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We study the low Reynolds number flow of an incompressible Newtonian fluid of infinite
expanse past a cylinder of arbitrary cross section by using the method of matched asymp-
totic expansions. The analysis that will be made in this paper is equivalent to that devel-
oped by Power (1990) in order to solve the resulting inner (or Stokes) problems with the
completed double-layer boundary integral equation method (CDLBIEM) due to Power and
Miranda (1987). We will solve these problems by the boundary integral method developed
by Hsiao and Kress (1985).
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1. Introduction. The method of matched asymptotic expansions has been developed

by Kaplun [2] and Proudman and Pearson [11] for the problem of the low Reynolds num-

ber flow past a circular cylinder or a sphere. This method was used by many authors

to treat several low Reynolds number flow problems. For example, Umemura [13] ob-

tained a matched asymptotic analysis of low Reynolds number flow past two equal

cylinders. The same method was also applied by Shintani et al. [12] to study the low

Reynolds number flow due to a uniform stream at infinity past an elliptic cylinder. Lee

and Leal [6] treated the low Reynolds number flow past cylindrical bodies of arbitrary

cross section. In addition to the method of matched asymptotic expansions, they used

the boundary integral formulation of Youngren and Acrivos [14], in order to obtain the

corresponding solutions of the Stokes and Oseen approximations. Power [7] developed

a matched asymptotic analysis for low Reynolds number flow past a cylinder of arbi-

trary cross section by using the completed double layer boundary integral equation

method (CDLBIEM) to solve the resulting inner problems, and the singularity method

to treat the resulting outer problems (see also [9, Section 6.3]).

Note that Youngren and Acrivos [14] proposed a boundary integral method in order to

treat the unbounded Stokes flow due to the motion of a solid particle of arbitrary shape

in an incompressible Newtonian fluid of infinite expanse. This method uses the direct

boundary integral representation of an exterior Stokes flow, in which the variables are

the boundary velocity and traction. Also, the method leads to a set of Fredholm integral

equations of the first kind with unknown boundary traction. The method of Youngren

and Acrivos [14] has been applied by many authors to obtain the numerical solutions

of several problems dealing with solid particles and drops in Stokes flows, the motion

of a particle near a solid wall or a fluid interface, particle-particle interactions, Stokes
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flows in containers, and so forth (see, e.g., [4, 9, 10]). However, the direct boundary

integral representations, in particular, those encountered in the method of Youngren

and Acrivos [14], lead to a set of Fredholm integral equations of the first kind, which,

after the discretization of the involved surface integrals, is ill-conditioned at a large

number of boundary elements. On the other hand, it is known that the boundary inte-

gral methods which lead to Fredholm integral equations of the second kind are more

preferable than those which lead to Fredholm integral equations of the first kind, since

the Fredholm integral equations of the second kind give rise to numerical solutions that

are more stable than those due to Fredholm integral equations of the first kind. The

indirect boundary integral methods are designed so that they provide a set of Fredholm

integral equations of the second kind, and therefore they are always well-behaved nu-

merically. In particular, effective iterative solution procedures can be applied to solve

large scale problems with indirect formulations. An alternative indirect boundary in-

tegral formulation was proposed by Power and Miranda [8] for the three-dimensional

exterior Stokes flow around a solid particle (see also [9]). Power and Miranda’s method is

a completion plus a deflation procedure that leads to a bounded and invertible integral

operator (with a spectral radius strictly less than one), and therefore iterative solution

strategies are guaranteed to converge to a unique solution. Karrila and Kim [3] called

Power and Miranda’s method the completed double-layer boundary integral equation

method because of the involved completion procedure. This method applies to both

two- and three-dimensional Stokes flow problems. For the two-dimensional Stokes flow

problem due to the motion of a cylinder of arbitrary shape in an unbounded domain,

there are two equivalent integral formulations available: one was provided by Hsiao

and Kress [1] and uses a combination of double- and single-layer potentials. This for-

mulation leads to a system of Fredholm integral equations of the second kind that has

a unique continuous solution. The second formulation was developed by Power [7] and

is given in terms of a double-layer potential and two singularities located inside the

cylinder.

