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Based on a description of the squares of cofinite primary ideals of A+α(D), we prove the
following results: for α ≥ 1, there exists a derivation from A+α(D) into a finite-dimensional
module such that this derivation is unbounded on every dense subalgebra; for m ∈ N and
α∈ [m,m+1), every finite-dimensional extension of A+α(D) splits algebraically if and only
if α≥m+1/2.
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1. Introduction. Let α be a positive real number. By D, we denote the open unit

disk. The Beurling algebra A+α(D) is a subalgebra of the classical disk algebra A(D).
For f ∈ A(D) with power series expansion f(z) =∑∞

n=0anzn (z ∈ D), the function f
belongs to A+α(D) if and only if

∑∞
n=0 |an|(n+1)α <∞. In this case, we define ‖f‖α :=∑∞

n=0 |an|(n+1)α. Clearly, A+α(D) is a Banach algebra with respect to this norm.

These algebras have been considered in [13] where results on primary ideals were

applied to operator theory. More recently, the algebras have appeared in the examina-

tion of finite-dimensional extensions of a whole range of commutative Banach algebras

[4]. The present paper deals with continuity problems of derivations from A+α(D) and

with finite-dimensional extensions of this special type of Beurling algebras. Some of the

results of the first paper will be the starting point for our investigation.

This paper is organized as follows: as a preparation, Section 2 describes the squares

of cofinite primary ideals and exhibits an approximate identity for a special ideal in

A+α(D). The results of Section 2 will be applied to the questions considered in Sections

3 and 4. These sections are investigating derivations and extensions, respectively, and

are rather independent of each other.

Section 3, which is on derivations from A+α(D) into finite-dimensional Banach mod-

ules, follows the approach used by [2] for Banach algebras of differentiable functions

on the unit interval. In our case, we are interested in derivations from A+α(D) which are

discontinuous on the subalgebra of polynomials. For α > 1, we give an example of a

derivation which is unbounded on every dense subalgebra.

Section 4 then turns to the problem of finite-dimensional extensions guided by the

ideas of [4] which makes a comprehensive approach on extensions of Banach alge-

bras in general. We solve a problem raised there: for m ∈ N and α ∈ [m,m + 1),
every finite-dimensional extension of A+α(D) splits algebraically if and only if α ≥
m+1/2.
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2. Primary ideals of A+α(D). Suppose that m ∈ N and that α ∈ [m,m+1). Let f ∈
A+α(D). Then f ism-times continuously differentiable, and f (m), themth derivative of

f , belongs to A+0 (D). In fact,

f (m)(z)=
∞∑
n=m

n!
(n−m)!anz

n−m (
z ∈D). (2.1)

Therefore, we expect the algebras A+α(D) to resemble the Banach algebras of m-times

continuously differentiable functions on the unit interval Cm[0,1] in more than one

aspect. It will be of some use for us to turn this observation into a precise statement.

Lemma 2.1. Let g ∈A(D),m∈N, and α∈ [m,m+1). Then g ∈A+α(D) if and only if

g ism-times continuously differentiable and g(m) ∈A+α−m(D). Furthermore, there exists

a constant C > 0 such that

∥∥f (m)∥∥α−m ≤ ‖f‖α ≤ C ·
(∥∥f (m)∥∥α−m+m−1∑

n=0

∣∣f (n)(0)∣∣) (
f ∈A+α(D)

)
. (2.2)

Primary ideals of A+α(D) have been investigated before in [13]. This paper gives a full

description of all closed ideals which are contained solely in one maximal ideal, the

ideal of all functions vanishing at 1. Let m ∈ Z+, and let α ∈ [m,m+1). For n ≤m,

define

Iα,n =
{
f ∈A+α(D) | f(1)= f (1)(1)= ··· = f (n)(1)= 0

}
. (2.3)

Then Iα,n is a closed ideal in A+α(D). For formal reasons, set Iα,−1 = A+α(D). These are

the only cofinite primary ideals corresponding to 1 (cf. Section 3). As in [13, Lemma

2.4], it is straightforward to prove that Iα,n = (Z−1)n+1A+α(D) for n= 0, . . . ,m. Here Z
denotes the function z� z and 1 the constant function with value 1 on D.

Of course, all results on the ideals Iα,n hold for the corresponding primary ideals for

any other point of T.

For an ideal I in a Banach algebra A, we define I2 to be the linear span of the set

I[2] := {a·b | a,b ∈ I}. We refer to I2 as the square of I.
According to [13], Iα,0 has a bounded approximate identity if and only if α = 0, and

it has an approximate identity if and only if α < 1. For α ≥ 1, the ideal Iα,0 does not

have an approximate identity since I2α,0 = (Z−1)A+α(D)·(Z−1)A+α(D) = Iα,1. In fact,

I2α,0 is not even closed in this case. This can be verified by the following lemma which

is essentially [1, Example 3]. Clearly, the lemma implies that I2α,0 ⊊ Iα,1.

Lemma 2.2. Let m∈N. Suppose that α∈ [m,m+1). For g,h∈ Iα,0, the function gh
is (m+1)-times differentiable at 1, and

(gh)(m+1)(1)=
m∑
i=1

(
m+1
i

)
g(i)(1)·f (m+1−i)(1). (2.4)

Hence, I2α,0 ⊆ {f ∈A+α(D) | f (1)(1)= f(1)= 0, f (m+1)(1) exists}.
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In order to describe the squares of these ideals, we use the same approach as used in

[2] where the Banach algebras Cm[0,1] are investigated. For these algebras, the ideals

Mm,n =
{
f ∈ Cm[0,1] | f(0)= ··· = f (n)(0)= 0

}
(2.5)

are defined for n= 0, . . . ,m. Let m∈N and let T represent the function which is given

by [0,1]� [0,1], t� t. Then [2, Theorem 2.1] gives the following description:

(i) M2
m,0 = T ·Mm,0 = {f ∈ Cm[0,1] | f (1)(0)= f(0)= 0, f (m+1)(0) exists};

(ii) M2
m,n = Tn+1Mm,n for n= 0, . . . ,m−1;

(iii) M2
m,m = TmMm,m.

We expect similar results to hold for A+α(D). Of course, we will require different argu-

ments due to the different norm structure of A+α(D).
The next result is [13, Lemma 2.1]. We give a version which is a bit more precise.

Lemma 2.3. Suppose that 0<α< 1. Let g ∈ Iα,0. There exists h∈A(D) with h(1)= 0

such that ‖h‖∞ ≤ 2‖g‖α and g = (Z−1)αh.

As in [13, Lemma 2.2], it is easy to check that, for real numbers α,β > 0, where β is

not an integer, (Z−1)β ∈A+α(D) if and only if β >α.

In [13, Proposition 2.6], a sequence of polynomials (en,m)n∈N is defined by

en,m = 1− 1(
m+n+1
m+1

) n∑
j=0

(
m+n−j
m

)
Zj (2.6)

for every m ∈ Z+. It is shown that limn→∞(en,mf) = f for each f ∈ Iα,m and a given

α∈ [m,m+1). Note that, for n,m∈N,

(Z−1)
(
en,m−1

)= m+1
n+1

·en+1,m−1. (2.7)

Surprisingly, these polynomials will turn out to define an approximate identity for some

other Banach algebra. The next lemma is our key observation.

Lemma 2.4. Suppose that α ≥ 1, and let n ∈ Z+ such that n ≤ α. Let g ∈ Iα,n. Then

there exists f ∈ Iα−1,n−1 such that (Z−1)f = g and ‖f‖α−1 ≤ ‖g‖α.

Proof. Since g(1) = 0 and α ≥ 1, there exists f ∈ A(D) with (Z −1)f = g. Now

suppose that (an)n∈Z+ and (bn)n∈Z+ are the sequences of the Fourier coefficients for g
and f , respectively. Then bn = −

∑n
i=0ai (n ∈ Z+). Since

∑∞
i=0ai = g(1) = 0, it follows

that

∞∑
n=0

(n+1)α−1
∣∣bn∣∣= ∞∑

n=0

(n+1)α−1

∣∣∣∣∣
∞∑

i=n+1

ai

∣∣∣∣∣
≤

∞∑
i=1

i−1∑
n=0

(n+1)α−1
∣∣ai∣∣

≤
∞∑
i=1

(i+1)α
∣∣ai∣∣≤ ‖g‖α.

