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We will show that if X is a tree-complete subspace of {, which contains cq, then it does
not admit any weakly midpoint locally uniformly convex renorming. It follows that such a
space has no equivalent Kadec renorming.
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1. Introduction. It is known that ., has an equivalent strictly convex renorming
[2]; however, by a result due to Lindenstrauss, it cannot be equivalently renormed in
locally uniformly convex manner [10]. In this note, we will show that every tree-complete
subspace of £, which contains ¢y, does not admit any equivalent weakly midpoint
locally uniformly convex norm. This can be considered as an extension of [1, 8]. Since
every strictly convexifiable Banach space with Kadec property admits an equivalent
midpoint locally uniformly convex renorming [9], it follows that every subspace of £«
with the tree-completeness property has no equivalent Kadec renorming. The existence
of such a (nontrivial) subspace, which does not contain any copy of £, has already been
proved by Haydon and Zizler (see [5, 7]).

2. Results. We recall that a norm | - || on a Banach space X is said to be midpoint
locally uniformly rotund (MLUR) if, whenever {x,}, {v,}, and x are in X with ||x,]| —
lxll, lynll = llxll, and [|(xn + ¥x)/2 = x|l — 0, we necessarily have ||x, — ynll — 0. If
at the end of the last sentence, we replace norm with weak, the definition of weakly
midpoint locally uniformly rotund (WMLUR) will be obtained [3]. Let T be the set of all
finite (possible empty) strings of 0’s and 1’s. The empty string ( ) is the unique string
of length 0; the length |t| of a string t is n if t € {0,1}". The tree order is defined by
s<tif|s| <|t] and t(m) = s(m) for m < |s|. Each t € T has exactly two immediate
successors, thatis, t0 and 1.

Alattice L is said to be tree-complete if, whenever { f; } ;<7 is a bounded disjoint family
in L, there exists b € {0,1}V, such that > ,,cy fpn is in L.

Haydon and Zizler [7] constructed a closed linear subspace of £, (which is a tree-
complete sublattice of £,,) such that it contains ¢y but does not contain any subspace
isomorphic to £.. Notice that in this space X every infinite subset M of N has an infinite
subset My C M such that 1y, € X [7].

THEOREM 2.1. Let X be a tree-complete sublattice of L. If X contains cy, then X does
not admit any equivalent wMLUR renorming.
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PROOF. Let |||- ||| be an equivalent norm on X. We will show that this norm is not
wWMLUR. Let

A ={feX:|Ifle =1, N\supp(f) is infinite},

2.1
Moy =sup {llIflll:feAnt,  mo =inf{lI[flll:f €A} ey

Choose an element f() of X such that [||f()l|| > (3M() + m())/4. Then select two
disjoint infinite subsets Ny and N; of N\ supp(f()) with Iy, € X for some k; € N},
define N; = N;\ {k;}, and let

Ai={fe€eA ) :f(n)=f)(n) foreachn ¢ N;} (i=0,1). (2.2)
Suppose that for some t € T, with |t| < n, A; is specified. Put
My =sup {|I[fIll: f € A}, my =inf {|[|fI|: f € A¢}. (2.3)

Let f; € A; satisty ||| fi || > (3M; +m;) /4 and take two disjoint infinite subsets N, and
N/, of Ny \supp(f;) with Ly, € X, put Ny; = N{;\ {ki}, and define

Au={f €A f(n) = fitm)n & Ny} (i=0,1). (2.4)

Thus, by induction on |t|, we can obtain a family {A;};cr of subsets of X, a family { f;}
of elements of X, a family {N;} of infinite subsets of N, and a family of integers {k;}
with the following properties.

(a) Ay is of the form

A ={f €A f(n) = filn), n¢ Ny} (i=0,1), (2.5)

foreacht eT.

(b) kii € Ne\Ny; and fi(k;) =0forteTand i=0,1.

© NIfelll > (3My +my) /4, where M; and m; denote the supremum and infimum of
{INLII: f € A}, respectively.

(d) Ns € Ny whenever t < s and N; "N = &, if s and t are not comparable.

(e) supp(fi—fs) C N \N; fort <s.

By (e), {gt}ter, defined by

go=r0, Gu=fi—ft (i=0,1), (2.6)

is a disjoint family of elements of X. By the tree-completeness of X, there exists some
b € {0,1}"N such that

fo(x)=fr+ D gbin (2.7)

neN

is in X. Let {kq()} be a subsequence of {kp,} such that 1y € X, where E = {ky),
ka2),-..}- Let Ey = {kan)s Kan+1),---} and hy, = 1g,. By (a) and (b), g;t.; = fp + hn-1 and
9ns+1 = b —hns1 arein Ap)y. Next, select some p € X*, such that y(h;) =1and pu(g) =0
for each g € cy. Clearly, for such an element y and each n € N, we have u(h,) = 1. By
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@), 2fp — f € Apm, thus |12 fpn — f1l] < My, for each f € Ap, and n € N. It follows
that

<3Mwn—12+mb'n-l) < 12 fpm lll < Mppm+ 111, VS € Appn, (2.8)
and so
(3Mbm71;'mh|n—l) < Mpjn+ Mpin < Mpjn_1 + Mpin_1, VYN EN. (2.9)
Therefore,

(Mpjn—1+Mpjn-1)

Mpin —Mpin < Mpjn —

2

< Myp_y — Moin1 ;mh‘"‘l) (2.10)

_ (Mpjn—1 = Mpn-1)

> .

The above relations show that
" Mh 1~ Mpn- M y—m

g 1= 1o 1] = M= g = ot ZMnct) MO Zm0) o gy
That is lim|||g;;|I| = Illfplll = lim||lg,|ll. Moreover, f, = (g, + g,)/2. But weak-
lim(g,; —g,) # 0, since p(hy,) = 1 for each n € N. This shows that X does not admit
any wMLUR norm. O

It is known that weakly midpoint locally uniformly rotundity of a Banach space X
is equivalent to saying that every point of §(X) is an extreme point of B(X**) [11]. It
follows that the space considered in Theorem 2.1 has no equivalent norm such that
$(X) is a subset of B(X**).

A norm on a Banach space X is said to be strictly convex (rotund) (R) if the unit sphere
of X contains no nontrivial line segment. We say that a norm is Kadec if the weak and
norm topologies coincide on the unit sphere. Every MLUR Banach space admits Kadec
renorming (see [1]). Haydon in [6, Corollary 6.6] gives an example of a Kadec renormable
space which has no equivalent R norm. The following result gives an example of a
strictly convexifiable space with no equivalent Kadec norm.

COROLLARY 2.2. If a tree-complete subspace X of L. contains cy, then it does not
admit any equivalent Kadec renorming.

PROOF. It is known that £., admits an equivalent strictly convex norm (see [4, page
120] or [2]). In [9] it is shown that every R Banach space with the Kadec property admits
an equivalent MLUR renorming (see also [3, chapter IV]). Thus the result follows from
Theorem 2.1. |
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