [9]. In this paper, the function Ω(ξ2)=
f(ψ) is given on the closed stream lines without a reference to boundary conditions.

In the considered case, the dynamic equation (5.34) appears to contain information

on boundary conditions. It means that, studying rotational nonstationary flows, a sepa-

rate investigation of dynamic equations and boundary conditions becomes impossible.

Appearance of several indefinite functions of ψ in dynamic equations of type (1.2) for

stationary rotational flow is well known (see, for instance, survey [14]). Unfortunately,

an investigation of the origin of these functions is sometimes absent.
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Obtaining the basic equation (5.25), we used properties of Clebsch potentials de-

scribed by (5.4). These relations contain arbitrary functions gα(ξ), which describe in-

fluence of boundary conditions on the form of dynamic equations. Indefinite functions

gα(ξ) describe general properties of the ideal fluid, which could be applied not only

for the investigation of incompressible fluid. Information contained in three functions

ga(ξ) of three arguments ξ1, ξ2, and ξ3 is much more than information contained in

one function Ω(ξ1,ξ2) of two arguments. Maybe, not all this information is essential,

but some part of this information is essential for sure. It is the reason why we investi-

gate dynamic equations (4.4), (4.5), and (4.6), but not Euler system (5.30), which contain

this information only in implicit form.

The last shorter derivation of (5.25) in Remark 5.1 ignores general relations (5.3),

(5.4), but nevertheless, finally it leads to (5.34), that is, to a description in terms of

Clebsch potentials.

6. Inflow conditions for stationary flow. We suppose that the stationary inflow con-

ditions are given at the plane �in : x = −L = const. (We consider the case when there

are no closed stream lines inside the considered volume.) The inflow surface �in lies

in the fluid completely, and all dynamic equations are satisfied on �in. In the station-

ary case, the stream function ψ does not depend on time t. One may set in (5.26)

C0(t,ξ2)= C0(ξ2). On the inflow surface, we choose the function ξ2 in the form

ξ2(−L,y)=y. (6.1)

According to (5.21) and (5.22), the inflow conditions have the form

u(−L,y)=−C1;1(−L,y)= Vx(y), (6.2)

∂v
∂x
(−L,y)= 1

ρ0

[
∂1
(
ξ1,0(t,y)ξ2,1(x,y)

)]
x=−L =W(y), (6.3)

whereu andv are velocity components alongx-axis andy-axis, respectively, andVx(y)
and W(y) are supposed to be known functions determining inflow conditions of the

fluid. We obtain from (6.2) and (5.26)

C1(t,y)=−
∫ t

0
Vx(y)dt ≡ S(y)t, C0(y)=−

∫
Vx(y)dy. (6.4)

The left-hand side of (5.24) at x =−L is equal to

∂
∂y
u(−L,y)− ∂v

∂x
(−L,y)= ∂

∂y
Vx(y)−W(y), (6.5)

whereas the right-hand side of (5.24) at x =−L is equal to ρ0Ω12(ξ1(t,−L,y),y). Then

using representation (5.17), we obtain from (5.24) and (5.28) at x =−L

ρ0Ω12(ρ0C1(t,y),y
)= ∂

∂y
Vx(y)−W(y)≡U(y), (6.6)

whereU(y) is a known function of variablesy . As far as the right-hand side of (6.6) does

not depend on t, the left-hand side of (6.6) does not depend on C1, and Ω12 depends
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only on ξ2:

Ω12(ξ1,ξ2
)=Ω12(0,ξ2

)= 1
ρ0
U
(
ξ2
)= 1

ρ0

(
∂
∂ξ2

Vx
(
ξ2
)−W(ξ2

))
. (6.7)

Thus, inflow conditions (6.2), (6.3) admit one to determine indefinite functions Ω12

and C1. It is interesting that inflow conditions are given at the inflow surface �in : x =−L
by the velocity component u and by derivative ∂v/∂x (normal to �in) of the component

v (but not by the component v itself). Information given by the velocity component v
on the inflow surface �in is insufficient for the determination of indefinite functionsΩ12

and C1. The derivative ∂v/∂x together with ∂u/∂y determine vorticity. The derivative

∂u/∂y can be calculated if the velocity u is given on the inflow surface, whereas ∂v/∂x
cannot. To determine vorticity, we need to give ∂v/∂x on the inflow surface, whereas the

tangent component v itself appears to be unnecessary for the vorticity determination.

