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ON THE STRUCTURE OF RIEMANNIAN MANIFOLDS
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We study the structure of manifolds with almost nonnegative Ricci curvature. We prove a
compact Riemannian manifold with bounded curvature, diameter bounded from above, and
Ricci curvature bounded from below by an almost nonnegative real number such that the
first Betti number having codimension two is an infranilmanifold or a finite cover is a sphere
bundle over a torus. Furthermore, if we assume the Ricci curvature is bounded and volume
is bounded from below, then the manifold must be an infranilmanifold.
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1. Introduction. In this paper, we will consider a class of compact n-dimensional

Riemannian manifolds (M,g) satisfying

∣∣Kg∣∣≤Λ, diam(M)≤D, Ric(M)≥−ε, (1.1)

where Kg , diam(M), and Ric(M) denote the sectional curvature, diameter, and Ricci

curvature, respectively, of a Riemannian manifold (M,g), while D and Λ are positive

real numbers and ε is usually a sufficiently small positive real number.

In [8], Gromov proved that there is an ε > 0 depending only onn and a given constant

D > 0 such that if diam(M) ≤ D and Ric(M) ≥ −ε, then the first Betti number of M ,

b1(M), is bounded by n, that is, b1(M) ≤ n. Gallot [6] also gave an analytic proof for

this. In [12], Yamaguchi has shown that if a Riemannian manifold (M,g) satisfies the

conditions (1.1), then there is a smooth fibration

F �→M �→ Tb1(M), (1.2)

where Tb1(M) is the b1(M)-dimensional torus. This implies that if b1(M) = n, then

M is diffeomorphic to the n-dimensional torus Tn and if b1(M) = n− 1, then M is

diffeomorphic to an infranilmanifold, that is, a finite covering space of M is a quotient

of a simply connected nilpotent Lie group by a lattice.

In this paper, we study the structure of Riemannian manifolds satisfying the condi-

tions (1.1) and whose first Betti number is n−2 or n−3. In case the first Betti number

is n− 2, there are at least two known families of manifolds with metrics satisfying

(1.1): infranilmanifolds and compact quotients of the product spaceM = S2×Rn−2. We

will see below that there are only such cases if the first Betti number b1(M) = n−2.

In case b1(M) = n−3, since there is lack of examples, we only consider manifolds of

dimension 4.
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Throughout this paper, the dimension of manifolds is denoted by n unless otherwise

stated.

2. Almost nonnegative Ricci curvature and the first Betti number. In this section,

we consider Riemannian manifolds (M,g) satisfying the conditions (1.1) with restric-

tion on the first Betti number b1(M). First of all, we would like to mention a theorem

due to Cheeger and Colding, which is crucially used in the proofs of our results. This

theorem, conjectured originally by Gromov, says that the fundamental groups of a class

of Riemannian manifolds with almost nonnegative Ricci curvature are almost nilpotent.

Theorem 2.1 [3]. Given a positive integer n and D > 0, there exists ε = ε(n,D) > 0

such that if (Mn,g) is a compact Riemannian n-manifold satisfying

diam(M)≤D, Ric(M)≥−ε, (2.1)

then the fundamental group π1(M) is almost nilpotent, that is, it contains a nilpotent

subgroup of finite index.

Now we prove a structure theorem for manifolds satisfying the conditions (1.1) with

b1(M)=n−2.

Proposition 2.2. Given Λ > 0, D > 0, and a natural number n, there exists ε =
ε(Λ,D,n) > 0 such that if (Mn,g) is a compact Riemannian n-manifold satisfying

∣∣Kg∣∣≤Λ, diam(M)≤D, Ric(M)≥−ε, b1(M)=n−2, (2.2)

then M is a fiber bundle over Tn−2 with the property that a finite cover of the fiber is

diffeomorphic to T 2 or S2.

Proof. Choose ε>0 sufficiently small so that the properties in [12] and Theorem 2.1

hold. First note that, due to [12],M is a fiber bundle over Tn−2, that is, there is a fibration

F �→M �→ Tn−2, (2.3)

where Tn−2 is the (n−2)-dimensional torus.

