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A THIRD-ORDER NONLOCAL PROBLEM
WITH NONLOCAL CONDITIONS
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We study an equation with dominated lower-order terms and nonlocal conditions. Using the
Riesz representation theorem and the Schauder fixed-point theorem, we prove the existence
and uniqueness of a generalized solution.

2000 Mathematics Subject Classification: 35K35, 35B30, 35D05.

1. Introduction. Various problems arising in heat conduction, chemical engineering,

plasma physics, thermoelasticity, and so forth, can be reduced to the nonlocal prob-

lems with integral conditions. This type of nonlocal boundary value problems has been

investigated in [1, 2, 3, 4, 5, 6, 8] for parabolic equations and in [7, 10] for hyperbolic

equations. However, some partial differential equations of higher order with dominated

low terms and nonlocal conditions are encountered when studying models for certain

natural and physical processes. An example of such type of equations is the equation of

longitudinal waves in a thin elastic stem taking into account the effects of transversal

inertia [9]:

∂2u
∂t2

− ∂
2u
∂x2

− ∂4u
∂t2∂x2

= 0. (1.1)

Another example is the equation of moisture transfer:

∂u
∂t
= ∂
∂x

(
D
∂u
∂x

+A ∂2u
∂x∂t

)
, (1.2)

where u is the concentration of moisture per unit, D is the coefficient of diffusivity,

and A> 0 is the varying coefficient of Hallaire. Motivated by this, we study the equation

lu= ∂3u
∂t∂x2

− ∂u
∂t
+a(t,x)∂

2u
∂x2

+b(t,x)∂u
∂x

+c(t,x)u= f(t,x) (1.3)

in the rectangular domain Ω = (0,T )×(0,1).
To (1.3), we attach the nonlocal conditions

∫ T
0
u(t,x)dt = 0, ∀x ∈ (0,1),

u(t,0)= 0,
∫ 1

0
u(t,x)dx = 0, ∀t ∈ (0,T ).

(1.4)
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We assume that the coefficients of l are smooth and bounded on Ω:

0<a(t,x)≤ a0, 0< b(t,x)≤ b0
σ(x)√

2
, 0< c(t,x)≤ c0,

∀x ∈ (0,1), ∀t ∈ (0,T ), where σ(x)= 1−x.
(1.5)

2. Generalized solution. Define the operator l1 by

l1u=−∂u∂t +a(t,x)
∂2u
∂x2

+b(t,x)∂u
∂x

+c(t,x)u, (2.1)

and

F(t,x,u)= f(t,x)−l1u. (2.2)

Then (1.3) can be assumed to have the form

∂3u
∂t∂x2

= F(t,x,u). (2.3)

We introduce the function space

V =
{
v : v ∈ L2(Ω),

σ(x)√
2

∂v
∂x

∈ L2(Ω),
∂v
∂t
∈ L2(Ω),

∂2v
∂x2

∈ L2(Ω),∫ T
0
v(t,x)dt = 0, v(t,0)=

∫ 1

0
v(t,x)dx = 0

}
.

(2.4)

The completion of this space, with respect to the norm

‖v‖2
1,2,σ =

∫
Ω

[
v2+ σ(x)

2

2

(
∂v
∂x

)2

+
(
∂v
∂t

)2

+
(
∂2v
∂x2

)2
]
dtdx, (2.5)

is denoted by H̃1,2
σ (Ω). Notice that H̃1,2

σ (Ω) is a Hilbert space with

(u,v)H̃1,2
σ (Ω) =

∫
Ω

[
uv+ σ

2(x)
2

∂u
∂x

∂v
∂x

+ ∂
2u
∂x2

∂2v
∂x2

]
dtdx. (2.6)

For v ∈ H̃1,2
σ (Ω), define the operator M by

Mv = (1−x)
∫ t

0

∫ x
0
v(τ,ξ)dξdτ−

∫ t
0

∂2v
∂x2

(τ,x)dτ+ (x−1)2

2

∫ t
0
v(τ,x)dτ

+
∫ x

0
Jv(t,ξ)dξ, where Jv =

∫ x
0

∂v
∂t
(t,ξ)dξ.