7. Problem of stationary flow over obstacle. We consider a flow of incompressible

fluid inside the space regionV bounded by two walls �1 :y =−R = const and �2 :y = R,

by inflow surface �in : x = −L = const, outflow surface �out : x = L, and by the surface

�ob of some obstacle, placed in vicinity of the coordinate origin. The shape of the

obstacle is determined by the relation

�ob : Σob(x,y)= 0. (7.1)

The boundary conditions are formulated as follows:

�1 :ψ(x,−R)=ψ1 = const, �2 :ψ(x,R)=ψ2 = const,

�ob :ψ(x,y)|x,y∈∑ob =ψob = const.
(7.2)

Constants ψ1 and ψ2 are connected by the relation

ψ2−ψ1 =−
∫ R
−R
Vx(y)dy. (7.3)

Conditions (7.2) mean that the normal velocity component vanishes on all walls. The

value ofψob describes a circulation around the obstacle becauseψob−ψ1 describes the

mean value of the flux between �1 and �ob. For instance, if ψob = ψ1, the circulation

around the obstacle is such that the fluid flows only between �2 and �ob.

Boundary condition on the inflow surface �in has the form

�in :ψ(−L,y)=ψ1−
∫ y
−R
Vx(y)dy, (7.4)

where the velocity component Vx(y) along the x-axis is presumed to be given. The

boundary condition on the outflow surface �out has the form

�out :ψ(L,y)=ψout(y), ψout(−R)=ψ1, ψout(R)=ψ2, (7.5)

where ψout(y) is some given function. It describes the velocity distribution on the

outflow surface. To understand why such a distribution should be given and why it
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is not determined by the inflow condition, we imagine that outside the volume V in

vicinity of �out, there are some obstacles. Distribution of velocity on �out depends on

size, shape, and position of these obstacles. Description of these obstacles is carried

out by ψout(y).
We consider a flow over the obstacle and rewrite dynamic equation (5.25) in the form

�ψ=Ω(ψ), (7.6)

�ψ=∇2ψ=ψ11+ψ22, (7.7)

Ω(ψ)=−ρ0Ω12(ξ2
)=−U(ξ2

)=−U(Q(ψ)), (7.8)

where the function U is defined as a function of argument y by means of the relation

(6.6):

U(y)= ∂
∂y
Vx(y)−W(y). (7.9)

Function ξ2 = Q(ψ) is defined as a function of argument ψ by means of the relation

(7.4):

ψ=ψ1−
∫Q(ψ)
−R

Vx(y)dy. (7.10)

In particular, if Vx(y)= V0 = const, ξ2 =Q(ψ)= (ψ1−ψ)/V0.

Dynamic equation (7.6) is a nonlinear equation in general. Its solution is difficult.

The goal of this paper is to provide a statement of the stream flow problem because

even this problem is not solved for irrotational flows. So far as the solution of (7.6)

is concerned, it is a special mathematical problem which can be solved by different

methods.

If vorticity Ω is small, dynamic equation (7.6) can be solved by means of an iteration

procedure. To obtain the zeroth-order approximationψ(0), we consider linear equation

�ψ(0) =∇2ψ(0) = 0 (7.11)

with boundary conditions (7.2), (7.3), (7.4), and (7.5), which is written for brevity in the

form

[
ψ(0)

]
Σ =ψΣ(t,x), x∈ Σ, (7.12)

where Σ is the boundary of the volume filled by fluid.

Let G(x|x′) be the Green function for (7.11). It is defined by the relations

∇2G(x|x′)=−4πδ(x−x′), G(x|x′)x∈Σ = 0. (7.13)

Solution of (7.11) is given by the formula

ψ(0)(x)=− 1
4π

∫
Σ

∂G(x|x′)
∂n′

ψΣ(x′)dS′, (7.14)
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where ∂/∂n′ means a derivative with respect to x′ in the direction normal to Σ. Solution

(7.14) is an irrotational approximation to the solution of (7.6) for the rotational flow.

