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We introduce a class of η-accretive mappings in a real Banach space and show that the
η-proximal point mapping for η-m-accretive mapping is Lipschitz continuous. Further, we
develop an iterative algorithm for a class of general variational-like inclusions involving η-
accretive mappings in real Banach space, and discuss its convergence criteria. The class of
η-accretive mappings includes several important classes of operators that have been studied
by various authors.

2000 Mathematics Subject Classification: 47H04, 47H06, 47H10, 47J20, 47J25, 47J30, 49J40.

1. Introduction. Variational inequality theory has emerged as a powerful tool for

a wide class of unrelated problems arising in various branches of physical, engineer-

ing, pure, and applied sciences in a unified and general framework (see, e.g., [5, 6, 7]).

Variational inequalities have been extended and generalized in different directions by

using novel and innovative techniques and ideas, both for their own sake and for their

applications. An important and useful generalization of variational(-like) and quasi-

variational(-like) inequalities is a variational(-like) inclusion.

In recent years, much attention has been given to developing efficient and imple-

mentable numerical methods including projection method and its variant forms, lin-

ear approximation, auxiliary principle method, and descent and Newton’s methods. In

1994, Hassouni and Moudafi [8] introduced and studied a class of variational inclusions

and developed a perturbed iterative algorithm for the variational inclusions. Adly [1],

Huang [9], Kazmi [11], Ding [2] have obtained some important extensions of the result

in [8].

Recently, Ding and Luo [4] and Ding [3] introduced the concepts of η-subdifferential

and η-proximal point mapping of a proper function and developed some perturbed

iterative algorithms for some classes of variational-like inclusions.

Motivated by recent works going on in this direction, we define various types of η-

accretive mappings in real Banach space and establish some properties of η-proximal

point mappings for η-m-accretive mappings. Further, we consider a class of general

variational-like inclusions in real Banach spaces and develop iterative algorithms for

this class of inclusions by making use of η-proximal point mapping. The convergence

analysis for the developed iterative algorithms is also studied. The results presented

in this paper extend and improve many known results in the literature.

2. η-m-accretive mappings. Throughout this paper, we assume that E is a real Ba-

nach space equipped with norm ‖ ·‖; E∗ is the topological dual space of E equipped
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with norm |‖ ·‖|; CB(E) is the family of all nonempty closed and bounded subsets of

E; 2E is a power set of E; H(·,·) is the Hausdorff metric on CB(E) defined by

H(A,B)=max

{
sup
x∈A

inf
y∈B

d(x,y),sup
y∈B

inf
x∈A

d(x,y)
}

; (2.1)

〈·,·〉 is the dual pair between E and E∗, and J : E → 2E
∗
is the normalized duality map-

ping defined by

J(x)= {f ∈ E∗ : 〈x,f 〉 = ‖x‖2, ‖x‖ = ∣∣‖f‖∣∣}, x ∈ E. (2.2)

We observe immediately that if E =H, a Hilbert space, then J is the identity map on H.

First, we introduce the following definitions.

Definition 2.1. A mapping η : E×E→ E is said to be

(i) accretive, if there exists jη(u,v)∈ J(η(u,v)) such that

〈
u−v,jη(u,v)〉≥ 0, ∀u,v ∈ E; (2.3)

(ii) strictly accretive, if there exists jη(u,v)∈ J(η(u,v)) such that

〈
u−v,jη(u,v)〉≥ 0, ∀u,v ∈ E, (2.4)

and equality holds if and only if u= v ;

(iii) δ-strongly accretive, if there exist jη(u,v)∈ J(η(u,v)) and δ > 0 such that

〈
u−v,jη(u,v)〉≥ δ‖u−v‖2, ∀u,v ∈ E; (2.5)

(iv) τ-Lipschitz continuous, if there exist jη(u,v)∈ J(η(u,v)) and τ > 0 such that

∣∣∥∥jη(u,v)∥∥∣∣≤ τ‖u−v‖, ∀u,v ∈ E. (2.6)