(2.8)

Hence f ∈A+α−1(D). It is immediate that f ∈ I(α−1),n−1.
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By an induction using Lemmas 2.3 and 2.4, we now obtain some useful estimates for

the growth of functions in A+α(D).

Proposition 2.5. Let m∈ Z+, n∈ {0, . . . ,m}, and α∈ [m,m+1).
(i) Suppose that m ≥ 1, and that n < m. Let f ∈ Iα,n. Then there exists g ∈
A+α−(n+1)(D) with ‖g‖α−(n+1) ≤ ‖f‖α such that f = (Z−1)n+1g.

(ii) Let f ∈ Iα,m. Then there exists h∈A(D) with h(1)= 0, ‖h‖∞ ≤ 2‖f‖α, such that

f = (Z−1)αh.

Throughout the paper, we will make frequent use of the following corollary of Propo-

sition 2.5. For completeness, we also include the above-mentioned variation of [13,

Lemma 2.2] (cf. the remark after Lemma 2.3).

Corollary 2.6. Let m∈ Z+, α∈ [m,m+1), and β > 0.

(i) Suppose that β is not an integer. Then (Z−1)β ∈A+α(D) if and only if β >α.

(ii) (Z−1)β ∈ Iα,m if and only if β >α.

Next we apply the approach of [2, Theorem 2.1] to our situation. We are following

the idea that, for the investigation of functions in Iα,m, the common divisor (Z−1)m is

redundant and therefore division by (Z−1)m establishes a linear isomorphism. Natu-

rally, the image is a Banach space with respect to the norm induced by this isomorphism.

Since the image is also a subspace of A(D) and since I2α,m ⊆ Iα,m, we assume that, with

respect to some equivalent norm, this Banach space is in fact a Banach algebra.

Proposition 2.7. Letm∈ Z+, suppose that α∈ [m,m+1), and let ε=α−m. Define

a linear space Bα via Bα := {f ∈ Iε,0 | (Z−1)mf ∈ Iα,m} and a norm ‖·‖Bα on Bα by

‖f‖Bα :=
m∑
j=0

∥∥(Z−1)jf
∥∥
j+ε

(
f ∈ Bα

)
. (2.9)

Then the following hold:

(i) with respect to an equivalent norm, Bα is a Banach algebra;

(ii) the Banach algebra Bα has a sequential approximate identity; this approximate

identity is bounded if and only if α=m;

(iii) the map Bα � Iα,m, f � (Z−1)mf , is a linear homeomorphism.

Proof. Note that all assertions hold for the case m= 0 (cf. [13] to verify (ii)).

Now suppose that m ≥ 1. It follows by a simple induction from Lemma 2.4 that Bα
is a Banach space and that ‖f‖Bα ≤ (m+1)‖(Z−1)mf‖α for f ∈ Bα. Hence, (iii) holds.

In order to show that Bα is a Banach algebra, we need a different characterization.

Using Lemmas 2.1 and 2.4, it can be shown that

Bα =
{
f ∈ Iε,0 | f ∈ Cm

(
D−{1}), f (j)(Z−1)j ∈A+ε (D) (j = 0, . . . ,m)

}
. (2.10)

Here Cm(D−{1}) is the algebra of functions onD−{1}which arem-times continuously

differentiable, and the term “∈ A+ε (D)” implies that the function in question can be
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extended to all of D. Therefore, we can now introduce a different norm ‖·‖B′α on Bα by

‖f‖′Bα :=
m∑
j=0

∥∥(Z−1)jf (j)
∥∥
ε. (2.11)

By a straightforward, albeit lengthy induction, this norm is equivalent to the original

norm. Here we have to use Lemma 2.1 again.

Now let f ,h∈ Bα. Then fh∈ Cm(D−{1}) and, for j = 0, . . . ,m,

(fh)(j)(Z−1)j =
j∑
l=0

(
j
l

)
f (l)h(j−l)(Z−1)j−l(Z−1)l ∈A+ε (D). (2.12)

Thus, fh∈ Bα, that is, Bα is an algebra. In fact, the multiplication is jointly continuous

with respect to ‖·‖′Bα since

∥∥(fh)(j)(Z−1)j
∥∥
ε ≤

j∑
l=0

(
j
l

)∥∥f (l)(Z−1)l
∥∥
ε
∥∥h(j−l)(Z−1)j−l

∥∥
ε (2.13)

for j = 0, . . . ,m. Hence, (i) has been proved.

To show (ii), consider the sequence (en,m)n∈N described at the beginning of this

section. We have already mentioned that, for g ∈ Iα,m, we have limn→∞‖gen,m−g‖ = 0.

Now let f ∈ Bα. Then (Z−1)mf ∈ Iα,m and limn→∞‖(Z−1)m(fen,m−f)‖α = 0. By (iii),

limn→∞‖fen,m−f‖Bα = 0. We have proved that (en,m)n∈N is an approximate identity

for Bα.

Suppose that α =m. We show by induction on m that (‖en,m‖Bm)n∈N is bounded.

This is equivalent to (‖(Z−1)men,m‖m)n∈N being bounded. The casem= 0 is obvious.

Now let m≥ 1. For n∈N,∥∥(Z−1)m−1en+1,m−1

∥∥
m ≤ (m+n+1)

∥∥(Z−1)m−1en+1,m−1

∥∥
m−1 (2.14)

since this polynomial is of degree n+m. Hence,

∥∥(Z−1)men,m
∥∥
m ≤

∥∥∥∥m+1
n+1

(Z−1)m−1 ·en+1,m−1+(Z−1)m
∥∥∥∥
m

≤ (m+1)(m+n+1)
n+1

∥∥(Z−1)m−1en+1,m−1

∥∥
m−1+

∥∥(Z−1)m
∥∥
m

(2.15)

which is bounded in n by the induction hypothesis.

We now obtain a result analogous to [2, Theorem 2.1].

Corollary 2.8. Let m,n∈ Z+ and α∈ [m,m+1).
(i) Suppose that α=m. Then I[2]m,m = I2m,m = (Z−1)mIα,m.

(ii) Suppose that α>m. Then I2α,m ⊊ (Z−1)mIα,m.

(iii) Suppose that n≤m−1. Then I2α,n = (Z−1)n+1Iα,n.

(iv) Iα,m has a multiplier-bounded approximate identity. Thus Iα,m = I2α,m.

(v) Suppose that 0≤n≤ (m−1)/2. Then I2α,n = Iα,2n+1.
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(vi) Suppose that (m−1)/2≤n≤m. Then I2α,n = Iα,m.

(vii) Suppose that α> 0. Then the ideal I2α,n is of infinite codimension for 0≤n≤m.

Proof. First, suppose that α >m. Let β∈ (α,2α−m). By Corollary 2.6, (Z−1)β ∈
Iα,m. Assume towards a contradiction that (Z−1)β+m ∈ I2α,m. By Proposition 2.5,

z 	 �→ (z−1)β+m

(z−1)2α
is bounded on D. (2.16)

But β+m< 2α, a contradiction. Now (i) and (ii) follow as in [2, Theorem 2.1].

(iii) Clearly, (Z−1)n+1Iα,n ⊆ I2α,n. Let f ,g ∈ Iα,n. There exist polynomials p,q ∈ C[Z]
and f̃ , g̃ ∈ Iα,m such that f = p ·(Z−1)n+1+ f̃ and g = q ·(Z−1)n+1+ g̃. Therefore,

fg = (Z−1)2n+2pq+(Z−1)n+1pf̃ +(Z−1)n+1qg̃+ f̃ g̃. (2.17)

By (i) and (ii), f̃ g̃ ∈ (Z−1)mIα,m, and I2α,n = (Z−1)n+1Iα,m follows.