In this paper, we study the low Reynolds number flow of an incompressible New-

tonian fluid of infinite expanse past a cylinder of arbitrary cross section by using the

method of matched asymptotic expansions and the method of Hsiao and Kress [1] in

order to solve the resulting inner (or Stokes) problems.

2. Inner and outer expansions. We consider the problem of determining the low

Reynolds number flow of an incompressible Newtonian fluid of infinite expanse past a

stationary cylinder of arbitrary cross section. At infinity the flow is a uniform stream

with velocity U∞ in the direction of the x1-axis.

The flow is governed by the continuity and steady Navier-Stokes equations, which in

nondimensional form are given by

∇·v= 0 in D,

−∇p+∇2v−Re(v·∇)v= 0 in D,
(2.1)

where D is the two-dimensional unbounded domain exterior to the cross section of

the cylinder in the x1x2-plane. Let Γ denote the boundary of this domain, assumed to
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be a simple closed Lyapunov curve (i.e., Γ has a continuously varying normal vector;

more exactly, there exists α ∈ (0,1] such that Γ is of class C1,α). Also, let D0 denote

the bounded domain inside Γ . Equations (2.1) are nondimensionalized with respect

to the characteristic variables Uc = U∞, lc = a (a characteristic cylinder radius), and

pc = µU∞/a (the characteristic pressure). Also, the Reynolds number is defined by

Re= ρaU∞/µ, where ρ and µ are the density and dynamic viscosity of the fluid.

We have to require the following boundary and asymptotic conditions:

v(x)= 0 for x∈ Γ , (2.2)

v(x) �→ i1, p(x) �→ 0 as |x| �→∞, (2.3)

where x= (x1,x2) and i1 denotes the unit vector along the x1-axis of a frame of Carte-

sian coordinates whose origin is inside Γ .
According to the method of Kaplun [2] and Proudman and Pearson [11], the region

around the cylinder is divided into two separate but overlapping regions, called the

inner and outer regions. In the inner region, where Re� 1 (and hence the inertial term

is small), we consider the following expansions (see also [7] and [9, Section 6.3.4]):

v= f0(Re)v0+f1(Re)v1+··· ,
p = f0(Re)p0+f1(Re)p1+··· , (2.4)

such that

fn+1(Re)
fn(Re)

�→ 0 as Re �→ 0. (2.5)

The leading-order terms v0 and p0 of these expansions satisfy the Stokes system of

equations

∇·v0 = 0, −∇p0+∇2v0 = 0, (2.6)

whereas the first-order terms v1 and p1 satisfy the following equations:

∇·v1 = 0, −∇p1+∇2v1−Re

(
f0(Re)

)2

f1(Re)
(
v0 ·∇)v0 = 0. (2.7)

On the other hand, in the outer region, where |x| ≥ �(Re−1), the inertia term is not

negligible, and hence it must be taken into consideration. Therefore, in this region

the expansions (2.4) are not valid. For this reason, we introduce the new characteristic

variables l̂c = lc/Re, p̂c = µUc/l̂c = Repc (the characteristic pressure), and vc = U∞
(the characteristic velocity). Also, we denote by x̂, v̂, and p̂ the position vector of an

arbitrary point and, respectively, the velocity and pressure fields corresponding to the

outer region. Then the governing equations take the form

∂v̂i
∂x̂i

= 0, − ∂p̂
∂x̂j

+ ∂2v̂j
∂x̂i∂x̂i

− v̂i ∂v̂j∂x̂i = 0, (2.8)
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where the summation convention rule after the repeated indices is used. The solution

(v̂, p̂) is expressed in the form (see also [7])

v̂= f̂0(Re)v̂0+ f̂1(Re)v̂1+··· ,
p̂ = f̂0(Re)p̂0+ f̂1(Re)p̂1+··· ,

(2.9)

such that

f̂n+1(Re)
f̂n(Re)

�→ 0 as Re �→ 0. (2.10)

Clearly, the first term in each of the above asymptotic expansions corresponds to the

uniform flow. Hence, we consider

f̂0(Re)= 1,
(
v̂0, p̂0)= (i1,0). (2.11)

Therefore, the governing equations for (v̂1,p1) are

∂v̂1
j

∂x̂j
= 0, −∂p̂

1

∂x̂j
+ ∂2v̂1

j

∂x̂k∂x̂k
− ∂v̂

1
j

∂x̂1
= 0, (2.12)

that is, the continuity and Oseen’s equations.

