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COEFFICIENT ESTIMATES FOR RUSCHEWEYH DERIVATIVES
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We consider functions f , analytic in the unit disc and of the normalized form f(z) =
z+∑∞n=2anzn. For functions f ∈ R̄δ(β), the class of functions involving the Ruscheweyh
derivatives operator, we give sharp upper bounds for the Fekete-Szegö functional |a3−µa2

2|.
2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let S denote the class of normalized analytic univalent functions f
defined by

f(z)= z+
∞∑
n=2

anzn (1.1)

in the unit disc D = {z : |z|< 1}. Suppose that

S∗ =
{
f ∈ S : Re

(
zf ′(z)
f(z)

)
> 0, z ∈D

}
,

S∗(β)=
{
f ∈ S :

∣∣∣∣arg
(
zf ′(z)
f(z)

)∣∣∣∣< βπ2 , z ∈D
} (1.2)

are classes of starlike and strongly starlike functions of order β (0 < β ≤ 1), respec-

tively. Note that S∗(β)⊂ S∗ for 0< β< 1 and S∗(1)= S∗ [5]. Kanas [2] introduced the

subclass R̄δ(β) of function f ∈ S as the following.

Definition 1.1. For δ ≥ 0, β ∈ (0,1], a function f normalized by (1.1) belongs to

R̄δ(β) if, for z ∈D−{0} and Dδf(z)≠ 0, the following holds:

∣∣∣∣arg
z
(
Dδf(z)

)′
Dδf(z)

∣∣∣∣≤ βπ2 , (1.3)

whereDδf denotes the generalized Ruscheweyh derivative which was originally defined

as the following.

Definition 1.2 [6]. Let Dnf and f be defined by (1.1). Then for n∈N∪{0},

Dnf(z)= z
(1−z)n+1

∗f(z), (1.4)

where ∗ denotes the Hadamard product of two analytic functions and N is a set of

natural numbers.
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Later in [1], Al-Amiri generalized the Ruscheweyh derivative Dδ for real numbers

δ≥−1 as a Hadamard product of the functions f and z/(1−z)δ+1.

Note that R̄0(β) = S∗(β) for each β ∈ (0,1] and R̄0(1) = S∗. In this note, we obtain

sharp estimates for |a2|, |a3| and the Fekete-Szegö functional for the class R̄δ(β). For

the subclass S∗, sharp upper bounds for the functional |a3−µa2
2| have been obtained

for all real µ [3, 4].

2. Preliminary results. In proving our results, we will need the following lemmas.

However, we first denote P to be the class of analytic functions with positive real part

in D.

Lemma 2.1. Let p ∈ P and let it be of the form p(z)= 1+∑∞
n=1 cnzn with Rep(z) > 0.

Then

(i) |cn| ≤ 2 for n≥ 1,

(ii) |c2−c2
1/2| ≤ 2−|c1|2/2.

Lemma 2.2. Let δ≥ 0 and β∈ (0,1]. If f ∈ R̄δ(β) and is given by (1.1), then

∣∣a2

∣∣≤ 2β
δ+1

,

∣∣a3

∣∣≤



2β
(δ+2)(δ+1)

if β≤ 1
3
,

6β2

(δ+2)(δ+1)
if β≥ 1

3
.

(2.1)

Proof. Let F(z) = Dδf(z) = z+A2z2+A3z3+··· . Since f ∈ R̄δ(β) and Dδf(z) ∈
S∗(β), then

zF ′(z)
F(z)

= pβ(z) (2.2)

and so

z
(
1+2A2z+3A3z2+···)
z+A2z2+A3z3+··· = (1+c1z+c2z2+···)β, (2.3)

which implies that

z+2A2z2+3A3z3+··· = z+(βc1+A2
)
z2+

(
βc2+ β(β−1)

2
c2

1+βA2c1+A3

)
z3+··· .

