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A backward biorthogonalization approach is proposed, which modifies biorthogonal func-
tions so as to generate orthogonal projections onto a reduced subspace. The technique is
relevant to problems amenable to be represented by a general linear model. In particular,
problems of data compression, noise reduction, and sparse representations may be tackled
by the proposed approach.
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1. Introduction. We introduce a backward biorthogonalization technique relevant

to the general linear model. Any data which may be described in terms of a linear

combination of waveforms satisfies this model. For instance, the response of a physical

system to a particular interaction varying as a function of a parameter, say t, is often

represented by a measurable quantity f(t), which is amenable to be expressed in the

fashion

f(t)=
N∑
n
cNnαn(t), (1.1)

where the model waveforms αn, n = 1, . . . ,N, are derivable by recourse to physical

considerations. The determination of the coefficients cNn , n = 1, . . . ,N, entails solving

the inverse problem when the function f(t) is measured. The superscript N indicates

that, unless the waveforms αn are orthogonal, the appropriate coefficients cNn depend

on the order of the model, that is, the number N of waveforms αn being considered in

(1.1). If such waveforms are linearly independent, then there exits a set of reciprocal

functions α̃Nn , n= 1, . . . ,N, which is biorthogonal to the former, that is, 〈α̃Nn |αm〉 = δn,m
[5, 11]. Here the superscript N indicates that the biorthogonal functions α̃Nn allow for

constructing orthogonal projections onto the subspace VN spanned by N waveforms

αn. Hence, the coefficients cNn of the linear expansion (1.1) approximating a function f
at best (in a minimum distance sense) can be obtained by computing the inner products

cNn = 〈α̃Nn |f 〉 [5, 7].

Since the reciprocal set α̃Nn , n= 1, . . . ,N (and therefore the coefficients cNn ), depends

on the number N of total waveforms, they should be recalculated when this number is

enlarged or reduced. This feature of nonorthogonal expansions is discussed in [5, 6, 7],

where a recursive methodology is introduced for transforming the reciprocal set α̃Nn ,

n = 1, . . . ,N, into a new one α̃N+1
n , n = 1, . . . ,N + 1. The latter is guaranteed to yield

orthogonal projections onto the subspace VN+1 arising by the inclusion of a waveform

αN+1 in VN , that is, VN+1 = VN+αN+1.
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Here we wish to consider the converse situation: we suppose that the reciprocal

waveforms α̃Nn , n = 1, . . . ,N, are known and we want to modify them so as to obtain

orthogonal projections onto a subspace VN/αj arising by eliminating an element, say

the jth one, from VN . Then, VN/αj = span{αn; n= 1, . . . ,j−1,j+1, . . . ,N}. Our aim is to

construct the corresponding reciprocal functions α̃N/jn , n = 1, . . . ,j−1,j+1, . . . ,N, by

modifying the previous α̃Nn , n= 1, . . . ,N.

We suppose that in the summation of (1.1), we want to retain only some terms and

approximate f(t) by a linear combination of those elements. Thus, to obtain the best

approximation of f(t) by a linear combination of such a nature, we need to recalcu-

late the coefficients corresponding to the waveforms we wish to retain. If we simply

disregarded the coefficients of the unwanted terms, but did not recalculate the remain-

ing ones, the approximation would not be optimal in a minimum distance sense. The

approach we propose in this communication allows for the necessary modifications

of coefficients so as to achieve the optimal approximation. The method is based on

an iterative technique capable of adapting biorthogonal functions in order to generate

orthogonal projections onto a reduced subspace.

The paper is organized as follows. Section 2 introduces the notation, discusses the

motivation to the proposed approach, and summarizes a previously introduced forward

biorthogonalization method [5, 7]. Section 3 discusses the proposed biorthogonali-

zation technique to transform biorthogonal functions in order to build orthogonal pro-

jections onto a reduced subspace. The conclusions are drawn in Section 4.

