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The paper is devoted to the stability of reaction fronts in thin domains. The influence of
natural convection and of heat losses through the walls of the reactor is studied numerically
and analytically. Critical conditions of stability of stationary solutions are obtained.
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1. Introduction. The stability of reaction fronts is important for many technological

devices and it is interesting from the point of view of nonlinear dynamics (see [6] and

the references therein). It is known that thermal instability can be strongly influenced

by heat loss [1] especially near the extinction limit. In this work, we study the influence

of heat loss and of convection on thermal fronts in thin domains, where we can reduce

the space dimension of the problem and in some cases simplify its analysis.

We consider the system of equations where the reaction-diffusion system is coupled

with the Navier-Stokes equations under the Boussinesq approximation to describe nat-

ural convection which can occur because of the heat produced by the reaction:

∂T
∂t
+v∇T = κ∆T +qk(T)φ(α),
∂α
∂t
+v∇α= k(T)φ(α),

∂v
∂t
+(v∇)v =− 1

ρ
∇p+ν∆v+gβ(T −T0

)
γ,

divv = 0.

(1.1)

Here T is the temperature, α the depth of conversion (or the dimensionless concentra-

tion of the product of the reaction), v = (vx,vy,vz) the velocity of the medium, p the

pressure, κ the coefficient of thermal diffusivity, q the adiabatic heat release, ρ an aver-

age value of density, ν the coefficient of kinematic viscosity, g the gravity acceleration,

β the coefficient of thermal expansion, γ the unit vector in the z-direction (upward), x,

y , and z the spatial coordinates,

−Lx < x < Lx, −Ly < y < Ly, −Lz < z < Lz, (1.2)

t the time, and T0 denotes a characteristic value of the temperature.

http://dx.doi.org/10.1155/S0161171204206172
http://dx.doi.org/10.1155/S0161171204206172
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


78 A. AGOUZAL ET AL.

The boundary conditions are

x =±Lx :
∂T
∂n

=−σ(T −T0
)
, vx = 0,

∂vy
∂x

= ∂vz
∂x

= 0,

y =±Ly :
∂T
∂n

= 0, vy = 0,
∂vx
∂y

= ∂vz
∂y

= 0,

z =−Lz : T = T0, α= 0, z = Lz :
∂T
∂z

= 0,

z =±Lz : vz = 0,
∂vx
∂z

= ∂vy
∂z

= 0.

(1.3)

Here ∂T/∂n denotes the derivative in the direction of the outer normal vector. The

boundary conditions at the lateral walls of the reactor correspond to heat loss through

the boundaries. The free-surface boundary conditions for the velocity simplify the anal-

ysis of the problem. It corresponds to the case of the batch reactor. We will also consider

the case where

z =±Lz : vz = v0 (1.4)

with a given velocity v0 at the entrance and the exit of a continuous reactor.

We introduce dimensionless spatial variables xc/κ, yc/κ, and zc/κ, time tc2/κ,

velocity v/c, and pressure p/c2ρ. Here

c2 = k0κ
q
R0T 2

b
E
e−E/R0Tb (1.5)

is the normal velocity of a condensed phase reaction front [4], where Tb = T0+q is the

adiabatic temperature. Denoting θ = (T −Tb)/q and keeping for convenience the same

notations for other variables, we rewrite system (1.1) in the form

∂θ
∂t
+v∇θ =∆θ+Zeθ/(Z−1+δθ)φ(α),

∂α
∂t
+v∇α= Zeθ/(Z−1+δθ)φ(α),

∂v
∂t
+(v∇)v =−∇p+P∆v+PR(θ+θ0

)
γ,

divv = 0.

(1.6)

Here P is the Prandtl number, P = ν/κ; R is the frontal Rayleigh number, R = (gβqκ2)/
(νc3); δ= R0Tb/E; θ0 = (Tb−T0)/q; and Z is the Zeldovich number, Z = qE/R0T 2

b . The

boundary conditions remain the same as above.