(2.7)

Definition 2.1. A function u∈ H̃1,2
σ (Ω) is called a generalized solution to problem

(1.3)-(1.4) if

(u,v)H̃1,2
σ (Ω) =

(
F(t,x,u),Mv

)
L2(Ω) for every v ∈ H̃1,2

σ (Ω). (2.8)
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3. Existence and uniqueness theorem. In this section, we prove the existence and

uniqueness of a generalized solution for the problem (1.3)-(1.4). For this, we first study

the subsidiary problem

l0u≡ ∂3u
∂t∂x2

= F(t,x,0) (3.1)

with integral conditions (1.4), where

F(t,x,0)= f(t,x). (3.2)

Theorem 3.1. Let F(t,x,0)∈ L2(Ω). Then there exists one and only one generalized

solution u0 of the subsidiary problem

l0u≡ ∂3u
∂t∂x2

= F(t,x,0),∫ T
0
u(t,x)dt = 0, ∀x ∈ (0,1),

u(t,0)= 0,
∫ 1

0
u(t,x)dx = 0, ∀t ∈ (0,T ),

(3.3)

such that

c1

∥∥u0

∥∥
1,2,σ ≤ ‖F‖L2(Ω), (3.4)

where c1 is a positive constant.

Proof. For F(t,x,0)∈ L2(Ω), Ψ(v)= (F,Mv)L2(Ω)
is a bounded linear functional on

H̃1,2
σ (Ω).
Indeed, ∣∣(F,Mv)L2(Ω)

∣∣≤ ‖F‖L2(Ω)‖Mv‖L2(Ω). (3.5)

By substituting the expression of Mv in (3.5) and using the Poincaré estimates∫
Ω
v2(t,x)dtdx ≤ 4

∫
Ω
(1−x)2

(
∂v
∂x

)2

dtdx, v(t,0)= 0,

∫
Ω

[∫ t
0
v(τ,x)dτ

]2

dtdx ≤ 4
∫
Ω
(1−x)2v2(t,x)dtdx,

(3.6)

we find that |Ψ(v)| ≤ 4max{2T 2,4}‖F‖L2(Ω)‖v‖1,2,σ .

Consider the scalar product (l0,Mv)L2(Ω) =
∫
Ω l0u·Mvdtdx; employing integration

by parts and taking account of v ∈ H̃1,2
σ (Ω), we obtain(

∂3u
∂t∂x2

,Mv
)
L2(Ω)

= (u,v)H̃1,2
σ (Ω). (3.7)

Thus, by the Riesz representation theorem, there exists a unique solution

u0 ∈ H̃1,2
σ (Ω):Ψ(v)= (F,Mv)L2(Ω)

= (u0,v
)
H̃1,2
σ (Ω), ∀v ∈ H̃1,2

σ (Ω). (3.8)
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Hence, (u,v)H̃1,2
σ (Ω) = (u0,v)H̃1,2

σ (Ω), that is, u0 is a generalized solution. Letting 1/c1 =
4max{2T 2,4}, we obtain inequality (3.4).

Lemma 3.2. The operator l1 : H̃1,2
σ (Ω) → L2(Ω) is bounded, that is, there exists a

positive constant c2 such that ‖l1u‖L2(Ω) ≤ c2‖u‖1,2,σ .

Proof. By using conditions (1.5), we directly obtain

∥∥l1u∥∥2
L2(Ω) ≤ 4

(∥∥∥∥∂u∂t
∥∥∥∥2

L2

+a2
0

∥∥∥∥∂2u
∂x2

∥∥∥∥2

L2

+b2
0

∥∥∥∥∂u∂x
∥∥∥∥2

L2,σ
+c2

0‖u‖2
L2

)
, (3.9)

where ‖∂u/∂x‖2
L2,σ =

∫
Ω(σ 2(x)/2)(∂u/∂x)2dtdx.

Hence, ‖l1u‖2
L2(Ω) ≤ c2

2‖u‖2
1,2,σ , where c2

2 = 4max{1,a2
0,b

2
0,c

2
0}.