(iv) By the principle of uniform boundedness, the sequence (en,m)n is bounded as a

sequence of multipliers on Iα,m. Now consider the net (bα) := (en1 ···enm+1)n1,...,nm+1

in Iα,m, where the index set Nm+1 is directed by the product order. Using the multiplier

boundedness of (en,m)n, it is straightforward that (bλ) is an approximate identity.

(v) and (vi) are now immediate.

(vii) It suffices to show that I2α,0 is of infinite codimension. As shown earlier, the ideal

I2α,0 is not closed for α≥ 1. Form= 0, let β∈ (α,min(2α,1)). Then (Z−1)β 
∈ I2α,0 as we

have shown in the proof of (ii). In any case, I2α,0 is not closed. Since A+α(D) is separable,

I2α,0 is of infinite codimension by [5].

Example 2.9. There is one question which remains to be checked in order to obtain

a thorough comparison to the Cm[0,1] case; suppose that m ∈N and α ∈ [m,m+1):
does I2α,0 = {f ∈ Iα,1 | f (m+1)(1) exists} hold? For α > m, it is easy to see that the

answer is in the negative since, for β∈ (m,α), the fact that (Z−1)β+1 ∈ Iα,1 provides a

counterexample.

In order to decide the question for α=m, we may suppose for simplicity that α= 1.

We know that I1,1 ⊆ (Z − 1)I0,0. Define g ∈ A(D) by
∑∞
n=1(exp(i

√
n)/n) ·Zn. By [15,

Theorem 5.2], this series converges uniformly on T. Hence, it converges to an element

of A(D). Clearly, g 
∈ A+0 (D). Now consider g · (Z − 1). The coefficients (bn)n of the

corresponding Taylor series are b0 = 0, b1 =−ei, and

bn = e
i
√
n−1

n−1
− e

i
√
n

n
(n∈N, n≥ 2). (2.18)

We can now easily estimate the growth of the Fourier coefficients. In fact,

∣∣bn∣∣=
∣∣∣∣∣n−(n−1)ei(

√
n−√n−1)

(n−1)n

∣∣∣∣∣≤ 1+C ·n/√n
(n−1)n

(2.19)

for n ∈ N, n ≥ 2, and some constant C > 0. Hence, g ·(Z−1) ∈ A+0 (D). By Lemma 2.1,

there exists f ∈ A+1 (D) such that f(1) = 0 and f ′ = g ·(Z−1). Clearly, f is two-times

differentiable at 1 and f ∈ I1,1. Now assume towards a contradiction that f ∈ I21,0. It

follows that f = (Z−1)h for some h∈ I1,0. Hence, f ′ = (Z−1)h′ +h.
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Recall that h′ ∈ A+0 (D) by Lemma 2.1. By Proposition 2.5, there exists h̃ ∈ A+0 (D)
such that h= (Z−1)h̃. Since g = h′+h̃, we see that g ∈A+0 (D), a contradiction. Hence,

the answer to the above question is again in the negative.

In order to complete the picture, we give the following obvious results on primary

ideals at points in D.

Proposition 2.10. Let λ∈D and let α≥ 0. For n∈ Z+, define

Iλα,n =
{
f ∈A+α(D) | f(λ)= f (1)(λ)= ··· = f (n)(λ)= 0

}
. (2.20)

Then Iλα,n is a principal ideal, that is, Iλα,n = (Z−λ)n+1A+α(D). Every closed primary ideal

corresponding to λ is of the form Iλα,n for some n∈ Z+. Furthermore, (Iλα,n)2 = Iλα,2n+2.

3. Derivations from A+α(D). Let A be a Banach algebra, and E a Banach A-bimodule.

A derivation from A to E is a linear map D :A→ E such that

D(ab)= a·D(b)+D(a)·b (a,b ∈A). (3.1)

Suppose that dimE = 1. Then there exist characters ϕ, ψ on A such that D(ab) =
ϕ(a)D(b)+ψ(b)D(a). In this case, D is called a point derivation.

Derivations have been investigated for many years. In particular, there are numerous

articles concerned with continuity questions for derivations. Whereas there are many

results which automatically ensure continuity for a specific class of derivations [7, Sec-

tion 10], some questions still remain open due to the few established methods for the

construction of discontinuous derivations. One of these questions is [8, Question 2.3]

which focuses on the disk algebra A(D) and on l1(Z+) (which is A+0 (D), of course). In a

more general setting, we may put forward the following questions.

A Banach algebra A is a Banach algebra of power series if it can be embedded con-

tinuously into the algebra of formal power series C[[X]] such that C[X] is contained

in the image of this embedding. Here C[[X]] is given the topology of coordinatewise

convergence (cf. [7, Section 5]). A Banach A-bimodule E is symmetric if the right and

the left actions of A on E coincide. Then we may simply call E a Banach A-module.

(i) Let A be a Banach algebra of power series. Do there exist a Banach A-module E
and a derivationD :A→ E such thatD is unbounded on every dense subalgebra?

If an answer to this question does not seem to be achievable, we may weaken the ques-

tion.

(ii) Let A be a Banach algebra of power series with C[Z] = A. Do there exist a Ba-

nach A-module E and a derivation D : A→ E such that D is unbounded on the

polynomials?

Here we identify those elements of A which are mapped to C[X] by the embedding into

C[[X]] as the polynomials of A, and we denote the subalgebra of these polynomials by

C[Z] to obtain a formal distinction.
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Although discontinuous derivations on A(D) (or arbitrary Banach algebras of power

series) have been constructed [3, 6, 10], all these examples consist of derivations van-

ishing on the polynomials and thus do not even answer question (ii). There have been

attempts to modify these constructions in order to obtain a positive answer for l1(Z+)
(see [12]). However, the problem is still open (for A(D) and l1(Z+)).

In this context, it is of some interest to consider other related Banach algebras of

power series as there are the algebras A+α(D), subalgebras of A(D) and A+0 (D), or

weighted discrete convolution algebras l1(Z+,ω), where ω is a radical weight. In the

latter case, where the algebra contains A(D) and A+0 (D), the author was able to find a

positive solution for question (ii) (see [14]).

Surprisingly, it is not too difficult to give a positive answer to question (ii) for A+α(D)
with α≥ 1/2. Using the results of Section 2 on the ideal structure, we are even able to

describe all derivations having finite-dimensional image. Again, we follow the approach

of [2]. However, it is not always possible to transfer their arguments in a straightforward

way and we will make some observations differing from their results. In particular, we

obtain an affirmative answer to the first question if α≥ 1.

It is easy to see that, for a derivation D from a unital algebra A and for a polynomial

p ∈ C[X], we have p′(a)·D(a)=D(p(a)) for each a∈A. In particular, D(1)= 0. Note

that this implies that, for a Banach algebra of power series in which the polynomials

are dense, the set D(A) is a submodule of E for every derivation D :A→ E.

First, we use arguments similar to [2, page 239] in order to show that a restriction

of our investigations to a simple type of modules is justified. Let m ∈ Z+ and α ∈
[m,m+1). Suppose that E is a finite-dimensional Banach A+α(D)-module. Choosing a

basis η1, . . . ,ηn such that the matrix corresponding to the action of Z ∈A+α(D) obtains

its canonical Jordan form, we see that E can be decomposed into the direct sum of

finite-dimensional submodules which correspond to the different Jordan blocks. If there

exists only one summand of this type, E is called indecomposable. In this case, we see

that the module multiplication by f ∈A+α(D) corresponds to the matrix



f(λ) f (1)(λ)
1
2
f (2)(λ) ··· 1

(n−1)!
f (n−1)(λ)

0 f(λ) f (1)(λ)
1

(n−2)!
f (n−2)(λ)

. . .
... f (1)(λ)

0 ··· 0 f(λ)


, (3.2)

where λ ∈ σ(Z) = D. This also shows that the ideals Iα,n (n = 0, . . . ,m) are the only

cofinite closed primary ideals for the character 1.