2. Notation, background, and motivation to the approach. Adopting Dirac’s vector

notation [2], we represent an element f of a Hilbert space � as a vector |f 〉 and its

dual as 〈f |. Given a set of δ-normalized continuous orthogonal vectors {|t〉; −∞< t <
∞; 〈t|t′〉 = δ(t−t′)}, the unity operator in � is expressed as follows:

Î� = lim
T→∞

∫ T
−T
|t〉〈t|dt. (2.1)

Thus, for all |f 〉 and |g〉 ∈�, by inserting Î� in 〈f |g〉, that is,

〈f |Î�|g〉 = lim
T→∞

∫ T
−T
〈f |t〉〈t|g〉dt, (2.2)

one is led to a representation of � in terms of the space of square-integrable func-

tions, with 〈t|g〉 = g(t) and 〈g|t〉 = 〈t|g〉∗ = g∗(t), where g∗(t) indicates the complex

conjugate of g(t).
Let vectors |αn〉 ∈�, n = 1, . . . ,∞, be a Riesz basis for �. Hence, all |f 〉 ∈� can be

expressed as the linear span

|f 〉 =
∞∑
n=1

cn|αn〉 (2.3)

and there exists a reciprocal basis |α̃n〉, n = 1, . . . ,∞, for �, to which the former basis

is biorthogonal, that is, 〈α̃n|αm〉 = δn,m [11]. The reciprocal basis allows to compute
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the coefficients cn in (2.3) as the inner products

cn = 〈α̃n|f 〉 = lim
T→∞

∫ T
−T
α̃∗n(t)f (t)dt. (2.4)

Thus,

|f 〉 =
∞∑
n=1

|αn〉〈α̃n|f 〉 (2.5)

so that, by denoting

Î =
∞∑
n=1

|αn〉〈α̃n|, (2.6)

(2.3) can be recast as f = Îf , which implies that, at least in the weak sense, Î is a

representation of the identity operator in �. Thus, we have the following generalization

of the Plancherel-Parseval identity:

‖|f 〉‖2 = 〈f |Î|f 〉 =
∞∑
n=1

c̃∗ncn, (2.7)

with cn as in (2.4) and c̃∗n = 〈f |αn〉.
If the basis |αn〉, n= 1, . . . ,∞, is orthogonalized and we denote by |ψ̃n〉, n= 1, . . . ,∞,

the corresponding orthogonal vectors after normalization to unity, then the new basis

is self-reciprocal, that is, it satisfies the orthonormality condition 〈ψ̃m|ψ̃n〉 = δm,n and

provides a representation for the identity operator as given by

Î =
∞∑
n=1

|ψ̃n〉〈ψ̃n|. (2.8)

This representation of the identity operator can be seen as a particular case of (2.6) by

considering the basis and its reciprocal identical to |ψ̃n〉, n= 1, . . . ,∞. The equivalence

between (2.6) and (2.8) holds only when both sums run to infinity. Because, on the one

hand, if the sum in (2.8) is truncated up to N terms, we obtain an operator P̂ given by

P̂ =
N∑
n=1

|ψ̃n〉〈ψ̃n|, (2.9)

which is the orthogonal projector onto the subspace VN spanned by N vectors |αn〉,
n = 1, . . . ,N. On the other hand, by truncating (2.6) up to N terms, one obtains an

operator

Q̂=
N∑
n=1

|αn〉〈α̃n|, (2.10)

which is idempotent, and hence a projector, but as it fails to be selfadjoint, it is not

an orthogonal projector operator. As a consequence, the approximation of |f 〉 that we
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obtain by truncating the expansion (1.1) up to N terms is not the best approximation

of |f 〉 that can be obtained by a linear superposition of N vectors |αn〉. If one wishes to

construct orthogonal projections by means of biorthogonal families, then biorthogonal

vectors |α̃Nn 〉, n = 1, . . . ,N, specially devised for such a purpose must be constructed.

