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We will show that if X is a tree-complete subspace of �∞, which contains c0, then it does
not admit any weakly midpoint locally uniformly convex renorming. It follows that such a
space has no equivalent Kadec renorming.
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1. Introduction. It is known that �∞ has an equivalent strictly convex renorming

[2]; however, by a result due to Lindenstrauss, it cannot be equivalently renormed in

locally uniformly convex manner [10]. In this note, we will show that every tree-complete

subspace of �∞, which contains c0, does not admit any equivalent weakly midpoint

locally uniformly convex norm. This can be considered as an extension of [1, 8]. Since

every strictly convexifiable Banach space with Kadec property admits an equivalent

midpoint locally uniformly convex renorming [9], it follows that every subspace of �∞
with the tree-completeness property has no equivalent Kadec renorming. The existence

of such a (nontrivial) subspace, which does not contain any copy of �∞, has already been

proved by Haydon and Zizler (see [5, 7]).

2. Results. We recall that a norm ‖ ·‖ on a Banach space X is said to be midpoint

locally uniformly rotund (MLUR) if, whenever {xn}, {yn}, and x are in X with ‖xn‖ →
‖x‖, ‖yn‖ → ‖x‖, and ‖(xn+yn)/2−x‖ → 0, we necessarily have ‖xn−yn‖ → 0. If

at the end of the last sentence, we replace norm with weak, the definition of weakly

midpoint locally uniformly rotund (wMLUR) will be obtained [3]. Let T be the set of all

finite (possible empty) strings of 0’s and 1’s. The empty string ( ) is the unique string

of length 0; the length |t| of a string t is n if t ∈ {0,1}n. The tree order is defined by

s ≺ t if |s| < |t| and t(m) = s(m) for m ≤ |s|. Each t ∈ T has exactly two immediate

successors, that is, t0 and t1.

A lattice L is said to be tree-complete if, whenever {ft}t∈T is a bounded disjoint family

in L, there exists b ∈ {0,1}N , such that
∑
n∈N fb|n is in L.

Haydon and Zizler [7] constructed a closed linear subspace of �∞ (which is a tree-

complete sublattice of �∞) such that it contains c0 but does not contain any subspace

isomorphic to �∞. Notice that in this space X every infinite subsetM ofN has an infinite

subset M0 ⊂M such that 1M0 ∈X [7].

Theorem 2.1. Let X be a tree-complete sublattice of �∞. If X contains c0, then X does

not admit any equivalent wMLUR renorming.
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Proof. Let ||| · ||| be an equivalent norm on X. We will show that this norm is not

wMLUR. Let

A( ) =
{
f ∈X : ‖f‖∞ = 1, N \supp(f ) is infinite

}
,

M( ) = sup
{|||f ||| : f ∈A( )

}
, m( ) = inf

{|||f ||| : f ∈A( )
}
.

(2.1)

Choose an element f( ) of X such that |||f( )||| > (3M( ) +m( ))/4. Then select two

disjoint infinite subsets N′0 and N′1 of N \ supp(f( )) with 1N′i ∈ X for some ki ∈ N′i ,
define Ni =N′i \{ki}, and let

Ai =
{
f ∈A( ) : f(n)= f( )(n) for each n 	∈Ni

}
(i= 0,1). (2.2)

Suppose that for some t ∈ T , with |t|<n, At is specified. Put

Mt = sup
{|||f ||| : f ∈At

}
, mt = inf

{|||f ||| : f ∈At
}
. (2.3)

Let ft ∈At satisfy |||ft|||> (3Mt+mt)/4 and take two disjoint infinite subsets N′t0 and

N′t1 of Nt \supp(ft) with 1N′ti ∈X, put Nti =N′ti \{kti}, and define

Ati =
{
f ∈At : f(n)= ft(n)n 	∈Nti

}
(i= 0,1). (2.4)

Thus, by induction on |t|, we can obtain a family {At}t∈T of subsets of X, a family {ft}
of elements of X, a family {Nt} of infinite subsets of N, and a family of integers {kt}
with the following properties.