(2.4)

Equating the coefficients, we have

A2 = βc1, (2.5)

A3 = β
2

(
c2− c

2
1

2

)
+ 3

4
β2c2

1 . (2.6)
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Now, for δ≥−1, Dδf has the Taylor expansion

Dδf(z)= z+
∞∑
n=2

Γ(n+δ)
(n−1)!Γ(1+δ)anz

n, z ∈D, (2.7)

where Γ(n+δ) denotes Euler’s functions with

Γ(n+δ)= δ(δ+1)···(δ+n−1)Γ(δ). (2.8)

Then

z+A2z2+A3z3+··· = z+ Γ(2+δ)
Γ(1+δ)a2z2+ Γ(3+δ)

2Γ(1+δ)a3z3+··· . (2.9)

Equating the coefficients in (2.9), we have

a2
Γ(2+δ)
Γ(1+δ) = a2(δ+1)=A2. (2.10)

Then, from (2.5), we obtain

a2 = βc1

δ+1
. (2.11)

It follows that from Lemma 2.1(i)

∣∣a2

∣∣≤ 2β
δ+1

, (2.12)

whereas the coefficient of z3 in (2.9) is

a3
Γ(3+δ)

2Γ(1+δ) = a3
(δ+1)(δ+2)

2
=A3. (2.13)

From (2.6), we obtain

a3 = 2
(δ+1)(δ+2)

[
β
2

(
c2− c

2
1

2

)
+ 3

4
β2c2

1

]
. (2.14)

It follows from Lemma 2.1(ii) that

∣∣a3

∣∣≤ 2
(δ+1)(δ+2)

[
β
2

(
2−

∣∣c1

∣∣2

2

)
+ 3

4
β2
∣∣c1

∣∣2

]
, (2.15)

that is,

∣∣a3

∣∣≤



2β
(δ+2)(δ+1)

if β≤ 1
3
,

6β2

(δ+2)(δ+1)
if β≥ 1

3
.

(2.16)
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3. Results. We first consider the functional |a3−µa2
2| for complex µ.

Theorem 3.1. Let f ∈ R̄δ(β) and β∈ (0,1]. Then for µ complex,

∣∣a3−µa2
2

∣∣≤ 2β
(δ+1)(δ+2)

max

[
1,
∣∣β(3(δ+1)−2µ(δ+2)

)∣∣
(δ+1)

]
. (3.1)

For each µ there is a function in R̄δ(β) such that equality holds.

Proof. From (2.11) and (2.14), we write

a3−µa2
2 =

2
(δ+1)(δ+2)

[
β
2

(
c2− c

2
1

2

)
+ 3

4
β2c2

1

]
−µ

(
βc1

δ+1

)2

,

= 1
(δ+1)(δ+2)

[
β
(
c2− c

2
1

2

)]
+ β

2
(
3(δ+1)−2µ(δ+2)

)
2(δ+1)2(δ+2)

c2
1 .

(3.2)

It follows from (3.2) and Lemma 2.1(ii) that

∣∣a3−µa2
2

∣∣≤ β
(δ+1)(δ+2)

(
2−

∣∣c1

∣∣2

2

)
+
∣∣∣∣β2

(
3(δ+1)−2µ(δ+2)

)
2(δ+1)2(δ+2)

∣∣∣∣∣∣c1

∣∣2,

= 2β
(δ+1)(δ+2)

+
∣∣β2

(
3(δ+1)−2µ(δ+2)

)∣∣−β(δ+1)
2(δ+1)2(δ+2)

∣∣c1

∣∣2,

(3.3)

which on using Lemma 2.1(i), that is, |c1| ≤ 2, gives

∣∣a3−µa2
2

∣∣≤



2β
(δ+1)(δ+2)

if κ(δ)≤ β(δ+1),
∣∣β2

(
6(δ+1)−4µ(δ+2)

)∣∣
(δ+1)2(δ+2)

if κ(δ)≥ β(δ+1),
(3.4)

where κ(δ)= |β2(3(δ+1)−2µ(δ+2))|.
Equality is attained for functions in R̄δ(β) given by

z
(
Dδf(z)

)′
Dδf(z)

=
(

1+z2

1−z2

)β
,

z
(
Dδf(z)

)′
Dδf(z)

=
(

1+z
1−z

)β
, (3.5)

respectively.