The superscript N indicates that if the subspace VN is enlarged (or reduced), each

function should be recalculated.

2.1. Forward adaptive biorthogonalization. Let |αn〉 be a set of linearly indepen-

dent vectors and let vectors |ψn〉 be obtained by orthogonalizing the formers in such

a way that |ψn〉 = |αn〉− P̂Vn−1 |αn〉, where P̂Vn−1 is the orthogonal projector operator

onto the subspace Vn−1 spanned by |αl〉, l= 1, . . . ,n−1. Then, it is proved in [5, 7] that

vectors |α̃k+1
n 〉 arising from |ψ1〉 = |α1〉 through the recursive equation

∣∣α̃k+1
n
〉= ∣∣α̃kn〉− |ψk+1〉

‖|ψk+1〉‖2

〈
αk+1

∣∣α̃kn〉, n= 1, . . . ,k,

∣∣α̃k+1
k+1

〉= |ψk+1〉
‖|ψk+1〉‖2

(2.11)

are biorthogonal to vectors |αn〉, n = 1, . . . ,k+1, and provide a representation of the

orthogonal projection operator onto Vk+1, that is,

P̂Vk+1 =
k+1∑
n=1

|αn〉
〈
α̃k+1
n
∣∣= P̂†Vk+1

=
k+1∑
n=1

∣∣α̃k+1
n
〉〈αn|. (2.12)

As discussed in [6], in order to reduce numerical errors, the vectors |ψk〉 are conve-

niently computed by modified Gram-Schmidt procedure or modified Gram-Schmidt

procedure with pivoting [6, 9]. In some cases, it may be necessary to include a re-

orthogonalization step [10].

Since the unique vector in Vk+1 minimizing the distance to an arbitrary vector |f 〉 ∈�

is obtained by the operation P̂Vk+1f [5, 7], it follows from (2.12) that the coefficients ck+1
n

of the linear expansion

k+1∑
n=1

ck+1
n |αn〉, (2.13)

which approximates an arbitrary |f 〉 ∈� at best in a minimum distance sense, can be

recursively obtained as

ck+1
n = ckn−

〈
α̃kn
∣∣αk+1

〉 〈ψk+1|f 〉
‖|ψk+1〉‖2

, n= 1, . . . ,k,

ck+1
k+1 =

〈ψk+1|f 〉
‖|ψk+1〉‖2

,
(2.14)

with c1
1 = 〈αl1 |f 〉/‖|αl1〉‖2.

This technique, yielding forward approximations, has been shown to be of assistance

in sparse signal representation by waveforms selection [7] as well as data subset selec-

tion [8]. Nevertheless, in those and other application areas, the need for a technique
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yielding approximations in the opposite direction is clear. Hence, the motivation to the

approach of the next section.

3. Backward adaptive biorthogonalization. Let VN/αj denote the subspace which is

left by removing the vector |αj〉 from VN , that is,

VN/αj = span{|α1〉, . . . ,|αj−1〉,|αj+1〉, . . . ,|αN〉}, (3.1)

and let |α̃N/jn 〉, n= 1, . . . ,j−1,j+1, . . . ,N, be the corresponding reciprocal family which

allows expressing the orthogonal projector operator onto VN/αj as follows:

P̂VN/αj =
N∑
n=1
n 	=j

|αn〉
〈
α̃N/jn

∣∣=
N∑
n=1
n 	=j

∣∣α̃N/jn
〉〈αn|. (3.2)

Assuming that the biorthogonal vectors |α̃Nn 〉, n= 1, . . . ,N, yielding a representation of

P̂VN as given by

P̂VN =
N∑
n=1

|αn〉
〈
α̃Nn
∣∣=

N∑
n=1

∣∣α̃Nn〉〈αn|, (3.3)

are known, our goal is to modify such vectors so as to obtain the corresponding set

|α̃N/jn 〉, n= 1, . . . ,j−1,j+1, . . . ,N, yielding P̂VN/αj as in (3.2).