The contents of the paper are as follows. In the next section, we reduce the spatial

dimension of the problem and introduce the heat loss in the heat equation instead of

the boundary conditions. In Section 3, we formulate the interface problem using the

infinitely narrow reaction zone method. Section 4 is devoted to the analysis of sta-

tionary thermal regimes and their stability. Finally in Section 5, we present numerical

simulations of reaction fronts with and without convection.
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2. Thin domains. Without heat loss (σ = 0) and without convection (R = 0) problem

(1.1), (1.3) has a one-dimensional (1D) stationary solution which depends on the z-

variable only. The infinitely narrow reaction zone method (see Section 3) allows us to

find it approximately analytically and then to use this explicit form of the solution to

study its stability. If σ ≠ 0, the stationary solution is not one-dimensional any more

and its analytical approximation cannot be found or becomes too complicated to be

used. Therefore, the stability analysis cannot be carried out. To overcome this difficulty

and to study reaction fronts with heat loss, we consider thin domains where the heat

loss can be introduced in the equation instead of the boundary conditions. In this

section, we suppose that the dimensionless domain is thin in the x-direction, that is,

x ∈ ]−ε/2,ε/2[ with ε > 0 a small parameter.

Taking into account the dependence on ε, we rewrite system (1.6) in the form

∂θε

∂t
+vε∇θε =∆θε+ψ(θε)φ(αε), (2.1)

∂αε

∂t
+vε∇αε =ψ(θε)φ(αε), (2.2)

∂vε

∂t
+(vε∇)vε =−∇pε+P∆vε+PR(θε+θ0

)
γε, (2.3)

divvε = 0, (2.4)

with ψ(θ) = Zeθ/(Z−1+δθ). We suppose that y ∈ ]− ly ,ly[, z ∈ ]− lz,lz[. The boundary

conditions are as follows (we suppose that the coefficient of heat loss at the boundary

is of the order ε):

x =± ε
2

:
∂θε

∂n
=−εσ∗(θε+1

)
, vεx = 0,

∂vεy
∂x

= ∂v
ε
z

∂x
= 0, (2.5)

y =±ly :
∂θε

∂n
= 0, vεy = 0,

∂vεx
∂y

= ∂v
ε
z

∂y
= 0,

z =−lz : θε =−1, αε = 0, z = lz :
∂θε

∂z
= 0,

z =±lz : vεz = 0,
∂vεx
∂z

= ∂v
ε
y

∂z
= 0.

(2.6)

We make the usual change of variables x̄ = x/ε in (2.1), (2.2), (2.3), (2.4), (2.5), and (2.6)

and we suppose the following formal expansions for the unknowns:

θε = θ0
(
x
ε
,y,z,t

)
+εθ1

(
x
ε
,y,z,t

)
+··· ,

αε =α0
(
x
ε
,y,z,t

)
+εα1

(
x
ε
,y,z,t

)
+··· ,

vε = v0
(
x
ε
,y,z,t

)
+εv1

(
x
ε
,y,z,t

)
+··· ,

pε = p0
(
x
ε
,y,z,t

)
+εp1

(
x
ε
,y,z,t

)
+··· ,

(2.7)

with vk = (vkx,vky ,vkz ), k= 0,1,2, . . . .
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Our goal is to prove, at least formally, that v0
x = 0, θ0, α0, v0

y , v0
z , and p0 are inde-

pendent of x̄ and that they satisfy the following system in (y,z)∈ ]−ly ,ly[×]−lz,lz[:

∂θ0

∂t
+v0

y
∂θ0

∂y
+v0

z
∂θ0

∂z
=−2σ∗

(
θ0+1

)+∆θ0+ψ(θ0)φ(α0), (2.8)

∂α0

∂t
+v0

y
∂α0

∂y
+v0

z
∂α0

∂z
=ψ(θ0)φ

(
α0), (2.9)

∂v0
y

∂t
+v0

y
∂v0

y

∂y
+v0

z
∂v0

y

∂z
=−∂p

0

∂y
+P∆v0

y, (2.10)