Therefore, in the case where λ ∈ T, it follows that dimE ≤m+1. If λ ∈ D, then no

restriction occurs. An indecomposable module of this type is referred to as a cyclic mod-

ule at λ. This term implies that the module is of finite dimension. The basis η1, . . . ,ηk
is called the standard basis (which is unique if we demand that ‖η1‖ = 1). Note that, for
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λ∈D, we obtain a continuous linear map ρ :A→�(E),

ρ(f)ξ = f ′ ·ξ :=



f (1)(λ) f (2)(λ) ··· 1
(n−1)!

f (n)(λ)

0 f (1)(λ)
1

(n−2)!
f (n−1)(λ)

. . .
... f (2)(λ)

0 ··· 0 f (1)(λ)


·ξ. (3.3)

Here we identify ξ and its coordinate vector, and �(E) denotes the Banach algebra of

bounded linear operators on E. This notation is consistent with our earlier definition

of the mapping C[Z] � �(E), p � p′ · (·). The same holds in the case where λ ∈ T,

provided that dimE ≤m.

Next, suppose that E =⊕ni=1Ei, where E1, . . . ,En are indecomposable submodules of E.

Then there exist pairwise orthogonal projections P1, . . . ,Pn onto E1, . . . ,En, respectively,

such that each projection commutes with the module action. Now let D :A+α(D)→ E be

a derivation. ThenDi := PiD is a derivation into Ei for each i= 1, . . . ,n, and
∑n
i=1Di =D.

Obviously, D is continuous (on C[Z]) if and only if D1, . . . ,Dn are continuous (on C[Z]).
Now consider the case where E is infinite dimensional and the image of D is of

finite dimension. Then D(A) is closed and hence, as mentioned above, a submodule.

Thus, when considering the continuity of derivations with finite-dimensional image (as

a map from A+α(D) or from C[Z]), we may always suppose that the module E is finite-

dimensional and indecomposable, or, equivalently, that E is cyclic at some λ∈D. In this

situation, a derivation D : A+α(D)→ E is called a cyclic derivation at λ. The dimension

of the submodule D(A) is called the height of D.

In order to describe all cyclic derivations for A+α(D), we need the notion of a singular

derivation. For a Banach algebra of power series A, a derivation D is called singular

if D vanishes on the polynomials. Thus, a derivation which is bounded on the poly-

nomials can be written as the sum of a continuous and a singular derivation. Such a

derivation is called decomposable. Our main interest is to find derivations for which

this decomposition is not possible.

First, note that, for λ∈D, every derivation into a cyclic Banach A+α(D)-module at λ is

continuous. This follows from Proposition 2.10 and the fact that the elements ofA+α(D)
are infinitely differentiable at λ. In this situation, every derivation is given by f � f ′ ·ξ
for some ξ ∈ E.

The last observation implies that, when looking for derivations unbounded on C[Z],
we have to consider cyclic modules at points of T. At the beginning of this section, we

have seen that their dimension is necessarily less than m+1. Hence, we are dealing

merely with point derivations ifm= 0. We have to consider this case separately. Recall

that there is a one-to-one correspondence between point derivations at 1 and those

linear functionals on Iα,0 which vanish on I2α,0 (cf. [9, Proposition 1.8.8]).
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Proposition 3.1. Let α∈ (0,1).
(i) For A+α(D), there exists a singular point derivation at 1.

(ii) Suppose that 0 ≤ α < 1/2. Then every nontrivial point derivation on A+α(D) is

singular and hence decomposable.

(iii) Suppose that 1/2 ≤ α < 1. Then there exists a point derivation on A+α(D) which

is unbounded on C[Z].

Proof. (i) Let β∈ (α,1) such that β < 2α. Then (Z−1)β ∈A+α(D). By Corollary 2.6,

we know that (Z−1)β 
∈ (Iα,0)2+C[Z]. Now the claim follows.

(ii) We may consider point derivations at a point of T, say at 1. Since α < 1/2,

(Z −1)1/2 ∈ A+α(D). Thus (Z −1)1/2 belongs to Iα,0. Hence, (Z −1) ∈ (Iα,0)2, and 0 =
D(Z−1)=D(Z) for every point derivation D at 1.

(iii) We will construct the required derivation at 1. By Proposition 2.5, (Z−1) 
∈ (Iα,0)2.

Now define a linear functional D on A+α(D) such that

D(1)= 0, D
((
Iα,0

)2
)
= {0}, D(Z−1)= 1. (3.4)

That D is a point derivation at 1 can be easily verified since, for f ∈ A+α(D), we have

f = f(1)1+(f −f(1)1) and hence, for f ,g ∈A+α(D), we see that

D(fg)= f(1)D(g−g(1)1)+g(1)D(f −f(1)1)= f(1)D(g)+g(1)D(f). (3.5)

In particular, D(p)= p′(1) for every p ∈ C[Z]. Hence, D is unbounded on the polyno-

mials.

Note that, for α= 0, every point derivation at 1 is zero (and hence continuous) since

I2α,0 = Iα,0. Note further that the last proposition does not provide a positive answer to

our initial question (i) in the case 1/2 ≤ α < 1: every point derivation at 1 vanishes on

span{1, I2α,0} which is a dense subalgebra.

The first implication of the following result can be proved in exactly the same way

as [2, Theorem 5.2]. The second implication is immediate if we recall the definition of

the map f � f ′ ·ξ above.

Proposition 3.2. Let m ∈N and α ∈ [m,m+1). Suppose that E is a cyclic Banach

A+α(D)-module at 1.

(i) Let D :A+α(D)→ E be a continuous derivation. Then the height of D is at mostm,

and, for some ξ ∈ E, we have D(f)= f ′(1)·ξ (f ∈A+α(D)).
(ii) Suppose that dimE ≤m and let D :A+α(D)→ E be a derivation. Then D is contin-

uous and hence decomposable.

As a next step, we describe singular derivations from A+α(D) into cyclic modules at 1.

Proposition 3.3. Letm,n∈N with n≤m+1, and α∈ [m,m+1). Let E be a cyclic,

n-dimensional Banach A+α(D)-module at 1. Suppose that η1, . . . ,ηn form the standard

basis.
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(i) Let D :A+α(D)→ E be a derivation. Then D is singular if and only if a functional

µ on A+α(D) with µ|C[Z] = 0 and µ((Z−1)nA+α(D))= {0} exists such that

D(f)=
n−1∑
l=0

µ
(
(Z−1)lf

)
ηl+1

(
f ∈A+α(D)

)
. (3.6)

(ii) Suppose that α=m. Then there exists a singular derivation of height n into E if

and only if n≤m.

(iii) Suppose that α>m. Then there exists a singular derivation of height n into E.

Proof. Again, the result may be shown almost completely as the corresponding re-

sult in [2, Theorem 5.3], taking into account that this theorem actually deals with height

k+1. Note that (ii) follows since I2α,m = (Z−1)mIα,m for α =m. The only implication

we still have to prove is the following: for α >m, there exists a singular derivation of

height n=m+1 into E. In fact,

(Z−1)m+1Iα,m ⊊ I2α,m ⊊ (Z−1)mIα,m (3.7)

by Corollary 2.8. Therefore, we may define a linear functional µ on A+α(D) such that,

for l= 0, . . . ,2m+1,

µ
(
I2α,m

)= {0}, µ
(
(Z−1)mIα,m

)
≠ {0}, µ

(
(Z−1)l

)= 0. (3.8)

Here we have used Corollary 2.8(vii). Now define D : A+α(D) → E and let D(f) =∑m
l=0µ((Z −1)lf )ηl+1. Proceeding as in the proof of [2, Theorem 5.3], we see that D

is a derivation and D(A+α(D))= E.