Definition 2.2. Let η : E×E → E be a single-valued mapping. Then a multivalued

mapping M : E→ 2E is said to be

(i) η-accretive, if there exists jη(u,v)∈ J(η(u,v)) such that

〈
x−y,jη(u,v)〉≥ 0, ∀u,v ∈ E, ∀x ∈Mu, y ∈Mv ; (2.7)

(ii) strictly η-accretive, if there exists jη(u,v)∈ J(η(u,v)) such that

〈
x−y,jη(u,v)〉≥ 0, ∀u,v ∈ E, ∀x ∈Mu, y ∈Mv, (2.8)

and equality holds if and only if u= v ;

(iii) γ-strongly η-accretive, if there exist jη(u,v)∈ J(η(u,v)) and γ > 0 such that

〈
x−y,jη(u,v)〉≥ γ‖u−v‖2, ∀u,v ∈ E, ∀x ∈Mu, y ∈Mv ; (2.9)

(iv) η-m-accretive, if M is η-accretive and (I+ρM)(E) = E for any ρ > 0, where I
stands for identity mapping.
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Remark 2.3. In Definition 2.2, if η(u,v) = u−v , for all u,v ∈ E, we recover the

usual definitions of accretiveness of the multivalued mapping E.

Definition 2.4. A multivalued mapping M : E→ 2E is said to be α-H-Lipschitz con-

tinuous, if there exists α> 0 such that

H(Mu,Mv)≤α‖u−v‖, ∀u,v ∈ E. (2.10)

We need the following lemma in the sequel.

Lemma 2.5 [13]. Let E be a real Banach space and J : E→ 2E
∗

the normalized duality

mapping. Then for any x,y ∈ E,

‖x+y‖2 ≤ ‖x‖2+2
〈
y,j(x+y)〉, ∀j(x+y)∈ J(x+y). (2.11)

Now, we prove the following lemmas.

Lemma 2.6. Let η : E×E → E be a strictly accretive mapping and let M : E → 2E be

η-m-accretive multivalued mapping. Then

(a) 〈x − y,jη(u,v)〉 ≥ 0, for all (y,v) ∈ Graph(M), implies (x,u) ∈ Graph(M),
where Graph(M) := {(x,u)∈ E×E : x ∈Mu};

(b) the mapping (I+ρM)−1 is single-valued for all ρ > 0.

Proof. (a) Suppose, on the contrary, that there exists (x0,u0) 
∈ Graph(M) such that

〈
x0−y,jη

(
u0,v

)〉≥ 0, ∀(y,v)∈ Graph(M). (2.12)

Since M is η-m-accretive, we have (I+ρM)(E) = E, and hence there exists (x1,u1) ∈
Graph(M) such that

x1+ρu1 = x0+ρu0. (2.13)

Now, first set (y,v) = (x1,u1) in (2.12), and then, from the resultant inequality and

(2.13), we obtain

0≤ 〈x0−x1,jη
(
u0,u1

)〉= ρ〈u1−u0,jη
(
u0,u1

)〉
, (2.14)

which implies that

ρ
〈
u0−u1,jη

(
u0,u1

)〉≤ 0, since ρ > 0. (2.15)

But η is strictly accretive, so we have

0≤ 〈u0−u1,jη
(
u0,u1

)〉≤ 0, (2.16)

which yields u0 = u1, and hence, from (2.13), we get x1 = x0, a contradiction. This

completes the proof of (a).
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(b) For any given z ∈ E and a constant ρ > 0, let u,v ∈ (I+ρM)−1(z). Then ρ−1(z−
u)∈Mu and ρ−1(z−v)∈Mv . Now,

0= ρ〈ρ−1(z−u)−ρ−1(z−v),jη(u,v)〉+〈u−v,jη(u,v)〉
≥ 〈u−v,jη(u,v)〉, (2.17)

using η-accretiveness of M . Since η is strictly accretive, from the above inequality, we

have u= v . This implies that (I+ρM)−1 is single valued. This completes the proof.