We start by writing

P̂VN = P̂VN/αj + P̂V⊥N/αj , (3.4)

where P̂V⊥N/αj
is the orthogonal projector onto V⊥N/αj , the orthogonal complement of

VN/αj in VN . Thus, V⊥N/αj contains only one linear independent vector, arising by sub-

tracting from |αj〉 its component in V⊥N/αj , that is,

P̂V⊥N/αj
= ∣∣ψ̃fj 〉〈ψ̃fj

∣∣, (3.5)

where

∣∣ψfj 〉= |αj〉− P̂VN/αj |αj〉 (3.6)

and |ψ̃fj 〉 = |ψfj 〉/‖|ψfj 〉‖.
(Note that we use the notation |ψfj 〉 to differentiate this new vector from the previous

|ψj〉 introduced in Section 2.1.)

Using now (3.2), (3.3), and (3.5), we express (3.4) as follows:

N∑
n=1

|αn〉
〈
α̃Nn
∣∣=

N∑
n=1
n 	=j

|αn〉
〈
α̃N/jn

∣∣+∣∣ψ̃fj 〉〈ψ̃fj
∣∣. (3.7)
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Taking the inner product of both sides of (3.7) with 〈ψ̃fj |, and using the fact that

〈ψ̃fj |αn〉 = 0 for n≠ j, we obtain

〈
ψ̃fj
∣∣αj〉〈α̃Nj

∣∣= 〈ψ̃fj
∣∣. (3.8)

Moreover, since 〈ψ̃fj |αj〉 = 〈αj|αj〉− 〈αj|P̂VN/αj |αj〉 = 〈ψ̃
f
j |ψfj 〉, it follows from (3.8)

that ‖〈ψfj |‖ = ‖〈α̃Nj |‖−1. Hence, the vector 〈ψ̃fj | turns out to be

〈
ψ̃fj
∣∣=

〈
α̃Nj
∣∣∥∥〈α̃Nj
∣∣∥∥ . (3.9)

Taking now the inner product of both sides of (3.7) with every 〈α̃Nn |, n = 1, . . . ,j−1,
j+1, . . . ,N, we obtain the equation we wanted to find:

〈
α̃N/jn

∣∣= 〈α̃Nn∣∣−〈α̃Nn∣∣ψ̃fj 〉〈ψ̃fj
∣∣, n= 1, . . . ,j−1,j+1, . . . ,N. (3.10)

The following theorem demonstrates that the modification of vectors |α̃Nn 〉 as pre-

scribed in (3.10) provides us with biorthogonal vectors |α̃N/jn 〉, n = 1, . . . ,j − 1,
j+1, . . . ,N, rendering orthogonal projections.

Theorem 3.1. Given a set of vectors |α̃Nn 〉, n= 1, . . . ,N, biorthogonal to vectors |αn〉,
n= 1, . . . ,N, and yielding a representation of P̂VN as given in (3.3), a new set of biorthog-

onal vectors |α̃N/jn 〉, n = 1, . . . ,j−1,j+1, . . . ,N, yielding a representation for P̂VN/αj , as

given in (3.2), can be obtained from the following equations:

∣∣α̃N/jn
〉= ∣∣α̃Nn〉−

∣∣α̃Nj 〉〈α̃Nj
∣∣α̃Nn〉∥∥∣∣α̃Nj 〉
∥∥2 , n= 1, . . . ,j−1,j+1, . . . ,N. (3.11)

Proof. We first use (3.11) to write

P̂VN/αj =
N∑
n=1
n 	=j

|αn〉
〈
α̃N/jn

∣∣=
N∑
n=1
n 	=j

|αn〉
〈
α̃Nn
∣∣−

N∑
n=1
n 	=j

|αn〉
〈
α̃Nn
∣∣α̃Nj 〉〈α̃Nj

∣∣
∥∥∣∣α̃Nj 〉

∥∥2 . (3.12)

To prove that (3.12) is the orthogonal projector onto VN/αj , we show that (a) P̂VN/αj |g〉 =
|g〉 for all |g〉 ∈ VN/αj and (b) P̂VN/αj |g⊥〉 = 0 for all |g⊥〉 in the orthogonal complement

of VN/αj in �.