We are now constructing a derivation on A+α(D) which is unbounded on the polyno-

mials. The result should be compared with [2, Theorem 5.4]. Recall that the dual Banach

space of A+α(D) can be identified naturally and isometrically with the space

l∞
(
Z+,(n+1)−α

)
:=
{(
cn
)
n∈Z+

∣∣∥∥(cn)∥∥ := sup
n

∣∣cn∣∣
(n+1)α

<∞
}
. (3.9)

Theorem 3.4. Suppose that m ∈ N and α ∈ [m,m + 1). Let E be an (m + 1)-
dimensional, cyclic Banach A+α(D)-module at 1 with standard basis η1, . . . ,ηm+1. There

exists a linear functional µ on A+α(D) such that µ(1) = 0, µ(Z − 1) = 0, and µ(f) =
(1/m!)f (m+1)(1) (f ∈ I2α,0). The map D :A+α(D)→ E,

D(f)= µ(f)η1+
m∑
i=1

1
(m−i)!f

(m+1−i)(1)·ηi+1, (3.10)

is a derivation which is unbounded on C[Z]. Furthermore, D is discontinuous on every

dense subalgebra.

Proof. By Lemma 2.2, µ is well defined since (Z−1) 
∈ I2α,0 and 1 
∈ Iα,0. It is easily

checked that D is indeed a derivation. Clearly D(C[Z]) = E. Since dimE = m+ 1, it

follows that D is unbounded on the polynomials by Proposition 3.2.
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Now let � be a dense subalgebra of A+α(D). Assume towards a contradiction that D
is continuous on �. We may suppose that 1∈�. Now µ is continuous on �. Therefore,

we can define a continuous linear functional γ = (cn)n∈Z+ ∈ l∞(Z+,(n+1)−α) such that

γ|� = µ|�. Note that the algebra �, where �=�∩Iα,0, is dense in Iα,0.

Let p ∈ C[Z]. We may find sequences (fn)n∈N and (gn)n∈N in � with limn→∞fn =
(Z−1)p, limn→∞gn = (Z−1)m, and gn ∈ Iα,m−1 (n∈N). Then

γ
(
fn ·gn

)= µ(fn ·gn)= 1
m!

(
fn ·gn

)(m+1)(1)= m+1
m!

f (1)n (1)g(m)n (1) (3.11)

by Lemma 2.2. Hence

γ
(
(Z−1)m+1p

)= lim
n→∞γ

(
fngn

)= lim
n→∞

m+1
(m!)

f (1)n (1)g(m)n (1)

= (m+1)p(1)= 1
m!

(
p ·(Z−1)m+1)(m+1)(1).

(3.12)

In other words, γ coincides with µ on (Z−1)m+1C[Z].
Now define a sequence (an)n∈Z+ by setting an = µ(Zn). We claim that cn −an =

O(nm). Let bn = an−cn (n∈ Z+). Then, for n∈ Z+,

0= (µ−γ)((Z−1)m+1Zn
)=m+1∑

i=0

(
m+1
i

)
(−1)m+1−ibi+n. (3.13)

For n ∈ Z+, define ξm+n ∈ Cm+1 by ξm+n = (bm+n, . . . ,bn), and define further M ∈
Mm+1(C) by 

+
(
m+1
m

)
(−1)

(
m+1
m−1

)
··· (−1)m

(
m+1

0

)

1 0 0

0 1
. . .

...
...

. . .
...

0 ··· ··· 1 0


. (3.14)

Then ξn+1 =M ·ξn.

The characteristic polynomial of M is (Z−1)m+1 again. On the other hand, the min-

imal polynomial of M is of degree m+1 since {Mken+1}mk=1 is a linearly independent

set. Here en+1 is the (n+1)th canonical basis vector. Therefore, the Jordan form N of

M is given by 

1 1 ··· ··· 0

0 1 0
...

. . .
...

... 1 1

0 ··· 0 1


(3.15)
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and, for n≥m, we have

Nn =



1

(
n
1

)
··· ···

(
n
m

)

0 1

(
n
1

)
...

...
...

...
. . .

(
n
1

)

0 ··· 0 1



. (3.16)

If we define the norm on Mm+1(C) to be the maximum of the moduli of the matrix

coefficients, then ‖Mn‖ =
(
n
m

)
for large n. Thus ‖Mn‖ =O(nm).

Hence, (bn)n∈Z+ ∈ l∞(Z+,(n + 1)−α). But now this implies that (an)n∈Z+ ∈
l∞(Z+,(n+1)−α), a contradiction to D being unbounded on C[Z].

The theorem is somewhat surprising when we take into account that the derivation

maps into a finite-dimensional module and that kerD is a cofinite subalgebra. However,

for m ∈ N, we are able to extend this result to the algebra Cm[0,1]. In fact, using the

embedding

ι :A+m(D) �→ Cm[0,1], ι(f )(t)= f (e2πit), (3.17)

the proof of the theorem can be easily modified to obtain the following.

Corollary 3.5. Let m ∈ N. There exists a derivation from Cm[0,1] which is un-

bounded on every dense subalgebra and maps into a finite-dimensional module.

This establishes a simpler example of a derivation of this special type than that given

by [2, Proposition 6.2].

For α ∈ [m,m+1) and λ ∈ T, we will call a functional µ on A+α(D) with µ(1) = 0,

µ((Z−1)n) = 0 (n = 1, . . . ,m), and µ(f) = (1/m!)f (m+1)(1) for f ∈ I2α,0 a generalized

derivative of order (m+ 1) at λ. The corresponding derivation into a cyclic, m+ 1-

dimensional module will be denoted by Dµ .

We would like to conclude that every derivation into an (m+1)-dimensional, cyclic

module at 1 can be decomposed into the sum of a continuous derivation, a singular

derivation, and the scalar multiple of a fixed derivation which is unbounded on the

polynomials. Obviously, we cannot use the same argument as [2] since A+α(D) is not a

regular Banach function algebra. Nevertheless, we have the following lemma.

Lemma 3.6. Let m ≥ 1, α ∈ [m,m+1), and let E be a cyclic, (m+1)-dimensional

A+α(D)-module at 1. Suppose that D is a cyclic derivation of heightm+1 at 1 such that,

with respect to the standard basis η1, . . . ,ηm+1,

D :A+α(D) �→ E, D(f)=
m+1∑
i=1

µi(f )ηi (3.18)
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for linear functionals µ1, . . . ,µm+1 on A+α(D). Suppose further that µm+1 vanishes on the

polynomials. Then D is decomposable.

Proof. Let j be the maximum integer with µj|C[Z] ≠ 0. It follows that (Z−1)jD(Z)=
0. Define

D1 : C[Z] �→ E, D1(p)=
j∑
i=1

µj(p)ηj. (3.19)

Hence, D(p)=D1(p) for every p ∈ C[Z]. We see that

D1(p)=
j−1∑
i=0

p(i+1)(1)
i!

(Z−1)i ·D(Z) (
p ∈ C[Z]), (3.20)

D1 can be extended to a continuous derivation into E. Then D =D1+D2, where D2 is a

singular derivation.

Theorem 3.7. Let m∈N and let α∈ [m,m+1). Suppose that E is a cyclic, (m+1)-
dimensional A+α(D)-module at 1 and µ is a generalized derivative of order m+1 at 1.

Let D : A+α(D)→ E be a derivation. Then there exist κ ∈ C, a continuous derivation Dc ,
and a singular derivation Ds such that D =Dc+Ds+κDµ .

Proof. If D is of height less than m + 1, then the claim holds for κ = 0 by

Proposition 3.2. Thus we may suppose that D is of height m+1. With respect to the

standard basis,

D(f)=
m+1∑
i=1

µi(f )ηi
(
f ∈A+α(D)

)
(3.21)

for linear functionals µ1, . . . ,µm+1. It follows that µm+1 is a point derivation. By

Proposition 3.2, µm+1 is decomposable, and there exist κ ∈ C and a singular point

derivation λ on A+α(D) such that

µm+1(f )= κf ′(1)+λ(f)
(
f ∈A+α(D)

)
. (3.22)

Now set D̃ = D−κF . Then the derivation D̃ maps the polynomials into (Z −1)E. By

Lemma 3.6, D̃ is decomposable, and the claim follows.