∂v0
z

∂t
+v0

y
∂v0

z
∂y

+v0
z
∂v0

z
∂z

=−∂p
0

∂z
+P∆v0

z +PR
(
θ0+θ0

)
, (2.11)

with the boundary conditions

y =±ly :
∂θ0

∂y
= 0, v0

y = 0,
∂v0

z
∂y

= 0,

z =−lz : θ0 =−1, α0 = 0,
∂v0

y

∂z
= 0, v0

z = 0,

z = lz :
∂θ0

∂z
= 0,

∂v0
y

∂z
= 0, v0

z = 0.

(2.12)

In this section we use the notation ∆=∆y,z = ∂2/∂y2+∂2/∂z2.

In order to obtain the limit problem, we substitute the above formal expansions in

(2.1), (2.2), (2.3), (2.4), (2.5), and (2.6) and we equate the coefficients of εk for any k∈ Z.

We first remark that the boundary conditions (2.12) are an immediate consequence of

the corresponding boundary conditions from (2.5) and (2.6).

Equating the terms of the order O(ε−2) in (2.1) and O(ε−1) in the first equality of

(2.5), we obtain

∂2θ0

∂x̄2
= 0,

∂θ0

∂x̄
= 0, x̄ =±1

2
, (2.13)

which implies that θ0 is independent of x̄.

Equating the terms of the orderO(ε−1) in (2.1) andO(ε0) in the first equality of (2.5),

we obtain

∂2θ1

∂x̄2
= 0

(
since

∂θ0

∂x̄
= 0

)
,

∂θ1

∂x̄
= 0, x̄ =±1

2
.

(2.14)

Therefore, θ1 is independent of x̄.

Equating the terms of the order O(ε−2) in the x-component of (2.3), we obtain

∂2v0
x

∂x̄2
= 0. (2.15)
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Using also the condition v0
x = 0 on x =±1/2, we deduce

v0
x = 0. (2.16)

Equating the terms of the order O(ε−2) in the y-component of (2.3), we obtain

∂2v0
y

∂x̄2
= 0. (2.17)

Using also the condition ∂v0
y/∂x̄ = 0 on x = ±1/2, we deduce that v0

y is independent

of x̄.

In the same manner, we obtain that v0
z is independent of x̄.

Equating the terms of the order O(ε0) in (2.4), we obtain

∂v1
x

∂x̄
+ ∂v

0
y

∂y
+ ∂v

0
z

∂z
= 0. (2.18)

Hence, ∂v1
x/∂x̄ is independent of x̄. Using also v1

x = 0 on x̄ =±1/2, we obtain

v1
x = 0. (2.19)

Equating the terms of the order O(ε0) in (2.2), we obtain (2.9) with the help of (2.16)

and (2.19). Taking into account the limit conditions, the function α0 is the solution of a

well-posed problem which does not depend on x̄, which implies that α0 is independent

of x̄.

Equating the terms of the order O(ε−1) in the x-component of (2.3), we deduce that

p0 is independent of x̄ with the help of (2.16) and (2.19).

Equating the terms of the order O(ε0) in (2.1), we obtain

∂θ0

∂t
+v0

y
∂θ0

∂y
+v0

z
∂θ0

∂z
= ∂

2θ2

∂x̄2
+∆θ0+Zψ(θ0)φ(α0). (2.20)

Equating the terms of the order O(ε) in the first equality of (2.5), we obtain

∂θ2

∂x̄
=−σ∗(θ0+1

)
, x̄ = 1

2
,

∂θ2

∂x̄
= σ∗(θ0+1

)
, x̄ =−1

2
.

(2.21)

Integrating (2.20) in x̄ between −1/2 and 1/2 and using the above relations, we ob-

tain (2.8).