Remark 2.7. By Lemma 2.6, we can define η-proximal point mapping for an η-m-

accretive mapping M as follows:

JMρ (z)= (I+ρM)−1(z), ∀z ∈ E, (2.18)

where ρ > 0 is a constant and η : E×E→ E is a strictly accretive mapping.

Lemma 2.8. Let η : E×E → E be a δ-strongly accretive and τ-Lipschitz continuous

mapping and let M : E → 2E be an η-m-accretive mapping. Then the η-proximal point

mapping JMρ is τ/δ-Lipschitz continuous, that is,

∥∥JMρ (u)−JMρ (v)∥∥≤ τδ‖u−v‖, ∀u,v ∈ E. (2.19)

Proof. Let u,v ∈ E. From the definition of JMρ , we have JMρ (u) = (I +ρM)−1(u).
This implies that

ρ−1(u−JMρ (u))∈M(JMρ (u)). (2.20)

Similarly, we have

ρ−1(v−JMρ (v))∈M(JMρ (v)). (2.21)

Since M is η-accretive, we obtain

0≤ ρ−1〈(u−JMρ (u))−(v−JMρ (v)),jη(JMρ (u),JMρ (v))〉
= ρ−1〈u−v,jη(JMρ (u),JMρ (v))〉−ρ−1〈JMρ (u)−JMρ (v),jη(JMρ (u),JMρ (v))〉. (2.22)

Since ρ > 0, and η is δ-strongly accretive and τ-Lipschitz continuous, from the above

inequality, we have

δ
∥∥JMρ (u)−JMρ (v)∥∥2 ≤ τ‖u−v‖·∥∥JMρ (u)−JMρ (v)∥∥. (2.23)

This implies that

∥∥JMρ (u)−JMρ (v)∥∥≤ τδ‖u−v‖, ∀u,v ∈ E, (2.24)

and this completes the proof.
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3. General variational-like inclusions and iterative algorithm. Let η,N : E×E → E
and G : E→ E be three single-valued mappings, let S,T : E→ CB(E) be two multivalued

mappings, and let M : E×E → 2E be a multivalued mapping such that, for each u ∈ E,

M(·,u) is η-m-accretive. We consider the following general variational-like inclusion

problem (in short, GVIP).

Find u∈ E, x ∈ Su, and y ∈ Tu such that

0∈N(x,y)+M(Gu,u). (3.1)

The following are special cases of GVIP (3.1).

(I) If E = H, a real Hilbert space, M(·,u) = ∂φ(·,u), where φ : H×H → R
⋃{+∞} is

such that φ(·,u) is a proper and lower semicontinuous functional for all u ∈ H, and

∂φ(·,u) denotes the η-subdifferential ofφ(·,u), then GVIP (3.1) reduces to variational-

like inequality problem of finding u∈H, x ∈ Su, and y ∈ Tu, such that

〈
N(x,y),η(v,Gu)

〉≥φ(Gu,u)−φ(Gu,v), ∀v ∈H, (3.2)

similar to the problem considered by Ding [3].

(II) In inequality (3.2), if N(x,y) = x−y , for all x,y ∈H, and if S and T are single-

valued mappings, still in Hilbert spaces, then problem (3.2) reduces to variational-like

inequality problem considered by Ding and Luo [4].

We remark that for suitable choices of N, η, M , S, T , and G, GVIP (3.1) reduces to

various classes of variational inclusions and variational inequalities (e.g., [2, 8, 9, 11])

studied by various authors in Hilbert spaces. Our problem (3.1) is also set in more

general real Banach spaces.

The following lemma, which will be used in the sequel, is an immediate consequence

of the definition of JM(·,u)ρ .

Lemma 3.1. For given u∈ E, x ∈ Su, and y ∈ Tu, (u,x,y) is a solution of GVIP (3.1)

if and only if it is a solution of

Gu= JM(·,u)ρ
(
Gu−ρN(x,y)), (3.3)

where JM(·,u)ρ = (I+ρM(·,u))−1 and ρ > 0 is a constant.

Using Lemma 3.1 and a theorem of Nadler [12], we develop an iterative algorithm for

finding the approximate solution of GVIP (3.1) as follows.