Corollary 3.8. Let m ∈ N. Suppose that E is a finite-dimensional A+m(D)-module.

Then a derivation D : A+m(D) → E is unbounded on the polynomials if and only if D is

unbounded on every dense subalgebra.

We doubt that the last corollary remains true in the case where α > m. In this sit-

uation, there exists a singular derivation of height m+ 1 into a cyclic module at 1.

It might happen that this singular derivation coincides with (−Dµ) on a dense subal-

gebra �. However, � has to satisfy additional properties, that is, �∩C[Z] = ∅ and

�∩(Z−1)mA+α(D)⊆ Iα,m.
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4. Finite-dimensional extensions. This section now turns to finite-dimensional ex-

tensions of Beurling algebras. As it is shown here, the splitting problem for (finite-

dimensional) extensions is closely connected to the structure of (cofinite) ideals. Thus,

our results are mainly consequences of Section 2.

An extension Σ(�, I) of a Banach algebra A is a short exact sequence of Banach alge-

bras

Σ(�, I) : 0 �→ I i
����������������������→�

p
��������������������������→A �→ 0. (4.1)

The Banach algebra I is usually considered as an ideal of �. The extension is called

radical (nilpotent, finite-dimensional) if I is radical (nilpotent, finite-dimensional). The

extension is commutative if � is commutative, and singular if I2 = {0}. In the latter

case, we can regard I as a Banach A-bimodule, and there is a corresponding concept of

a singular extension of a Banach algebra A by a Banach A-bimodule E.

An extension is admissible if the sequence splits as a sequence of Banach spaces, that

is, there exists a continuous linear map Φ : A→ � with p ◦Φ = IdA. Thus, every finite-

dimensional extension is admissible. An extension splits algebraically if the sequence

splits as a sequence of complex algebras, that is, if there exists a homomorphism ρ :

A→� such that p◦ρ = IdA. It splits strongly if it splits algebraically and if the splitting

homomorphism ρ can be chosen to be continuous, or, equivalently, if the sequence

splits as a sequence of Banach algebras. For a detailed discussion of extensions of

Banach algebras in a more general context, see [4].

As usual, the principal tool for the investigation of a singular extension Σ(�,E) of A
by a Banach A-bimodule E is the continuous Hochschild cohomology groups �n(A,E),
where n ∈ N. For a definition, see [11]. All admissible, singular extensions of A by

E split strongly if and only if �2(A,E) = {0}. �n(A,E) denotes the Banach space of

continuous n-linear maps from A into E. For the connecting maps of the Hochschild-

Kamowitz complex, we write δn : �n(A,E)→�n+1(A,E). The Hochschild cohomology

groups are given by �n(A,E) = kerδn/ imδn−1. Further, we set �n(A,E) = kerδn and

�n(A,E) = imδn−1. Then �n(A,E) is called the set of n-cocycles, whereas �n(A,E) is

called the set of n-coboundaries.

For example, µ ∈�2(A,E) is a 2-cocycle if

0= a·µ(b,c)−µ(ab,c)+µ(a,bc)−µ(a,b)·c (a,b,c ∈A). (4.2)

This equation is called the cocycle identity. µ is a (continuous) 2-coboundary if there

exists a continuous linear map λ :A→ E such that

µ(a,b)= a·λ(b)−λ(ab)+λ(a)·b (a,b ∈A). (4.3)

µ is symmetric if µ(a,b)= µ(b,a) for all a,b ∈A. For A commutative and E symmetric,

this is equivalent to the commutativity of the corresponding extension.

In [4], a related class of groups, H̃2(A,E), is defined. For this definition, Ñ2(A,E) is

taken to be the set of all continuous cocycles which are coboundaries in the algebraic
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sense, that is, the set of all µ ∈�2(A,E) such that there exists a (not necessarily continu-

ous) linear map λ :A→ E satisfying (4.3). Now we set H̃2(A,E) :=�2(A,E)/Ñ2(A,E). All

singular admissible extensions ofA by E split algebraically if and only if H̃2(A,E)= {0}.
An important observation (for the case n = 2, but it is obvious that the proof holds

for each n∈N) is made in the remark after [4, Proposition 2.2]: let A be a unital Banach

algebra and letM be a maximal ideal in A. Let E be a unital A-module. Then �n(A,E)=
{0} [H̃2(A,E)= {0}] if and only if �n(M,E)= {0} [H̃2(M,E)= {0}].

Recall that, for finite-dimensional extensions, the problem of strong splitting can be

reduced to singular, one-dimensional extensions. However, for the investigation of pos-

sible algebraic splittings, one has to consider all finite-dimensional singular extensions

by a certain type of modules [4, pages 63–64].

Extensions of the algebras A+α(D) have been considered before in [4]. For the case

α = 0, we have A+0 (D) = l1(Z+), and every finite-dimensional extension splits strongly

since every maximal ideal has a bounded approximate identity [4, Proposition 4.4]. For

α> 0, we have the following result on strong splittings which is [4, Proposition 5.9(i)].

Proposition 4.1. Let α> 0. Then there exists a one-dimensional extension of A+α(D)
which does not split strongly.

Thus our objective is to establish algebraic splitting of extensions of A+α(D).
Proposition 5.9 in [4] also shows that each one-dimensional extension ofA+α(D) splits

algebraically (α≥ 0), and that there exists a two-dimensional extension which does not

split algebraically provided that 1≤α< 3/2. The case α≥ 3/2 remains unsolved.

In this section, we prove that, form∈N and α∈ [m,m+1), every finite-dimensional

extension splits algebraically if and only if α≥m+1/2.

Note that there is a simple solution for the case where α∈ (0,1). Then each maximal

ideal of A+α(D) either has an approximate identity or is a principal ideal. Thus, every

finite-dimensional extension splits algebraically by [4, Theorem 4.13].

To cover the case α ≥ 1, we begin with a reduction to the case of singular, commu-

tative extensions. The result may be proved in a way similar to [4, Theorem 5.5]. We

think that one should be more careful showing this reduction. However, this does not

require any new arguments but simple (albeit tedious) matrix manipulations. Therefore,

we omit the proof.

The proof would also contain arguments showing that µ ∈�2(A+α(D),E) is symmetric

provided that E is a symmetric module, that is, every extension by a symmetric module

is commutative.

Proposition 4.2. Let m ∈ N and α ∈ [m,m + 1). Suppose that Σ is a finite-

dimensional extension of A+α(D). Then at least one of the following assertions is true:

(i) Σ splits algebraically;

(ii) Σ is singular and commutative.

Decomposing symmetric modules as shown in Section 3, it suffices to consider cyclic

modules at an arbitrary λ∈D.

In the case where λ ∈ D, Iλα,0 is a principal ideal by Proposition 2.10. Now it fol-

lows from a result of Pugach (cf. [4, Theorem 4.8] and the remark preceding it that
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�2(A+α(D),Cλ)= {0}. By the basic lemma of homological algebra [11, Proposition 1.7],

we conclude that �2(A+α(D),E)= {0}.
Hence, we may suppose that λ ∈ T, say λ = 1. First, we observe that a construction

from [4] provides a counterexample for α<m+1/2.

Lemma 4.3. Let m ∈ N and α ∈ [m,m+1/2). Then there exists an (m+1)-dimen-

sional, commutative, singular extension of A+α(D) which does not split algebraically.

Proof. Suppose that E is a cyclic, (m+1)-dimensional module at 1. Now we define a

cocycle µ ∈�2(Iα,0,E) such that, with respect to the standard basis, µ = (µ1, . . . ,µm+1),
where µ1, . . . ,µm+1 ∈�2(Iα,0,C) are continuous bilinear functionals given by

µ1(f ,g)= 0,

µm+1−j(f ,g)=
m∑

i=j+1

1
i!(m+1+j−i)!f

(i)(1)·g(m+1+j−i)(1)
(4.4)

for f ,g ∈ Iα,0 and j = 0, . . . ,m− 1. Clearly µ is bilinear, symmetric, and continuous.