Equating the terms of the order O(ε0) in (2.3)-y , we obtain

∂v0
y

∂t
+v0

y
∂v0

y

∂y
+v0

z
∂v0

y

∂z
=−∂p

0

∂y
+P

(
∂2v2

y

∂x̄2
+∆v0

y

)
. (2.22)

Integrating in x̄ between −1/2 and 1/2 and using ∂v2
y/∂x̄ = 0 on x̄ =±1/2, we deduce

(2.10). In the same manner we obtain (2.11).
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3. Approximation of infinitely narrow reaction zone. To study the problem ana-

lytically, we reduce it to a singular perturbation problem where the reaction zone is

supposed to be infinitely narrow and the reaction term is neglected outside of it. It is

a well-known approach for combustion problems [4, 6, 7]. We fulfil a formal asymp-

totic analysis with ε= Z−1 = R0T 2
b /qE taken as a small parameter, and obtain a closed

interface problem

(i) when z ≠ ζ :

∂θ
∂t
+v∇θ =∆θ− σ̂ (θ+1), α= 0,

∂v
∂t
+(v∇)v =−∇p+P∆v+Q(θ+θ0

)
γ, divv = 0;

(3.1)

(ii) when z = ζ :

θ|ζ−0 = θ|ζ+0,

∂θ
∂z

∣∣∣∣
ζ−0

− ∂θ
∂z

∣∣∣∣
ζ+0

=
(

1+
(
∂ζ
∂x

)2

+
(
∂ζ
∂y

)2
)−1(

v− ∂ζ
∂t

)
,

(
∂θ
∂z

)2∣∣∣∣
ζ−0

−
(
∂θ
∂z

)2∣∣∣∣
ζ+0

=−2Z
(

1+
(
∂ζ
∂x

)2

+
(
∂ζ
∂y

)2
)−1∫ θ|ζ

−∞
eτ/(Z

−1+δτ)dτ,

vx = vy = vz = 0.

(3.2)

The boundary conditions are the same as in Section 1. Here σ̂ = 2σ∗ (see Section 2).

The hat over σ is omitted below.

Problem (3.1), (3.2) is coupled in the sense that it describes the thermal instability of

the reaction front and the convective instability at the same time. There are different

limiting cases here. For example, if the coefficient of thermal expansion β equals zero

(i.e., R = 0), then this corresponds to a condensed medium since v ≡ 0. Another case is

when we remove the thermal instability by decreasing the Zeldovich number Z . Linear

stability analysis of problem (3.1), (3.2) without heat loss is carried out in [3].

4. Thermal regimes. In this section, we consider a half-infinite continuous plug-flow

reactor with a given velocity v of the medium along the axis of the reactor. We con-

sider the 1D spatial case without hydrodynamics. It is a particular case of the complete

problem (3.1), (3.2), where the width of the reactor is sufficiently small. The temperature

distribution outside of the reaction zone satisfies the equation

∂θ
∂t
= ∂

2θ
∂z2

−v ∂θ
∂z
−σ(θ+1), z > 0, z ≠ ζ. (4.1)

The jump conditions at the reaction zone z = ζ are

θ|ζ−0 = θ|ζ+0,

∂θ
∂z

∣∣∣∣
ζ−0

− ∂θ
∂z

∣∣∣∣
ζ+0

= v− ∂ζ
∂t
,

(
∂θ
∂z

)2∣∣∣∣
ζ−0

−
(
∂θ
∂z

)2∣∣∣∣
ζ+0

= 2Z
∫ θ|ζ
−∞
eτ/(Z

−1+δτ)dτ.

(4.2)
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The boundary condition is

z = 0 : θ =−1. (4.3)

Moreover, we assume that the temperature is bounded. This problem is studied in [5]

in the case σ = 0.