Iterative algorithm 3.2. Let η,N : E×E → E, G : E → E, and S,T : E → CB(E) be

such that, for each u ∈ E, Q(u) ⊆ G(E), where Q : E → 2E is a multivalued mapping

defined by

Q(u)=
⋃
x∈Su

⋃
y∈Tu

(
JM(·,u)ρ

(
Gu−ρN(x,y))), (3.4)

where M : E×E → 2E is a multivalued mapping such that, for each u ∈ E, M(·,u) is

η-m-accretive.
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For given u0 ∈ E, x0 ∈ Su0, and y0 ∈ Tu0, let

w0 = JM(·,u0)
ρ

(
Gu0−ρN

(
x0,y0

))∈Q(u0
)⊆G(E). (3.5)

Hence there exists u1 ∈ E such that w0 = G(u1). Since x0 ∈ Su0 ∈ CB(E) and y0 ∈
Tu0 ∈ CB(E), then, by Nadler’s result [12], there exist x1 ∈ Su1 and y1 ∈ Tu1 such that

∥∥x0−x1

∥∥≤ (1+(1+1)−1)H(Su0,Su1
)
,∥∥y0−y1

∥∥≤ (1+(1+1)−1)H(Tu0,Tu1
)
.

(3.6)

Let

w1 = JM(·,u1)
ρ

(
Gu1−ρN

(
x1,y1

))∈Q(u1
)⊆G(E). (3.7)

Hence there exists u2 ∈ E such that w1 = G(u2). By induction, we can define iterative

sequences {un}, {Gun}, {xn}, and {yn} as follows:

Gun+1 = JM(·,un)ρ
(
Gun−ρN

(
xn,yn

))
, (3.8)

xn ∈ Sun :
∥∥xn−xn+1

∥∥≤ (1+(1+n)−1)H(Sun,Sun+1
)
, (3.9)

yn ∈ Tun :
∥∥yn−yn+1

∥∥≤ (1+(1+n)−1)H(Tun,Tun+1
)
, (3.10)

where n= 0,1,2,3, . . . and ρ > 0 is a constant.

4. Convergence analysis for Iterative Algorithm 3.2.

Theorem 4.1. Let E be a real Banach space and let η : E×E → E be δ-strongly ac-

cretive and τ-Lipschitz continuous. Let S,T : E → CB(E), and G : E → E be σ -H-Lipschitz

continuous, k-H-Lipschitz continuous, and ξ-Lipschitz continuous mappings, respectively,

and let G be ν-strongly η-accretive mapping. Let N : E×E→ E be α- and β-Lipschitz con-

tinuous with respect to the first and second arguments, respectively, and γ-strongly η-

accretive with respect to S in the first argument. LetM : E×E→ 2E be such that, for each

fixed w ∈ E, M(·,w) is η-m-accretive mapping, and, for each u ∈ E, let Q(u) ⊆ G(E),
where Q is defined by (3.4). Suppose that there exist ρ > 0 and λ > 0 such that, for each

w1,w2,v ∈ E,

∥∥JM(·,w1)
ρ (v)−JM(·,w2)

ρ (v)
∥∥≤ λ∥∥w1−w2

∥∥, (4.1)

∣∣∣∣ρ− τ2
[
γ−σα(ξ+τ)]−νδkβ(1−l)

τ2
(
2σ 2α2−k2β2

) ∣∣∣∣

<

√[
τ2
(
γ−σα(ξ+τ))−νδkβ(1−l)]2−[2σ 2α2−k2β2

][
τ4ξ2−ν2δ2(1−l)2]

τ2
(
2σ 2α2−k2β2

) ,

(4.2)

τ2γ > τ2σα(ξ+τ)+νδkβ(1−l)+
√(

2σ 2α2−k2β2
)(
τ4ξ2−ν2δ2(1−l)2), (4.3)

τ2ξ > νδ(1−l),
√

2σα> kβ, (4.4)
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where l= (τ/ν)λ. Then the iterative sequences {un}, {Gun}, {xn}, and {yn} generated

by Iterative Algorithm 3.2 converge strongly to u∗, Gu∗, x∗, and y∗, respectively, and

(u∗,x∗,y∗) is a solution of GVIP (3.1).