Using exactly the same arguments as in the proof of [4, Theorem 5.6], it follows that

µ is a continuous 2-cocycle which is not algebraically cobound. Thus, H̃2(Iα,0,E)≠ {0}
and therefore H̃2(A+α(D),E)≠ {0}.

It is obvious from [4, Theorem 5.6] that the proof of Lemma 4.3 depends on the

fact that, by the hypothesis, (Z−1)2m+1 ∈ I2α,m. By Proposition 2.5, this does not hold

for α ≥m+1/2. We will show that this observation forces every cocycle to cobound

algebraically for α≥m+1/2.

Let m ∈ N and α ∈ [m,m+ 1). Suppose that E is an (m+ 1)-dimensional, cyclic

A+α(D)-module at 1 and choose a standard basis. Let F be an n-dimensional cyclic

A+α(D)-module at 1 (n ≤m+1). Let ν ∈ �2(A+α(D),F). Again, ν = (ν1, . . . ,νn) in the

standard basis of F . Defining ν̃ = (ν1, . . . ,νn,0, . . . ,0), we obtain ν̃ ∈ �2(A+α(D),E). It is

easily seen that ν̃ is cobound if and only if ν is. Thus, when dealing with extensions by

cyclic modules at 1, we may always suppose that they are of dimension m+1.

The proof of our following main result is simplified considerably for the casem= 1.

Proposition 4.4. Let m ∈ N and α ∈ [m+ 1/2,m+ 1). Let E be a cyclic Banach

A+α(D)-module at 1. Then H̃2(A+α(D),E)= {0}.
Proof. Without loss of generality, we suppose that dimE =m+1. With respect to

the standard basis, the module multiplication is given as in Section 3. Again, it suf-

fices to show that H̃2(Iα,0,E) = {0}. Now let µ = (µ1, . . . ,µm+1) ∈ �2(Iα,0,E), where

µ1, . . . ,µm+1 are continuous bilinear functionals.

For each component j = 1, . . . ,m+1, the cocycle identity has the following form:

µj(f ,gh)+
m+1−j∑
i=1

f (i)(1)
i!

µj+i(g,h)= µj(fg,h)+
m+1−j∑
i=1

h(i)(1)
i!

µj+i(f ,g) (4.5)

for f ,g,h∈ Iα,0. In particular, for f = (Z−1)k (k= 1, . . . ,m) and h∈ Iα,m,

µj
(
(Z−1)k,gh

)+µj+k(g,h)= µj((Z−1)kg,h
)
, (4.6)
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and, for f ∈ Iα,m and h= (Z−1)k (k= 1, . . . ,m),

µj
(
f ,g(Z−1)k

)= µj+k(f ,g)+µj(fg,(Z−1)k
)
. (4.7)

Consider the ideal J = {h ∈ A+α(D) | (Z − 1)mh ∈ I2α,m}. By Corollary 2.8, we have

I2α,m = (Z−1)mJ and J ⊆ Iα,m. First, define a linear functional λm+1 on Iα,0 such that,

for h∈ J with (Z−1)mh=∑ni=1figi and f1, . . . ,fn,g1, . . . ,gn ∈ Iα,m,

λm+1(h)= µ1
(
(Z−1)m,h

)− n∑
i=1

µ1
(
fi,gi

)
,

λm+1
(
(Z−1)k

)=−µ((Z−1)k−1,Z−1
)
(k= 2, . . . ,m+1),

λm+1(Z−1)= 0.

(4.8)

Here we have used the fact that (Z−1)2m+1 
∈ I2α,m (see Proposition 2.5 and Corollary

2.6). We have to show that λm is well defined on J, that is, its value does not depend on

the decomposition of (Z−1)mh. To see this, suppose that (Z−1)mh=∑ni=1figi = 0 and

let (eγ) denote the approximate identity of Iα,m. Recall that (eγ) is given by polynomials.

Then

µ1
(
(Z−1)m,h

)− n∑
i=1

µ1
(
fi,gi

)= lim
γ

[
µ1
(
(Z−1)m,heγ

)− n∑
i=1

µ1
(
fieγ,gi

)]

= lim
γ

n∑
i=1

[
µ1
(
(Z−1)m,pγfigi

)−µ1
(
(Z−1)mfipγ,gi

)]
= lim

γ

n∑
i=1

µm+1
(
pγ ·fi,gi

)
,

(4.9)

by (4.6). Here pγ is the polynomial which one obtains dividing eγ by the polynomial

(Z−1)m. Now limδ µm+1(pγfi,gieδ)= limδ µm+1(pγfigi,eδ). Hence,

µ1
(
(Z−1)m,h

)− n∑
i=1

µ1
(
fi,gi

)=− lim
γ,δ

n∑
i=1

µm+1
(
pγ ·figi,eδ

)= 0, (4.10)

and λm+1 is well defined.

Next, we inductively define linear functionals λm,λm−1, . . . ,λ1 such that, for f ∈ Iα,m,

λj
(
(Z−1)f

)=−µj((Z−1),f
)+λj+1(f ),

λj
(
(Z−1)k

)=−µj((Z−1),(Z−1)k−1)+λj+1
(
(Z−1)k−1),

λj(Z−1)= 0,

(4.11)

where k = 2, . . . ,m+ 1 and j = 1, . . . ,m. Here we have used the fact that (Z − 1)k 
∈
(Z−1)Iα,m for k = 1, . . . ,m+1. Set λ = (λ1, . . . ,λm+1). Then λ is an (m+1)-linear map

from Iα,0 to E.
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We will prove that δ1λ = µ. For each component j ∈ {1, . . . ,m+1}, we have to show

that, for f ,g ∈ Iα,0,

λj(fg)=−µj(f ,g)+
m+1−j∑
i=1

f (i)(1)
i!

λj+i(g)+
m+1−j∑
i=1

g(i)(1)
i!

λj+i(f ). (4.12)

It suffices to verify this equation for the special cases where f and g belong to Iα,m or

have the form (Z−1)k (k= 1, . . . ,m). We prove the claim by an induction on j starting

with j =m+1. Let g,f ∈ Iα,m. Then (Z−1)m(fg)= ((Z−1)mf)·g, and

λm+1(fg)= µ1
(
(Z−1)m,fg

)−µ1
(
(Z−1)mf ,g

)=−µm+1(f ,g) (4.13)

by (4.6). For k = 1, . . . ,m, we see that (Z−1)m · (Z−1)kf = (Z−1)m+k ·f , and using

(4.5), we obtain

λm+1
(
(Z−1)kf

)= µ1
(
(Z−1)m,(Z−1)kf

)−µ1
(
(Z−1)m+k,f

)
=−µm+1

(
(Z−1)k,f

)
.

(4.14)

It is easily seen that, for k,l= 1, . . . ,m,

λm+1
(
(Z−1)k(Z−1)l

)=−µm+1
(
(Z−1)k+l−1,(Z−1)

)
=−µm+1

(
(Z−1)k,(Z−1)l

) (4.15)

if k+l≤m+1, and by (4.6),

λm+1
(
(Z−1)k(Z−1)l

)= µ1
(
(Z−1)m,(Z−1)k+l

)−µ1
(
(Z−1)m+1,(Z−1)k+l−1)

=−µm+1
(
(Z−1)1,(Z−1)k+l−1)

=−µm+1
(
(Z−1)k,(Z−1)l

) (4.16)

if k+l≥m+2. By the remark preceding Proposition 4.2, µm+1 is symmetric, hence, by

(4.6),

λm+1
(
f(Z−1)k

)= µ1
(
(Z−1)m,f (Z−1)k

)−µ1
(
(Z−1)m+k,f

)
=−µm+1

(
f ,(Z−1)k

) (
k= 1, . . . ,m, f ∈ Iα,m

)
.

(4.17)

So (4.12) has been verified for j =m+1.

Now suppose that, for j ∈ {1, . . . ,m}, (4.12) has been verified for l = j+1, . . . ,m+1.