Since l1 is linear, then l1(
√

2µu)=√2µl1(u) for an arbitrary µ.

Let l1,µ(w)= l1(
√

2µw) for µ > 1/c1.

Now, consider the general case. The idea in the proof is to derive the results for the

equation lu= f with integral conditions (1.4).

Theorem 3.3. Let f(t,x)∈ L2(Ω) and |f(t,x)| ≤ λ/√2, where λ is a constant. Then

there exists at least one generalized solution u0 ∈ H̃1,2
σ (Ω) to problem (1.3)-(1.4). Further-

more, the solution is uniquely determined if c2 < c1.

Proof. LetW = {l1,µw : l1,µw ∈ L2(Ω), ‖l1u‖2
L2(Ω) ≤ λ2T/κ2} be a closed ball, where

κ2 = c2
1−1/µ2.

It is clear that

∣∣F(t,x,w)∣∣≤ ∣∣f(t,x)∣∣+
√
c2

1−k2

2

∣∣l1,µ(w)∣∣, (3.10)

and we have ‖F(t,x,w)‖2
L2(Ω) ≤ c2

1λ2T/κ2 for all l1,µw ∈W .

From Theorem 3.1, there exists a unique generalized solution of the problem

∂3u
∂t∂x2

= F(t,x,w) (3.11)

with integral conditions (1.4), so that

(u,v)H̃1,2
σ (Ω) = (F,Mv)L2(Ω)

. (3.12)

Define an operator S : l1w ∈W →u= Sl1w ∈ H̃1,2
σ (Ω), S(W)⊂W .

Notice that S is completely continuous. To show this, let (l1w)n,(l1w)0 ∈ W and

‖(l1w)n−(l1w)0‖2
L2(Ω)→ 0, as n→∞.

Then, for un = S(l1w)n, u0 = S(l1w)0, we have

(
un−u0,v

)
H̃1,2
σ (Ω) =

(
F
(
t,x,(w)n

)−F(t,x,(w)0),Mv)
=
((
l1w

)
n−

(
l1w

)
0,Mv

)
L2(Ω)

for every v ∈ H̃1,2
σ (Ω).

(3.13)
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Now, from Theorem 3.1,

c1

∥∥un−u0

∥∥
1,2,σ ≤

∥∥(l1w)n−(l1w)0

∥∥
L2(Ω) �→ 0 as n �→∞. (3.14)

Again, taking a sequence {(l1w)n} ⊂W , ‖(l1w)n‖2
L2(Ω) ≤ λ2T/κ2. For un = S(l1w)n, we

have ‖un‖2
L2(Ω) ≤ λ2T/κ2, so a sequence {un} is bounded in H̃1,2

σ (Ω); therefore there

exists a subsequence weakly convergent in H̃1,2
σ (Ω).

Since any bounded set in H̃1,2
σ (Ω) is compact in L2(Ω), then there exists a subse-

quence, which we also denote by {un}, strongly convergent in L2(Ω) to u0, as n→∞.

As l1 is a bounded operator, S is completely continuous, and so Sl1 is completely

continuous. Thus, from Schauder’s fixed-point theorem, there exists at least one fixed

point u0 ∈W such that u0 = Sl1u0 and (u0,v)H̃1,2
σ (Ω) = (F(t,x,u0),Mv)L2(Ω) for every

v ∈ H̃1,2
σ (Ω).

Now, assume that u1, u2 are distinct generalized solutions, then (u1−u2,v)H̃1,2
σ (Ω) =

(F(t,x,u1)−F(t,x,u2),Mv)L2(Ω) for all v ∈ H̃1,2
σ (Ω).

From (3.4) and Lemma 3.2, we have

∥∥u1−u2

∥∥
1,2,σ ≤

1
c1

∥∥l1u1−l1u2

∥∥≤ c2

c1

∥∥u1−u2

∥∥
1,2,σ . (3.15)

Thus, if c2 < c1, then it gives a contradiction; therefore u1 =u2.
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