4.1. Stationary solution. In this subsection, we find a stationary solution of problem

(4.1), (4.2), and (4.3). We suppose that the reaction zone is located at z = l. Outside of

it, the dimensionless temperature θ satisfies the following equation:

θ′′ −vθ′ −σ(θ+1)= 0. (4.4)

We look for the solution of (4.4) in the form

θ(z)= c1eµ1z+c2eµ2z−1 for 0≤ z ≤ l,
θ(z)= c3eµ1z+c4eµ2z−1 for z ≥ l, (4.5)

where

µ1,2 = v
2
±
√
v2

4
+σ. (4.6)

From the boundary conditions and jump conditions at the interface and from the

boundedness of the solution (c3 = 0), we obtain

c1+c2 = 0,

c1eµ1l+c2eµ2l−c4eµ2l = 0,

c1µ1eµ1l+c2µ2eµ2l−c4µ2eµ2l = v,

c1µ1eµ1l+c2µ2eµ2l+c4µ2eµ2l = 1
v
I
(
θf
)
,

c1eµ1l+c2eµ2l−1= θf ,

(4.7)

where

I
(
θf
)= 2Z

∫ θ|ζ
−∞
eτ/(Z

−1+δτ)dτ. (4.8)

Solving this system, we find the temperature distribution

θ(z)= I
(
θf
)+v2

2v
(
µ1eµ1l−µ2eµ2l

)(eµ1z−eµ2z
)−1 for 0≤ z ≤ l,

θ(z)= I
(
θf
)−v2

2vµ2
eµ2(z−l)−1 for z ≥ l,

(4.9)

and the system of two equations with respect to the unknown temperature in the reac-

tion zone θf and the distance to the reaction zone l:

I
(
θf
)−2v

(
θf +1

)
µ2 = v2, 1−e(µ2−µ1)l = µ1−µ2

v
(
θf +1

)
. (4.10)
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In the particular case where σ = 0, µ1 = v , and µ2 = 0,

θf = e−µ1l, I
(
θf
)= v2. (4.11)

If l =∞, then θf = 0 and we obtain the normal velocity of the front propagation v2
n =

I(0). If δ = 0, the integral can be found explicitly, v2
n = 2, and we obtain the same

expression for the distance to the reaction zone as in [5]:

l=− 1
v

ln
(

2
Z

ln
un
u

)
. (4.12)

4.2. Stability. In this subsection, we study stability of the stationary solution θs(z)
(Section 4.1) with respect to 1D thermal perturbation. This means that we consider the

model (4.1), (4.2), and (4.3) assuming that the wave number k of the perturbation

θ̃(x,z,t)= θ0(z)ekx+ωt, ζ(x,t)= εekx+ωt, (4.13)

equals 0. As above, we will consider the limiting case L=∞, which gives a good approx-

imation of the problem in the bounded reactor if the reaction zone is not very close to

the outlet of the reactor.

We look for the solution in the form

θ(z,t)= θs(z)+ θ̃(z,t). (4.14)

Then θ0(z) satisfies the equation

θ′′0 −vθ′0−(σ +ω)θ0 = 0. (4.15)

Therefore,

θ0(z)=

c1eγ1z+c2eγ2z, 0< z < l,

c3eγ1z+c4eγ2z, l < z,
(4.16)

where

γ1 = v 1+d
2
, γ2 = v 1−d

2
, d=

√
1+4Ω+r ,

Ω= ω
v2
, r = 4σ

v2
.

(4.17)

Linearizing the jump conditions at the reaction zone, taking into account the bound-

ary condition at z = 0 and the fact that the perturbation is bounded at infinity, and

introducing the notations

ε̃= εv exp
(−γ2l

)
, c̃1 = c1 exp

[(
γ1−γ2

)
l
]
,

c̃2 = c2, c̃4 = c4, l̃= lv, (4.18)
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Figure 4.1. Thermal instability boundary: critical value of Z as a function of
the flow velocity.

we obtain the system of equations

ε̃+ c̃1+ c̃2− c̃4 = 0,

2(Ω+1)ε̃+(1+d)c̃1+(1−d)
(
c̃2− c̃4

)= 0,

2Z1ε̃+(1+d)c̃1+(1−d)c̃2−2c̃4Z2 = 0,

c̃1 exp
(−dl̃)+ c̃2 = 0,

(4.19)

with respect to the unknown constants ε, c̃1, c̃2, and c̃4. Here

Z1 = 1+ 1
v

(
µ2− 1

v
K
(
Tf
))
J
(
Tf
)
, Z2 = 2K

(
Tf
)

I
(
Tf
)+v2

+ 1−d
2
J
(
Tf
)
,

J
(
Tf
)= I

(
Tf
)−v2

I
(
Tf
)+v2

, I
(
Tf
)=

∫ θf
−∞
K(T)dT .