Let f ,g ∈ Iα,m. Then there exists h ∈ J such that fg = (Z−1)mh. Consider the case

j =m first. Then

λm(fg)=−µm
(
Z−1,(Z−1)m−1h

)+λm+1
(
(Z−1)m−1h

)
=−µm

(
Z−1,(Z−1)m−1h

)+µ1
(
(Z−1)m,(Z−1)m−1h

)
−µ1

(
(Z−1)m−1f ,g

) (4.18)
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by the definition of λm+1. By (4.6),

λm(fg)=−µm
(
Z−1,(Z−1)m−1h

)+µ1
(
(Z−1)m,(Z−1)m−1h

)
−µ1

(
(Z−1)m−1,fg

)−µm(f ,g). (4.19)

Since fg = (Z−1)(Z−1)m−1h, (4.6) gives

λm(fg)=−µm(f ,g). (4.20)

Now suppose that j ≤m−1. In this case,

λj(fg)=−µj
(
Z−1,(Z−1)m−1h

)+λj+1
(
(Z−1)m−1h

)
=−µj

(
Z−1,(Z−1)m−1h

)−µj+1
(
(Z−1)m−j ,(Z−1)j−1h

)
+λm+1

(
(Z−1)j−1h

)
,

(4.21)

where we have used the induction hypothesis. The definition of λm+1 and (4.6) yield

λj(fg)=−µj
(
Z−1,(Z−1)m−1h

)−µj+1
(
(Z−1)m−j ,(Z−1)j−1h

)
+µ1

(
(Z−1)m,(Z−1)j−1h

)−µ1
(
(Z−1)j−1f ,g

)
=−µj

(
Z−1,(Z−1)m−1h

)−µj+1
(
(Z−1)m−j ,(Z−1)j−1h

)
+µ1

(
(Z−1)m,(Z−1)j−1h

)−µ1
(
(Z−1)j−1,fg

)−µj(f ,g).
(4.22)

Since fg = (Z−1)j−1(Z−1)m−j+1h, a double application of (4.6) yields

λj(fg)=−µj
(
Z−1,(Z−1)m−1h

)−µj+1
(
(Z−1)m−j ,(Z−1)j−1h

)
+µj

(
(Z−1)m−j+1,(Z−1)j−1h

)−µj(f ,g)
=−µj(f ,g).

(4.23)

Hence (4.12) holds for j ∈ {1, . . . ,m} and f ,g ∈ Iα,m. For the following calculation, it is

convenient to introduce functionals λm+2, . . . ,λ2m and bilinear functionals µm+2, . . . ,µ2m

which are identically zero. Let k,l∈ {1, . . . ,m}. Then

λj
(
(Z−1)k(Z−1)l

)= λj+1
(
(Z−1)k+l−1)−µj(Z−1,(Z−1)k+l−1)

= λj+k
(
(Z−1)l

)−µj+1
(
(Z−1)k−1,(Z−1)l

)
+λj+1+l

(
(Z−1)k−1)−µj(Z−1,(Z−1)k+l−1) (4.24)

by the definition of λj (here we do not have to distinguish the cases where k+l≤m+1

and l+k >m+1) and by the induction hypothesis. We apply (4.5) again to obtain

λj
(
(Z−1)k(Z−1)l

)= λj+k((Z−1)l
)+λj+1+l

(
(Z−1)k−1)

−µj
(
(Z−1)k,(Z−1)l

)−µj+l(Z−1,(Z−1)k−1)
= λj+k

(
(Z−1)l

)+λj+l((Z−1)k
)−µj((Z−1)k,(Z−1)l

)
.

(4.25)

For the last equality, we have used the definition of λj+l (which might be zero), or, if

l+j =m+1, we have used the starting point of our induction. Thus we have verified

(4.12) for j ∈ {1, . . . ,m}, f = (Z−1)k, and g = (Z−1)l, where k,l∈ {1, . . . ,m}.
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For the last combination, let k∈ {1, . . . ,m} and f ∈ Iα,m. The definition of λj gives

λj
(
(Z−1)kf

)= λj+1
(
(Z−1)k−1f

)−µj(Z−1,(Z−1)k−1f
)
. (4.26)

By the induction hypothesis, or by the definition of λm+2, . . . ,λ2m, respectively,

λj
(
(Z−1)kf

)= λj+k(f )−µj+1
(
(Z−1)k−1,f

)−µj(Z−1,(Z−1)k−1f
)

= λj+k(f )−µj
(
(Z−1)k,f

)
.

(4.27)

Since µj is symmetric by the remark preceding Proposition 4.2, we have also shown

that

λj
(
f(Z−1)k

)= λj+k(f )−µj(f ,(Z−1)k
)
. (4.28)

Hence, (4.12) holds for j ∈ {1, . . . ,m}, f ∈ Iα,m, and g = (Z−1)k, where k ∈ {1, . . . ,m}
and the induction continues.

Inspecting the proof of the previous result carefully, the hypothesis that α≥m+1/2
is needed only once: we have to ensure that (Z−1)2m+1 
∈ I2α,m in order to define λm+1

consistently. Thus, our approach can be modified to obtain two interesting observa-

tions.

Proposition 4.5. Let m ∈ Z+ and α ∈ [m,m+1). Let E be a cyclic A+α(D)-module

at 1.

(i) Suppose that dimE ≤m. Then H̃2(A+α(D),E)= {0}.
(ii) Suppose that α<m+1/2 and dimE =m+1. Then H̃2(A+α(D),E)= C.

Proof. (i) We may suppose that α<m+1/2. Now suppose that E is a cyclic A+α(D)-
module, that µ ∈ �2(A+α(D),E), and that k := dimE ≤ m. As in the earlier remark,

we may consider E as a submodule of an (m+1)-dimensional, cyclic module F , and

µ = (µ1, . . . ,µk,0, . . . ,0) with respect to the standard basis of F . If we now define λm+1

as we did in the proof, we might obtain an inconsistency since (Z−1)2m+1 ∈ I2α,m. In

fact, we have

λm+1
(
(Z−1)m+1)= µ1

(
(Z−1)m,(Z−1)m+1)

−µ1
(
(Z−1)m+1/2,(Z−1)m+1/2)

= lim
γ
µm+1

(
pγ(Z−1)m+1/2,(Z−1)m+1/2). (4.29)

On the other hand, our definition requires

λm+1
(
(Z−1)m+1)=−µm+1

(
(Z−1)m,Z−1

)
. (4.30)

But, since µm+1 ≡ 0, this no longer yields a contradiction. Hence, we may proceed with

the proof and µ is cobound.

(ii) Suppose that α < m+1/2 and dimE =m+1. Let µ ∈ �2(A+α(D),E) and let ν ∈
�2(A+α(D),E)\Ñ2(A+α(D),E) be the 2-cocycle constructed in Lemma 4.3. Again, we may

write µ = (µ1, . . . ,µm+1) and ν = (ν1, . . . ,νm+1) with respect to the standard basis. Recall
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that, by definition, ν1 = 0 and νm+1((Z−1)m,Z−1)= 1. Hence, adding a scalar multiple

of ν to µ, we may suppose that

µ1
(
(Z−1)m,(Z−1)m+1)−µ1

(
(Z−1)m+1/2,(Z−1)m+1/2)= µm+1

(
(Z−1)m,Z−1

)
.

(4.31)

Now there no longer occurs any obstruction for the definition of a functional λm+1

and we may proceed as before. The claim follows.

This section can be summarized as follows.

Theorem 4.6. Let m∈N and α∈ [m,m+1).
(i) Suppose that α<m+1/2. Then every finite-dimensional extension ofA+α(D)with

dimension at mostm splits algebraically, and there exists an (m+1)-dimensional

extension which does not split algebraically.

(ii) Suppose thatα≥m+1/2. Then every finite-dimensional extension ofA+α(D) splits

algebraically.

It is remarkable that, for certain α’s, α ≥ 1, all finite-dimensional extensions split,

whereas, considering the so closely related algebras Cm[0,1], this does not hold for

any m∈N.
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