Proof. From Lemma 2.8, (3.8), and inequality (4.1), we have the following estimates:

∥∥Gun+2−Gun+1

∥∥
= ∥∥JM(·,un+1)

ρ
(
Gun+1−ρN

(
xn+1,yn+1

))−JM(·,un)ρ
(
Gun−ρN

(
xn,yn

))∥∥
≤ ∥∥JM(·,un+1)

ρ
(
Gun+1−ρN

(
xn+1,yn+1

))−JM(·,un+1)
ρ

(
Gun−ρN

(
xn,yn

))∥∥
+∥∥JM(·,un+1)

ρ
(
Gun−ρN

(
xn,yn

))−JM(·,un)ρ
(
Gun−ρN

(
xn,yn

))∥∥
≤ τ
δ
∥∥Gun+1−Gun−ρ

[
N
(
xn+1,yn+1

)−N(xn,yn)]∥∥+λ∥∥un+1−un
∥∥

≤ τ
δ
∥∥Gun+1−Gun−ρ

[
N
(
xn+1,yn+1

)−N(xn,yn+1
)]∥∥

+ρτ
δ
∥∥N(xn,yn+1

)−N(xn,yn)∥∥+λ∥∥un+1−un
∥∥.

(4.5)

Since G is ν-strongly η-accretive and η is τ-Lipschitz continuous, we have the following

estimates:

τ
∥∥un+1−un

∥∥∥∥(Gun+1−Gun
)∥∥≥ 〈Gun+1−Gun,jη

(
un+1,Gun

)〉
≥ ν∥∥un+1−un

∥∥2 (4.6)

implies that

∥∥un+1−un
∥∥≤ τ

ν
∥∥(Gun+1−Gun

)∥∥. (4.7)

From the assumption that N is β-Lipschitz continuous in the second argument and T
is k-H-Lipschitz continuous, we get that

∥∥N(xn,yn+1
)−N(xn,yn)∥∥≤ β∥∥yn+1−yn

∥∥≤ βk(1+(1+n)−1)∥∥un+1−un
∥∥. (4.8)

Furthermore, since N is γ-strongly η-accretive with respect to S in the first argument

and α-Lipschitz continuous with respect to the first argument and G is ξ-Lipschitz

continuous, by using Lemma 2.5, we obtain that

∥∥Gun+1−Gun−ρ
[
N
(
xn+1,yn+1

)−N(xn,yn+1
)]∥∥2

≤ ∥∥Gun+1−Gun
∥∥2−2ρ

〈
N
(
xn+1,yn+1

)−N(xn,yn+1
)
,

j
(
Gun+1−Gun−ρ

[
N
(
xn+1,yn+1

)−N(xn,yn+1
)])〉

≤ ξ2
∥∥un+1−un

∥∥2−2ρ
〈
N
(
xn+1,yn+1

)−N(xn,yn+1
)
,j
(
η
(
un+1,un

))〉
−2ρ

〈
N
(
xn+1,yn+1

)
−N(xn,yn+1

)
,j
(
Gun+1−Gun−ρ

[
N
(
xn+1,yn+1

)−N(xn,yn+1
)])

−j(η(un+1,un
))〉
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≤ ξ2
∥∥un+1−un

∥∥2−2ργ
∥∥un+1−un

∥∥2+2ρ
∥∥N(xn+1,yn+1

)−N(xn,yn+1
)∥∥

×[∥∥Gun+1−Gun
∥∥+ρ∥∥N(xn+1,yn+1

)−N(xn,yn+1
)∥∥+∥∥η(un+1,un

)∥∥]
≤ (ξ2−2ργ

)∥∥un+1−un
∥∥2+2ρα

∥∥xn+1−xn
∥∥[(ξ+τ)∥∥un+1−un

∥∥+ρα∥∥xn+1−xn
∥∥]

=
[
ξ2−2ργ+2ρασ(ξ+τ)(1+(1+n)−1)+2ρ2α2σ 2(1+(1+n)−1)2

]
×∥∥un+1−un

∥∥2,

(4.9)

where S is σ -H-Lipschitz continuous.