(4.20)

The condition of nontrivial solvability of this system gives the dispersion relation

(
2Z2−1+d)[d−(Ω+ 1+d

2

)(
1−exp

(−dl̃))]=−2Ωd+2d
(
Z1−1

)
. (4.21)

In the particular cases where there is no heat loss (σ = 0) and where l̃→∞, this disper-

sion relation coincides with the relations obtained in [1, 5].

At the oscillatory instability boundary, Ω = iφ, where φ is an unknown frequency.

We can represent (4.21) as two real equations and find l̃ from one of them and Z as

a function of other parameters from the other one. The critical value of the Zeldovich

number is shown in Figure 4.1.
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5. Numerical simulations. In this section, we use direct numerical simulations to

study problem (1.3), (1.6) in two space dimensions. We consider the stream function-

vorticity formulation of the Navier-Stokes equations and employ an alternative direc-

tion method to solve the finite-difference equations.

We begin with the problem without convection and analyze the convergence of so-

lutions of the two-dimensional (2D) problem to the corresponding solution of the 1D

problem as the width of the domain decreases. After that, we compute the complete

problem with convection to study its influence on the thermal regimes.

5.1. Thermal regimes. In this subsection, we consider the problem without convec-

tion

∂θ
∂t
=∆θ−c ∂θ

∂z
+k0eZθ(1−α),

∂α
∂t
=−c ∂α

∂z
+k0eZθ(1−α),

x = 0, Lx :
∂θ
∂n

=−σθ, z = 0 : θ = 0, α= 0, z = Lz :
∂θ
∂z

= 0.

(5.1)

The corresponding 1D problem is

∂θ
∂t
= ∂

2θ
∂z2

−c ∂θ
∂z
+k0eZθ(1−α)−sθ,

∂α
∂t
=−c ∂α

∂z
+k0eZθ(1−α),

z = 0 : θ = 0, α= 0, z = Lz :
∂θ
∂y

= 0,

(5.2)

where s = 2σ/Lx . In Section 2, it is shown that the solution of problem (5.1) converges

to the solution of problem (5.2) as σ → 0 and Lx → 0 at any fixed time interval. The

same method allows us to show the convergence of stationary solutions of these two

problems.

We analyze the convergence of the stationary solutions numerically. We recall that

there can exist high-temperature and low-temperature stationary regimes in plug-flow

reactors [2]. If the speed u of the medium is greater than the normal velocity of the

front propagation, the high-temperature regime does not exist.

We vary two parameters σ and Lx , keeping all other parameters constant. Let l1 be

such that α(l1) = 0.5 for the stationary solution of problem (5.2). Denote by l(x) the

function such that α(l(x),x)= 0.5 for the stationary solution of problem (5.1),

lmax =max
x
l(x), lmin =min

x
l(x),

l2 = 1
2

(
lmax+lmin

)
, ld = lmax−lmin.

(5.3)

Figure 5.1 shows l1 as a function of s and l2 as a function of σ for Lx fixed and as a

function of Lx for σ fixed. The values l1 and l2 are compared for the same values of s.
We see that the results for two 2D simulations coincide. It is consistent with the

fact that the 1D problem (5.2) depends on the ratio of these parameters only. So we can
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Figure 5.1. Comparison of 1D and 2D simulations. The lower crosses repre-
sent 1D model; the upper crosses and the dashed line represent 2D model.

Table 5.1. Comparison of numerical results with different numbers of dis-
cretization points.