By the uniformization theorem, a finite cover F̂ of F is diffeomorphic to S2, T 2, or Σ,

a surface of genus greater than or equal to 2. We will show that F̂ cannot be diffeomor-

phic to Σ. Assume F̂ is diffeomorphic to Σ. It follows from (2.3) that there is an exact

sequence of homotopy groups

0=π2
(
Tn−2) �→π1(F) �→π1(M). (2.4)

Since π1(M) is almost nilpotent by Theorem 2.1, the sequence (2.4) shows that π1(F) is

also almost nilpotent. However, since Σ is a surface of genus greater than or equal to 2,

it is well known that π1(Σ) cannot be almost nilpotent. Hence the proof is complete.

Before going ahead, we state a basic algebraic lemma about a geometric group, which

follows actually from [9].
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Lemma 2.3 [9, 14]. Let Γ be a finitely generated group of polynomial growth. Then it

contains a torsion-free nilpotent subgroup of finite index.

A solvable group Γ is called polycyclic if there is a subnormal series

Γ = Γ0 ⊃ Γ1 ⊃ ··· ⊃ Γk = {e}, (2.5)

where factors Γi/Γi+1 are all infinite-cyclic and e denotes the identity element in Γ .
A solvable group is almost polycyclic if it contains a subgroup of finite index, which is

polycyclic. The number of infinite cyclic factors is independent of the choice of finite-

index subgroup or subnormal series, and is called the Hirsch length of the group.

Now we prove our main theorem as an application of Proposition 2.2 by using Lemma

2.3 and Theorem 2.1

Theorem 2.4. Given Λ > 0, D > 0, and a natural number n, there exists ε =
ε(n,Λ,D) > 0 such that if (Mn,g) is a compact Riemannian manifold satisfying (2.2),

then M is an infranilmanifold or a finite cover of M is an S2-bundle over Tn−2.

Proof. Choose ε > 0 sufficiently small so that Proposition 2.2 holds. Suppose (M,g)
is a Riemannian n-manifold satisfying (2.2). M is a fiber bundle over Tn−2 with a fiber

being a quotient of S2 or T 2. It is enough to show that if the fiber is a quotient of T 2,

then M is an infranilmanifold. By Theorem 2.1 again, π1(M) is almost nilpotent. So,

by Lemma 2.3, π1(M) has a torsion-free nilpotent subgroup of finite index Γ . From the

above fibration, we have an exact sequence of homotopy groups

0 �→K �→π1(M) �→ Zn−2 �→ 0, (2.6)

where K is isomorphic to Z2⊕H and H is a finite group.

Note that the universal covering M̃ of M is diffeomorphic to Rn and Γ has Hirsch

length n. The nilpotent Malcev completion N of Γ can now be identified with M̃ . So, M̃
is a simply connected nilpotent Lie group with a lattice subgroup Γ . This means that M
is an infranilmanifold.

Remark 2.5. A converse of Theorem 2.4 holds, that is, any nilmanifold or any S2-

bundle over Tn−2 has Riemannian metrics which satisfy (2.2) for any ε.

Remark 2.6. In [4], 4-dimensional compact nilmanifolds with b1 = 2 can be de-

scribed explicitly.

Now we consider Riemannian manifolds of dimension 4 and the first Betti number

b1(M)= 1. In case dimension n= 4, it is notable that there are no 4-dimensional com-

pact infranilmanifolds with b1(M)= 1 [11].

Theorem 2.7. For given Λ > 0 and D > 0, there exists ε = ε(Λ,D) > 0 such that if

(M4,g) is a compact Riemannian 4-manifold satisfying

∣∣Kg∣∣≤Λ, diam(M)≤D, Ric(M)≥−ε, b1(M)= 1, (2.7)

thenM is a fibration over S1 whose fiber is homotopic to a spherical space form S3/Γ for

some finite subgroup Γ acting on S3.
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Proof. By [12], there exists an ε > 0 such that if (Mn,g) is a closed Riemannian

manifold satisfying (2.7), then M is a fibration over S1,

F �→M �→ S1. (2.8)

On the other hand, by Theorem 2.1, π1(M) is almost nilpotent, and so it has a polyno-

mial growth. It follows from Lemma 2.3 that π1(M) contains a torsion-free nilpotent

subgroup Γ of finite index. Since b1(M)= 1, Γ is abelian, and so Γ � Z. In fact, if Γ is not

abelian, then it contains a subgroup which is isomorphic to the Heisenberg group (see

Remark 2.8), and so the growth of Γ is at least 4 and b1(M)≥ 2 (cf. [2, Section 7]).