Combining (4.5), (4.7), (4.8), and (4.9), we have the following estimates:

∥∥un+2−un+1

∥∥≤ θn∥∥un+1−un
∥∥, (4.10)

where

θn := τ2

νδ

[√
ξ2−2ργ+2ρασ(ξ+τ)(1+(1+n)−1

)+2ρ2α2σ 2
(
1+(1+n)−1

)2

+ρβk(1+(1+n)−1)]+ τ
ν
λ.

(4.11)

Letting n→∞, we obtain that θn→ θ, where

θ := τ2

νδ

[√
ξ2−2ργ+2ρασ(ξ+τ)+2ρ2α2σ 2+ρβk

]
+ τ
ν
λ. (4.12)

It follows from (4.10), conditions (4.2)–(4.4) and (4.11), (4.12) that {un} is a Cauchy

sequence in E. So, there exists u∗ ∈ E such that un → u∗ as n → ∞. From Lipschitz

continuity of G, we have that

∥∥Gun+1−Gun
∥∥≤ ξ∥∥un+1−un

∥∥. (4.13)

Also, from (3.9), we get that

∥∥xn−xn+1

∥∥≤ (1+(1+n)−1)H(Sun,Sun+1
)≤ σ(1+(1+n)−1)∥∥un−un+1

∥∥. (4.14)

Since {un} is a Cauchy sequence, it follows from (4.13) and (4.14) that {Gun} and {xn}
both are also Cauchy sequences. Similarly, {yn} is a Cauchy sequence. Hence there exist

x∗,y∗ ∈ E such that Gun→Gu∗, xn→ x∗, and yn→y∗ as n→∞. Furthermore,

d
(
x∗,Su∗

)≤ ∥∥x∗−xn∥∥+d(xn,Su∗)
≤ ∥∥x∗−xn∥∥+H(Sun,Su∗)
≤ ∥∥x∗−xn∥∥+σ∥∥un−u∗∥∥ �→ 0,

(4.15)

and hence x∗ ∈ Su∗. Similarly, y∗ ∈ Tu∗.
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Finally, we define

w∗ := JM(·,u∗)ρ
(
Gu∗−ρN(x∗,y∗)). (4.16)

Now, we estimate that

∥∥Gun+2−w∗∥∥≤ τ
δ
∥∥Gun+1−Gu∗−ρ

[
N
(
xn+1,yn+1

)−N(x∗,y∗)]∥∥
+λ∥∥un+1−u∗

∥∥
≤ τ
δ
[∥∥Gun+1−Gu∗

∥∥+ρ∥∥N(xn+1,yn+1
)−N(x∗,yn+1

)∥∥
+ρ∥∥N(x∗,yn+1

)−N(x∗,y∗)∥∥]+λ∥∥un+1−u∗
∥∥

≤ τ
δ
[∥∥Gun+1−Gu∗

∥∥+ρα∥∥xn+1−x∗
∥∥+ρβ∥∥yn+1−y∗

∥∥]
+λ∥∥un+1−u∗

∥∥ �→ 0 as n �→∞.

(4.17)

Thus, by Lemma 3.1, it follows that (u∗,x∗,y∗) is a solution of GVIP (3.1), and this

completes the proof.

Remark 4.2. It is clear that δ≤ τ , ν ≤ ξ, and γ ≤ α. Further, condition (4.2) is true

for suitable values of constants, for example,

(i) δ= τ = ν = ξ = γ =α= 1; σ = β= k= λ= 0.1; and ρ = 0.5;

(ii) δ= ν = γ = σ = β= k= ρ = 0.1; τ = ξ =α= 0.2; and λ= 0.01.

Remark 4.3. Most of the results in, for example, [4, 10] and the references therein,

are obtained in Hilbert spaces. Our theorems extend them to the more general real

Banach spaces considered in this paper.
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