Indeed, every |g〉∈VN/αj can be expressed as a linear combination |g〉=∑Nn=1
n 	=j
an|αn〉

for some coefficients an, n= 1, . . . ,j−1,j+1, . . . ,N, and since, by hypothesis, 〈α̃Nn |αl〉 =
δn,l, from (3.12), we have

P̂VN/αj |g〉 =
N∑
n=1
n 	=j

N∑
l=1
l	=j

|αn〉al
〈
α̃Nn
∣∣αl〉=

N∑
n=1
n 	=j

an|αn〉 = |g〉, (3.13)

which proves (a).
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To prove (b), we write
∑N
n=1
n 	=j

|αn〉〈α̃Nn | =
∑N
n=1 |αn〉〈α̃Nn |−|αj〉〈α̃Nj | = P̂VN −|αj〉〈α̃Nj |

and recast (3.12) as follows:

P̂VN/αj = P̂VN −|αj〉
〈
α̃Nj
∣∣− P̂VN

∣∣α̃Nj 〉〈α̃Nj
∣∣

∥∥∣∣α̃Nj 〉
∥∥2 + |αj〉

〈
α̃Nj
∣∣α̃Nj 〉〈α̃Nj

∣∣
∥∥∣∣α̃Nj 〉

∥∥2

= P̂VN −
P̂VN

∣∣α̃Nj 〉〈α̃Nj
∣∣

∥∥∣∣α̃Nj 〉
∥∥2 .

(3.14)

Now, since 〈αn|g⊥〉 = δn,j〈αj|g⊥〉, n = 1, . . . ,N, it follows that P̂VN |g⊥〉 = |α̃Nj 〉〈αj|g⊥〉
and, since |α̃Nj 〉 ∈ VN , it follows that 〈α̃Nj |g⊥〉 = 〈α̃Nj |P̂VN |g⊥〉 = 〈α̃Nj |α̃Nj 〉〈αj|g⊥〉. Hence,

P̂VN/αj |g
⊥〉 = P̂VN |g⊥〉−

∣∣α̃Nj 〉〈α̃Nj
∣∣P̂VN |g⊥〉∥∥∣∣α̃Nj 〉
∥∥2

= ∣∣α̃Nj 〉〈αj|g⊥〉−
∣∣α̃Nj 〉〈αj|g⊥〉 = 0.

(3.15)

The biorthogonality property of vectors |α̃N/jn 〉, n = 1, . . . ,j − 1,j + 1, . . . ,N, is an im-

mediate consequence of the biorthogonality property of vectors |α̃Nn 〉, as readily fol-

lows by taking the inner product of both sides of (3.11) with each vector 〈αn|, n =
1, . . . ,j−1,j+1, . . . ,N.

Since P̂VN/αj =
∑N
n=1
n 	=j

|αn〉〈α̃Nn | has been proved to be a projector, it is selfadjoint.

Hence, (3.2) holds.