We require that the boundary condition (2.2) be satisfied by the first of the expan-

sions (2.4), and that the uniform stream conditions at infinity (2.3) be satisfied by the

asymptotic expansions (2.9). Additionally, we have to apply the matching principle in

the overlapping domain between the inner and outer regions, from which we obtain

other asymptotic conditions for each expansion and the possibility to compute succes-

sive terms of these expansions.

3. The solution of the leading-order problem in the inner region. We next deter-

mine the solution (v0,p0) of the leading-order problem in the inner region by using the

boundary integral method of Hsiao and Kress [1]. Therefore, we consider the following

boundary integral representation of the flow field v0:

v0(x)=V
(

x,− F

4π|Γ |
)
+η0V

(
x,

1
4π

(
Φ− 1

|Γ |
∫
Γ
Φdl

))
+W

(
x,

1
4π

Φ
)
−η1

∫
Γ
Φ(y)dl(y),

(3.1)

where V(·,Ψ) is the single-layer potential with continuous density Ψ , given by

Vj(x,Ψ)=
∫
Γ

�ji(x−y)ψi(y)dl(y), (3.2)

W(·,h) is the double-layer potential with continuous density h, given by

Wj(x,h)=
∫
Γ
KSij(y,x)hi(y)dl(y)=

∫
Γ
SSijk(y−x)nk(y)hi(y)dl(y), (3.3)
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�ji are the components of the two-dimensional Stokeslet �, and SSijk are the components

of the stress tensor SS associated with the two-dimensional Stokeslet. These compo-

nents are given by (see, e.g., [5, 10])

�ji(x)=−δji ln|x|+ xjxi|x|2 , SSijk(x)=−4
xixjxk
|x|4 . (3.4)

In addition, |F| is the total force exerted by the flow (v0,p0) on Γ , n is the outward

unit normal vector to Γ , η0 and η1 are two real constants such that η0 > 0 and η1 �= 0,

|Γ | = ∫Γ dl is the length of the curve Γ , and Φ is an unknown continuous vector density

on Γ . The total force F will be determined from the matching principle.

The corresponding boundary integral representation of the pressure field p0 is given

by

p0(x)= Ps
(

x,− F

4π|Γ |
)
+η0Ps

(
x,

1
4π

(
Φ− 1

|Γ |
∫
Γ
Φdl

))
+Pd

(
x,

1
4π

Φ
)
, (3.5)

where Ps(·,Ψ) is the pressure field associated with the single-layer potential V(·,Ψ),
that is,

Ps(x,Ψ)=
∫
Γ
ΠSi (x−y)ψi(y)dl(y), (3.6)

and Pd(·,h) is the pressure field associated with the double-layer potential W(·,h),
that is,

Pd(x,h)=
∫
Γ
ΛSik(x−y)nk(y)hi(y)dl(y), (3.7)

ΠSi and ΛSik being the components of the pressure vector ΠS and of the pressure tensor

ΛS , respectively, associated with the two-dimensional Stokeslet. These components are

given by the formulas (see, e.g., [10])

ΠSi (x)= 2
xi
|x|2 , ΛSik(x)=−4

δik
|x|2 +8

xixk
|x|4 . (3.8)

Note that the single-layer potential V(·,Ψ) is continuous across the Lyapunov contour

Γ , but the double-layer potential W(·,h) has a jump provided by the following limiting

values on both sides of Γ :