The first approximation is determined by the relation

ψ(1)(x)=ψ(0)(x)− 1
4π

∫
V
G(x|x′)Ω(ψ(0)(x′))dV ′, (7.15)

where integration is produced over the volume V filled with the fluid:

ψ(n)(x)=ψ(0)(x)− 1
4π

∫
V
G(x|x′)Ω(ψ(n−1)(x′)

)
dV ′, n= 2,3, . . . . (7.16)

If the iteration process converges, we obtain a solution of the problem of rotational

stationary flow around an obstacle. One can hope that the iteration process appears to

be effective at least for small vorticity Ω.

8. Examples of two-dimensional stationary flow. We consider a stationary flow

bounded by two parallel plane walls �1 : y = 0 and �2 : y = b, with inflow and out-

flow surfaces �in : x = 0 and �out : x = a. To obtain linear equation (7.6) which has a

simple exact solution, we choose the following boundary conditions:

ψ(x,0)= 0, ψ(x,b)= 0, (8.1)

ψ(0,y)= V0 sin
πy
b
, ψ(a,y)= V0 sin

πy
b
, V0 = const, (8.2)

ψ11(0,y)= k2V0 sin
πy
b
, k=

√
Ω+

(
π
b

)2

, Ω = const. (8.3)

In this case, the vorticity Ω(ψ) in the right-hand side of (7.6) on the boundary x = 0 is

determined by the first condition (8.2) and by (8.3):

∂
∂y
u(0,y)− ∂

∂x
v(0,y)=ψ11(0,y)+ψ22(0,y)

=
(
k2−

(
π
b

)2
)
V0 sin

πy
b

=Ωψ(0,y).

(8.4)

It means that the functionΩ(ψ) in the right-hand side of (7.6) has the formΩ(ψ)=Ωψ,

Ω = const, and the dynamic equation takes the form of linear equation

∇2ψ=Ωψ, Ω = const. (8.5)

Its solution, satisfying the boundary conditions (8.1), (8.2), has the form

ψ= V0
sinh(kx)+sinh

(
k(a−x))

sinh(ka)
sin
πy
b
, k=

√
Ω+

(
π
b

)2

. (8.6)

This solution describes a set of flows with vanishing total flux through the inflow sur-

face and different vorticities Ω. Flows of this set are distinguished by the power of

circulation which is described by the parameter Ω.
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We consider two-dimensional stationary slightly rotational flow between two con-

centric circular cylinders of radii a and b (a < b). We choose the coordinate system

with the z-axis directed along the cylinder axis and coordinate origin on the cylinder

axis. The x-axis is directed along the mean velocity V0 of the flow. We introduce polar

coordinates (r ,ϕ) in the (x,y)-plane and set the boundary conditions for the stream

function as follows:

ψ(a,ϕ)= 0, ψ(b,ϕ)=−V0

(
1− a

2

b2

)
bsinϕ, (8.7)

[
1
r
∂
∂r

(
r
∂ψ(r ,ϕ)
∂r

)]
r=b

=ω1(ϕ)=ω
(
ψ(b,ϕ)

)=

ω(ψ) if |ψ|<ψ0,

0 if |ψ|>ψ0,
(8.8)

where ω1(ϕ) is some given function of ϕ. It is supposed that the flow is rotational

only in the part of fluid which flows near the cylinder. Let −ψ0 and ψ0,

ψ0 = V0

(
1− a

2

b2

)
Na, (8.9)

be values of the stream function on the boundary between the rotational and irrota-

tional parts of the flow; Na is the transverse size of the rotational region (N	 1). After

the statement of the problem, we set b→∞. The irrotational flow of the zeroth approx-

imation around the cylinder is described by the stream function ψ(0) which is given by

the expression [12]:

ψ(0)(r ,ϕ)=−V0

(
1− a

2

r 2

)
r sinϕ, r > a, (8.10)

where r , ϕ are polar coordinates on the (x,y)-plane:

x = r cosϕ, y = r sinϕ. (8.11)

The irrotational flow (8.10) is used at formulation of boundary conditions on the exter-

nal cylinder of radius b.