(a) Ati is of the form

Ati =
{
f ∈At : f(n)= ft(n), n 	∈Nti

}
(i= 0,1), (2.5)

for each t ∈ T .

(b) kti ∈Nt \Nti and ft(kt)= 0 for t ∈ T and i= 0,1.

(c) |||ft|||> (3Mt+mt)/4, where Mt and mt denote the supremum and infimum of

{|||f ||| : f ∈At}, respectively.

(d) Ns ⊂Nt whenever t ≺ s and Nt∩Ns =∅, if s and t are not comparable.

(e) supp(ft−fs)⊂Nt \Ns for t ≺ s.
By (e), {gt}t∈T , defined by

g( ) = f( ), gti = fti−ft (i= 0,1), (2.6)

is a disjoint family of elements of X. By the tree-completeness of X, there exists some

b ∈ {0,1}N such that

fb(x)= f( )+
∑

n∈N
gb|n (2.7)

is in X. Let {kα(n)} be a subsequence of {kb|n} such that 1E ∈ X, where E = {kα(1),
kα(2), . . .}. Let En = {kα(n),kα(n+1), . . .} and hn = 1En . By (a) and (b), g+n+1 = fb+hn+1 and

g−n+1 = fb−hn+1 are inAb|n. Next, select some µ ∈X∗, such that µ(h1)= 1 and µ(g)= 0

for each g ∈ c0. Clearly, for such an element µ and each n∈N, we have µ(hn)= 1. By
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(a), 2fb−f ∈ Ab|n, thus |||2fb|n−f ||| ≤Mb|n for each f ∈ Ab|n and n ∈ N. It follows

that

(
3Mb|n−1+mb|n−1

)

2
≤ ∣∣∣∣∣∣2fb|n

∣∣∣∣∣∣≤Mb|n+|||f |||, ∀f ∈Ab|n, (2.8)

and so

(
3Mb|n−1+mb|n−1

)

2
≤Mb|n+mb|n ≤Mb|n−1+mb|n−1, ∀n∈N. (2.9)

Therefore,

Mb|n−mb|n ≤Mb|n−
(
Mb|n−1+mb|n−1

)

2

≤Mb|n−1−
(
Mb|n−1+mb|n−1

)

2

=
(
Mb|n−1−mb|n−1

)

2
.

(2.10)

The above relations show that

∣∣∣∣∣∣∣∣g±n+1

∣∣∣∣∣∣−∣∣∣∣∣∣fb
∣∣∣∣∣∣∣∣≤Mb|n−mb|n ≤

(
Mb|n−1−mb|n−1

)

2
≤
(
M( )−m( )

)

2n
. (2.11)

That is lim|||g+n ||| = |||fb||| = lim|||g−n |||. Moreover, fb = (g+n + g−n)/2. But weak-

lim(g+n −g−n) ≠ 0, since µ(hn) = 1 for each n ∈ N. This shows that X does not admit

any wMLUR norm.

It is known that weakly midpoint locally uniformly rotundity of a Banach space X
is equivalent to saying that every point of S(X̂) is an extreme point of B(X∗∗) [11]. It

follows that the space considered in Theorem 2.1 has no equivalent norm such that

S(X̂) is a subset of B(X∗∗).
A norm on a Banach space X is said to be strictly convex (rotund) (R) if the unit sphere

of X contains no nontrivial line segment. We say that a norm is Kadec if the weak and

norm topologies coincide on the unit sphere. Every MLUR Banach space admits Kadec

renorming (see [1]). Haydon in [6, Corollary 6.6] gives an example of a Kadec renormable

space which has no equivalent R norm. The following result gives an example of a

strictly convexifiable space with no equivalent Kadec norm.

Corollary 2.2. If a tree-complete subspace X of �∞ contains c0, then it does not

admit any equivalent Kadec renorming.

Proof. It is known that �∞ admits an equivalent strictly convex norm (see [4, page

120] or [2]). In [9] it is shown that every R Banach space with the Kadec property admits

an equivalent MLUR renorming (see also [3, chapter IV]). Thus the result follows from

Theorem 2.1.
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