Corollary 3.2. Let |fN〉 be the orthogonal projection of an arbitrary |f 〉 ∈� onto

VN , that is,

|fN〉 = P̂VN |f 〉 =
N∑
n=1

cNn |αn〉, (3.16)

with cNn = 〈α̃Nn |f 〉, n= 1, . . . ,N, assumed to be known. Hence, the coefficients cN/jn of the

orthogonal projection of |f 〉 onto VN/αj are obtained from the known coefficients cNn as

follows:

cN/jn = cNn −
〈
α̃Nn
∣∣α̃Nj 〉cNj∥∥∣∣α̃Nj 〉

∥∥2 . (3.17)

The proof trivially stems from (3.12) since P̂VN/αj |f 〉 =
∑N
n=1
n 	=j
cN/jn |αn〉 implies cN/jn =

〈α̃N/jn |f 〉.
Corollary 3.3. For |f 〉 ∈�, let |fN〉 be as above and |fN/j〉 = P̂VN/αj |f 〉. Then, the

following relation between ‖|fN〉‖ and ‖|fN/j〉‖ holds:

‖|fN/j〉‖2 = ‖|fN〉‖2−
∣∣cNj

∣∣2

∥∥∣∣α̃Nj 〉
∥∥2 . (3.18)



1850 L. REBOLLO-NEIRA

Proof. Using (3.14) and the fact that orthogonal projectors are selfadjoint and

idempotent, it follows that

‖|fN/j〉‖2 = 〈f |P̂VN/αj |f 〉 = 〈f |P̂VN |f 〉−
〈
f
∣∣α̃Nj 〉〈α̃Nj

∣∣f〉∥∥∣∣α̃Nj 〉
∥∥2

= ‖|fN〉‖2−
∣∣cNj

∣∣2

∥∥∣∣α̃Nj 〉
∥∥2 .

(3.19)

So far, we have discussed how to modify the coefficients of a linear expansion when

one of its components is removed. Nevertheless, we have given no specification on how

to choose such an element. We are now in a position to address this point since Corol-

lary 3.3 suggests how the selection could be made optimal. The following proposition

is in order.

Proposition 3.4. Let

|fN〉 = P̂VN |f 〉 =
N∑
n=1

cNn |αn〉 (3.20)

be given by the coefficients cNn , n= 1 . . . ,N, and let

|fN/j〉 = P̂VN/αj |f 〉 =
N∑
n=1
n 	=j

cN/jn |αn〉 (3.21)

be obtained by eliminating the coefficient cNj from (3.20) and modifying the remaining

coefficients as prescribed in (3.17). The coefficient cNj to be removed as minimizing the

norm of the residual error |∆〉 = |fN〉−|fN/j〉 is the one yielding a minimum value of

∣∣cNj
∣∣2

∥∥∣∣α̃Nj 〉
∥∥2 . (3.22)

Proof. Since P̂VN P̂VN/αj = P̂VN/αj P̂VN = P̂VN/αj , we have

‖|fN〉−|fN/j〉‖2 = 〈f |P̂VN |f 〉−〈f |P̂VN/αj |f 〉 = ‖|fN〉‖
2−‖|fN/j〉‖2. (3.23)

Hence, making use of (3.18), we further have

‖|fN〉−|fN/j〉‖2 =
∣∣cNj

∣∣2

∥∥∣∣α̃Nj 〉
∥∥2 , (3.24)

from which we gather that ‖|fN〉−|fN/j〉‖2 is minimum if |cNj |2/‖|α̃Nj 〉‖2 is minimum.

Proposition 3.4 is relevant to backward approximation of a signal, a common proce-

dure in compression and noise reduction techniques. The goal in this case is to diminish
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the number of coefficients so as to have a more economical representation and/or re-

duce spurious information (noise). Successive applications of criterion (3.22) leads to

an algorithm for recursive coarser approximations. Indeed, we assume that at the first

iteration, we eliminate the jth term yielding a minimum of (3.22). We then construct the

new reciprocal vectors as prescribed in (3.11) and the corresponding new coefficients

as prescribed in (3.17). We are thus in a position to repeat the process and obtain a

coarser approximation of the previous one. If we denote by |f (k)〉 the approximation

arising at the k-step, a common stopping criterion would imply ceasing the iteration

process when the following situation is reached:

∥∥||f 〉〉−|f (k)〉∥∥2 > δ, (3.25)

where δ is estimated according to the desired precision. If the aim is to denoise a signal,

the value of δmay be set as the variance of the noise, when available. It is appropriate to

remark, however, that in the context of some applications, the selection criterion (3.22)

may not be the adequate one. Instead, other criteria based on statistical properties may

be required [1, 3, 4]. In any case, regardless of the criterion for selecting the coefficient

cNj to be deleted, if one wishes the remaining ones to yield the optimal approximation

in a minimum distance sense, such coefficients should be modified as indicated in

(3.17). We illustrate next, by a simple example, the gain that results in following this

prescription.

We consider N = 13 elements |αn〉, n = 1, . . . ,13, whose functional representations

are given by the following shifted Mexican hat wavelet:

α2n(t)= 〈t|α2n〉 =A2ne−(t+2n)2(1−(t+2n)2
)
,

α2n+1(t)= 〈t|α2n+1〉 =A2n+1e−(t−2n−1)2(1−(t−2n−1)2
)
, n= 0, . . . ,6,

(3.26)

where eachAn is a constant which normalizes the corresponding function |αn〉 to unity

in the interval [−4,4]. We construct the biorthogonal functions α̃13
n (t) (assumed to be

known) by applying the forward biorthogonalization technique of Section 2.1, but they

could be constructed by any other available method.

The signal f(t) is considered to be the function plotted by the continuous line of Fig-

ure 3.1. Such a signal is also expressible by a linear combination of the waveforms given

in (3.26). A high-quality fitting results by using the corresponding 13 coefficients c13
n ,

each of which is calculated as c13
n = 〈α̃13

n |f 〉. The actual numbers are as follows: 2.8273,

2.4954, 2.4954, 1.9988, 1.9988, 1.4989, 1.4989, 0.8630, 0.8630, 0.2957, 0.2957, 0.0648,

0.0648. We now disregard the last two coefficients, the ones of smallest magnitude, and

use the remaining ones without modification. Although the neglected coefficients are

quite small in comparison with some of the others, the approximation that results, rep-

resented by the dotted line in Figure 3.1, does not correctly fit the distribution tails.

Nevertheless, if we disregard the same coefficients but modify the others by apply-

ing (3.17) twice, the resulting approximation happens to coincide with the continuous

line of Figure 3.1. To magnify the effect we wish to show, we now disregard two more

coefficients, those of value 0.2957. The approximation that results from a simple trun-

cation is shown by the darker dotted line in Figure 3.2. The lighter dotted line plots
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Figure 3.1. The continuous line represents a signal f(t), which is also ex-
pressible as a linear combination of the 13 waveforms given in (3.26). The
dotted line is the approximation arising by disregarding two coefficients in
such linear expansion. Our approach coincides with the continuous line.
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Figure 3.2. Here the darker dotted line is obtained by disregarding 4 coeffi-
cients. Our approach is represented by the lighter dotted line.

our approximation. This very simple example clearly illustrates the significance of the

proposed modification of coefficients.

4. Conclusions. A recursive approach for adapting biorthogonal functions so as to

obtain orthogonal projections onto a reduced subspace has been proposed. The re-

quired modifications are simple and easy to implement. The modified functions are

used to adapt coefficients of a lower-order linear model in order to obtain an optimal

approximation in a minimum distance sense.

A criterion for disregarding coefficients has been discussed. Such a criterion leads to

an iterative procedure for successive backward approximations which yields, at each
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iteration, a minimal residual norm. It should be stressed that, regardless of the criterion

used for neglecting coefficients, the proposed approach may be applied to guarantee

optimality (in a minimum distance sense) of the remaining approximation. We believe,

thereby, that this technique is potentially applicable to a broad range of problems in-

cluding data compression, noise reduction, and sparse representation.

MATLAB codes for implementation of the proposed approach can be found at

http://www.ncrg.aston.ac.uk/Projects/BiOrthog
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