According to (7.15) and (8.7), (8.8), (8.9), and (8.10), we obtain for the first approxi-

mation

ψ(1)(r ,ϕ)=ψ(0)(r ,ϕ)− 1
4π

∫ ∫
|ψ(0)(r ′,ϕ′)|<ψ0

G(r ,ϕ|r ′,ϕ′)ω
(
ψ(0)(r ′,ϕ′)

)
r ′dr ′dϕ′,

(8.12)

where ω(ψ) is defined by the relation (8.8), and the Green function G(r ,ϕ|r ′,ϕ′) is

taken for the case b =∞. It has the form

G(r ,ϕ|r ′,ϕ′)= ln
a2+r 2r ′2/a2−2rr ′ cos(ϕ−ϕ′)
r 2+r ′2−2rr ′ cos(ϕ−ϕ′)

, (8.13)
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and the integration is produced over the region, where |ψ(0)(r ,ϕ)| < ψ0 = const. Ac-

cording to (8.9), (8.10), this region is defined by the relation

∣∣∣∣∣V0

(
1− a

2

r 2

)
r sinϕ

∣∣∣∣∣< V0Na, r > a, b =∞, (8.14)

where N	 1. If

r < R = a

N

2
+
√(

N
2

)2

+1


, (8.15)

inequality (8.14) is satisfied for any angle ϕ, and for r ′ < R, one should integrate in

(8.12) over all values of angle ϕ′. For r ′ > R, it is useful to introduce the variable η by

means of relation

ϕ′ = Φ(r ,η)= arcsin
η

V0
(
1−a2/r 2

)
r
, (8.16)

and integrate over η in the region, where r ′ >R.

We obtain

ψ(1) =ψ(0)+I1+I2+I3, (8.17)

where

I1 =− 1
4π

∫ R
a
r ′dr ′

∫ 2π

0
G(r ,ϕ|r ′,ϕ′)ω

(
ψ(0)(r ′,ϕ′)

)
dϕ′,

I2 = 1
4π

∫∞
R
r ′2dr ′

∫ Φ(r ′,ψ0)

−Φ(r ′,ψ0)

G
(
r ,ϕ|r ′,Φ(r ′,η))ω(−η)V0

(
1−a2/r ′2

)
dη√

V 2
0

(
1−a2/r ′2

)2r ′2−η2
,

I3 = 1
4π

∫∞
R
r ′2dr ′

∫ π+Φ(r ′,ψ0)

π−Φ(r ′,ψ0)

G
(
r ,ϕ

∣∣r ′,Φ(r ′,η))ω(−η)V0
(
1−a2/r ′2

)
dη√

V 2
0

(
1−a2/r ′2

)2r ′2−η2
,

(8.18)

where ψ0 = V0Na. Although calculations of integrals (8.18) is not simple, they give the

first approximation of the rotational flow around the cylinder.

9. Conclusion. Theory of rotational flows is more complicated than that of irrota-

tional flows. There are two reasons for this.

(1) Dynamic equations for rotational flows appear to be nonlinear almost always.

They cannot be solved exactly.

(2) The problem of rotational stream flow is not yet stated properly.

The first problem is pure mathematical. Existence of this problem is quite clear for

all researchers. The second problem is physical. We believe that hardly anybody of

researchers guesses on existence of this problem. The first problem is very difficult.
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The second problem is not so difficult, but it is much more important than the first

problem. Why?

First, because existence of the second problem in itself seems to be problematic.

Second, the irrotational flow is a special degenerate case of the rotational flow, when

vorticity vanishes. Transition from the general case to the degenerate one is rather sim-

ple. The reverse transition from the degenerate case to the general one is much more

difficult because the general case contains additional information which is absent in

the degenerate case. If we could not evaluate correctly this additional information, we

could not construct a perfect theory. Practically, we ignore dynamic equations (1.11)

and boundary conditions for determination of vorticity. As a result we obtain imperfect

theory, where some degrees of freedom are ignored. In some cases, these hidden de-

grees of freedom manifest themselves suddenly, and we try to understand what could

be meant by this effect. At any rate, a serious mathematical investigation of such diffi-

cult hydrodynamical problems as turbulence is impossible if the underlying rotational

flow theory is incomplete.
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