Thus, π1(M)� Z⊕H, where H is a finite group and π1(F) is also finite group. Hence

the universal cover F̃ of F is a compact simply connected 3-manifold, and so F̃ is a

homotopy 3-sphere, that is, F is homotopic to S3/H for some finite group H acting

on S3.

Remark 2.8. In dimension n ≥ 5, replacing the condition on the first Betti num-

ber by b1(M) = n−3, Theorem 2.7 does not hold anymore. For example, let N be the

Heisenberg group

N =







1 x z
0 1 y
0 0 1


 | x,y,z ∈R


 (2.9)

and Γ its integer lattice. Then M :=N/Γ is a compact orientable 3-dimensional nilman-

ifold. It is well known that b1(M)= 2 and M is an S1-bundle over T 2. For a given ε > 0,

since M is a nilmanifold, there is a metric gε such that

∣∣Kgε∣∣≤ 24ε2, diam(M)≤ 2. (2.10)

Now consider the product (M×S2) so that it satisfies the condition (2.7). It is easy to

see that M×S2 is a fibration over T 2 with fiber S1×S2.

3. Ricci curvature pinching. If one replaces the lower bound on Ricci curvature by

pinching and adds the lower volume bound, then one can prove that the second case

in Theorem 2.4 does not happen. In [3], Cheeger and Colding extended the splitting

theorem of sectional curvature version to that of Ricci curvature version. Namely, the

splitting theorem does hold for the limit space of Gromov-Hausdorff convergent se-

quence each term of which satisfies a diameter upper bound and Ricci condition that

Ric(Mi,gi) ≥ −εi → 0. Thus, using the abelian covering manifold which gives an ex-

tended version of splitting theorem and modifying the argument in [13] a little bit, one

can easily prove the following lemma.

Lemma 3.1. LetMi be a sequence of compact Riemanniann-manifolds with Ric(Mi)≥
−εi → 0, diam(Mi) = 1, b1(Mi) = b1, and M̃i the universal cover of Mi. Then, for any

p̃i ∈ M̃i, (M̃i, g̃i, p̃i) subconverges to (Rk×X0,x0,d) in the pointed Gromov-Hausdorff

distance, where k≥ b1, and X0 is a compact length space.
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We would like to remark that the dimension of the Euclidean factor is greater than

or equal to the first Betti number.

Theorem 3.2. Given Λ > 0, v > 0, D > 0, and a natural number n, there exists

ε= ε(Λ,v,D,n) > 0 such that if (Mn,g) is a Riemannian n-manifold satisfying

∣∣Kg∣∣≤Λ, diam(M)≤D, vol(M,g)≥ v,∣∣Ric(M)
∣∣≤ ε, b1(M)=n−2,

(3.1)

then M is an infranilmanifold.

Proof. Suppose the theorem does not hold. Then there are a sequence of positive

real numbers εi→ 0 and a sequence of Riemanniann-manifolds (Mi,gi) satisfying (3.1),

but Mi is not an infranilmanifold for all i.
With the volume condition, the standard Cheeger-Gromov compactness theorem [7,

10] tells that there exists a subsequence of (Mi,gi) converging to a smooth n-manifold

with a C1,α Riemannian metric (M,g) in the C1,α′ topology with 0<α′ <α. In particular,

Mi is diffeomorphic to M for all i sufficiently large. Furthermore, since |Ric(Mi,gi)| ≤
εi → 0, the Ricci equation argument in harmonic coordinates [1] shows that the metric

g is, in fact, C∞. Consequently, (Mi,gi) subconverges to a smooth Ricci flat Riemannian

manifold (M,g) in the C∞ topology. This, together with the curvature condition, implies

that the universal cover M̃i converges to the universal cover M̃ (cf. [5, Theorem 2.7]).

Now, applying Lemma 3.1, M̃ is isometric toRk×Xn−k0 with k≥ b1(M)=n−2,where X0

is a compact Riemannian manifold. Since g is Ricci-flat,Xn−k0 is also a Ricci flat manifold.

Since n−k ≤ 2, Xn−k0 is a flat manifold, and so g is a flat metric on M . Therefore, Mi

admits a flat metric for i sufficiently large and so does M̃i.

On the other hand, since Mi is not an infranilmanifold, Theorem 2.4 shows that M̃i

is diffeomorphic to S2×Rn−2. So, S2×Rn−2 admits a flat metric, but this is impossible

because of the Cartan-Hadamard theorem. The proof is complete.

Remark 3.3. In the collapsing case, the same result as Theorem 3.2 might also hold.
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