We next consider the cases where µ is real and prove the following.
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Theorem 3.2. Let f ∈ R̄δ(β) and β∈ (0,1]. Then for µ real,

∣∣a3−µa2
2

∣∣≤




β2
(
6(δ+1)−4µ(δ+2)

)
(δ+1)2(δ+2)

if µ ≤ (6β−2)(δ+1)
4β(δ+2)

,

2β
(δ+1)(δ+2)

if
(6β−2)(δ+1)

4β(δ+2)
≤ µ ≤ (2+6β)(δ+1)

4β(δ+2)
,

β2
(
4µ(δ+2)−6(δ+1)

)
(δ+1)2(δ+2)

if µ ≥ (2+6β)(δ+1)
4β(δ+2)

.

(3.6)

For each µ, there is a function in R̄δ(β) such that equality holds.

Proof. Here we consider two cases.

Case (i): µ ≤ 3(δ+1)/2(δ+2).
In this case, (3.2) and Lemma 2.1(ii) give

∣∣a3−µa2
2

∣∣≤ β
(δ+1)(δ+2)

(
2−

∣∣c1

∣∣2

2

)
+ β

2
(
6(δ+1)−4µ(δ+2)

)
4(δ+1)2(δ+2)

∣∣c1

∣∣2,

= 2β
(δ+1)(δ+2)

+ β
2
(
6(δ+1)−4µ(δ+2)

)−2β(δ+1)
4(δ+1)2(δ+2)

∣∣c1

∣∣2,

(3.7)

and so, using the fact that |c1| ≤ 2, we obtain

∣∣a3−µa2
2

∣∣≤



β2
(
6(δ+1)−4µ(δ+2)

)
(δ+1)2(δ+2)

if µ ≤ (6β−2)(δ+1)
4β(δ+2)

,

2β
(δ+1)(δ+2)

if
(6β−2)(δ+1)

4β(δ+2)
≤ µ ≤ 3(δ+1)

2(δ+2)
.

(3.8)

Equality is attained on choosing c1 = c2 = 2 and c1 = 0, c2 = 2, respectively, in (3.2).

Case (ii): µ ≥ 3(δ+1)/2(δ+2).
It follows from (3.2) and Lemma 2.1(ii) that

∣∣a3−µa2
2

∣∣≤ β
(δ+1)(δ+2)

(
2−

∣∣c1

∣∣2

2

)
+ β

2
(
4µ(δ+2)−6(δ+1)

)
4(δ+1)2(δ+2)

∣∣c1

∣∣2,

= 2β
(δ+1)(δ+2)

+ β
2
(
4µ(δ+2)−6(δ+1)

)−2β(δ+1)
4(δ+1)2(δ+2)

∣∣c1

∣∣2,

(3.9)

and so, using the fact that |c1| ≤ 2, we obtain

∣∣a3−µa2
2

∣∣≤



2β
(δ+1)(δ+2)

if
3(δ+1)
2(δ+2)

≤ µ ≤ (6β+2)(δ+1)
4β(δ+2)

,

β2
(
4µ(δ+2)−6(δ+1)

)
(δ+1)2(δ+2)

if µ ≤ (6β+2)(δ+1)
4β(δ+2)

.
(3.10)

Equality is attained on choosing c1 = 0, c2 = 2 and c1 = 2i, c2 = −2, respectively, in

(3.2). Thus the proof is complete.
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Theorem 3.3. Let f ∈ R̄δ(β) and let it be given by (1.1). Then

∣∣a3

∣∣−∣∣a2

∣∣≤ 2β
(δ+1)(δ+2)

if β≤ 3(δ+1)
5δ+1

. (3.11)

Proof. Write

∣∣a3

∣∣−∣∣a2

∣∣≤
∣∣∣∣a3− 2

3
a2

2

∣∣∣∣+ 2
3

∣∣a2

∣∣2−∣∣a2

∣∣. (3.12)

Then since (6β−2)(δ+1)/4β(δ+2) ≤ 2/3 for β ≤ 3(δ+1)/(5δ+1), it follows from

Theorem 3.2 that

∣∣a3

∣∣−∣∣a2

∣∣≤ 2β
(δ+1)(δ+2)

+ 2
3

∣∣a2

∣∣2−∣∣a2

∣∣= λ(x), (3.13)

where x = |a2| ∈ [0,2β/(δ+1)]. Since λ(x) attains its maximum value at x = 0, the

theorem follows. This is sharp.
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