Lx σ mx l2
0.5 0.005 21 4.63

0.4 0.004 21 4.63

0.3 0.003 21 4.63

0.2 0.002 21 4.63

0.1 0.001 21 4.63

0.5 0.005 11 4.79

0.5 0.005 21 4.63

0.5 0.005 31 4.63

0.1 0.001 31 4.59

expect a similar behavior for the 2D problem (5.1). Its solution converges to the solution

of the 1D problem as s decreases. However, the difference between them increases as

s approaches the extinction limit.

We note that ld is very small compared with lmax and lmin (of the order 10−3). So

the 2D solution is practically independent of the x-variable. However, for s sufficiently

large, it differs from the 1D solution.

According to the results of Section 2, l2 should converge to l1 as Lx → 0 and σ → 0

for s fixed. Table 5.1 shows l2 for s = 0.02 and for various Lx and σ . We see that it has

exactly the same values. This shows a very good convergence as Lx and σ decrease,

but to the value different from that of the 1D problem!
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Figure 5.2. Amplitude of periodic oscillations as a function of Z . Lower
crosses: without heat loss; upper crosses: with heat loss in the boundary con-
dition and in the equation; and dashed curves: approximation by the square-
root formula.

The explanation of this paradox is connected with the numerical accuracy. The com-

putations for Lx = 0.5, σ = 0.005 and for Lx = 0.1, σ = 0.001 are done with the same

number mx of discretization points (Table 5.1, Section 1). The space step in the sec-

ond case is 5 times less, the results coincide, and we conclude that the numerical accu-

racy is sufficient. However, this conclusion is wrong. Table 5.1 shows also the results

for Lx = 0.5, σ = 0.005, and for different numbers of discretization points in the x-

direction (Sections 2 and 3). Increasingmx , we observe that l2 approaches l1 = 4.50. The

conclusion of this analysis is rather unexpected: decreasing the width of the domain,

we should increase the number of discretization points. If it is fixed, the numerical

solution for the 2D problem does not converge to the numerical solution of the 1D

problem.

If Z exceeds a critical value Zc , then the stationary solution loses its stability and

periodic in time regimes appears as a result of a Hopf bifurcation. Figure 5.2 shows the

amplitude of oscillations as a function of Z for the problem without heat loss (lower

curve), for problem (5.1) with heat loss in the boundary conditions, and for problem

(5.2) with heat loss in the equation (upper curve). We see that in agreement with the

linear stability analysis, heat losses destabilize the front (Section 4.2) and that the 1D

problem (5.2) provides a good approximation of the 2D problem (5.1).

5.2. Convection. For the problem without convection (R = 0) and without heat loss

(σ = 0), there can exist a stationary solution independent of x. This means that the

reaction zone is horizontal and the temperature below it is greater than the temperature

above it. Therefore, in the presence of gravity (R > 0), natural convection can appear.

The critical Rayleigh numberRc and the amplitude of convection depend on parameters.

Figure 5.3 shows a bifurcation diagram where the amplitude of convection is given as a

function of the width of the domain Lx . We note that the bifurcation diagram is typical
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Figure 5.3. Maximum of the stream function as a function of the width of
the domain for different Z . Dots: simulations, curves: approximation by the
square-root formula. Lower curve: Z = 7.8, intermediate curve: Z = 7.9, and
upper curve: Z = 8.0.

for a supercritical bifurcation. The maximum of the stream function as a function of L
is well described by the square-root dependence

ψm = a
√
Lx−Lcx, (5.4)

where the critical value Lcx depends on the Zeldovich number and a= 1.7 appears to be

the same for all Z . Increasing Z , we increase the maximal temperature gradient in the

stationary temperature distribution, which is roughly proportional to qZ . This is why

the convection becomes stronger. For a fixed width of the domain, the appearance of

convection is determined by the value of the Rayleigh number. If R exceeds a critical

value, convection appears and its amplitude grows together withR. As above, the critical

value of R decreases with the increase of the Zeldovich number. If Z passes through

the critical value where thermal oscillations appear, the stationary convective regime

loses its stability and oscillating convective solutions are observed.
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