W±
j
(
x0,h

)=±2πhj
(
x0
)+∫ PV

Γ
SSijk

(
y−x0

)
nk(y)hi(y)dl(y), x0 ∈ Γ , (3.9)

where the plus sign applies for the external side of Γ (in the direction of the unit normal

vector) and the minus sign applies for the internal side of Γ . Also, the symbol PV means

the principal value of the double-layer potential at an arbitrary point x0 ∈ Γ (note that

the kernel KSij ofWj is weakly singular, but the corresponding double-layer integral has

a well-defined value at any point of Γ . For more details, see, for example, [9, Chapter 5]).
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Now, applying the boundary condition (2.2) to the flow field defined by the boundary

integral representation (3.1), and using the above-mentioned properties of single- and

double-layer potentials, we obtain the following Fredholm integral equation of the sec-

ond kind with unknown continuous vector density Φ = (φ1,φ2):(
1
2

I+Kd+η0KsM−η1|Γ |(I−M)
)
Φ =V

(
·, F

4π|Γ |
)

on Γ , (3.10)

where I : C0(Γ) → C0(Γ) is the identity operator, M : C0(Γ) → C0(Γ) is the operator

given by

Mh= h− 1
|Γ |

∫
Γ
hdl, h∈ C0(Γ), (3.11)

and Ks : C0(Γ)→ C0(Γ) and Kd : C0(Γ)→ C0(Γ) are the single- and double-layer integral

operators given by the relations

(
Ksh

)
(x)=V

(
x,

1
4π

h
)
,

(
Kdh

)
j(x)=

1
4π

∫ PV

Γ
Sijk(y−x)nk(y)hi(y)dl(y) (3.12)

for h∈ C0(Γ) and x∈ Γ . Note that both single- and double-layer integral operators are

compact on C0(Γ).
By using the notation Φ = |F|Ψ , the above equation becomes(

1
2

I+Kd+η0KsM−η1|Γ |(I−M)
)
Ψ =V

(
·, i1

4π|Γ |
)

on Γ . (3.13)

We mention that Hsiao and Kress [1] proved that (3.13) possesses a unique contin-

uous solution Ψ . Therefore, this density provides the unique continuous solution Φ of

(3.10).

4. The solution of the first-order problem in the outer region. As in [7], we take into

account the fact that far from the cylindrical body the role of the cylinder is similar to

that of a point force. Consequently, if we allow some point force located at the origin to

act on the fluid, then the first-order problem (i.e., the Oseen problem) could be satisfied

in the outer region. Therefore, it is sufficient to consider the two-dimensional Oseenlet,

that is, the fundamental solution of Oseen’s equation, which in outer variables is given

by (see [6, 7] and [9, page 238])

�Oij(x̂)=−
1

4π
ex̂1/2K0

( |x̂|
2

)
δij

− 1
4π

[
ex̂1/2K1

( |x̂|
2

)
− 2
|x̂|

][
x̂i
|x̂|δij+

x̂2δi1− x̂1δi2
|x̂| δ2j

]
,

(4.1)

where K0 and K1 are the modified Bessel functions of the second kind and of orders

0 and 1, respectively. Note that the above fundamental solution can be derived if we

include the term −ijδ(x̂) on the left-hand side of the second equation of (2.12), and

then use the method of Fourier transform. Here, δ denotes the Dirac distribution or

the delta function in R2.
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5. The matching principle for the inner and outer expansions. We have seen that

the zeroth-order solution for the outer region is a uniform flow described by f̂0(Re)=
1,(v̂0, p̂0) = (i1,0). Therefore, the matching principle requires that the zeroth-order

solution for the inner region should become

lim
Re→0
|x|�1

f0(Re)
(
v0,p0)= (i1,0). (5.1)

On the other hand, the singular behavior of the flow field v0 at large distances is

provided by the two-dimensional Stokeslet, and hence it is of logarithmic type (see

(3.1)). Therefore, for large |x| = �(Re−1), where Re→ 0, we have the relation

f0(Re)v0
i (x)∼

f0(Re)
4π

(lnRe)Fi, (5.2)

which shows that the matching condition (5.1) is satisfied to leading order if

4π
lnRe

i1 = f0(Re)F. (5.3)

Consequently, the complete velocity field up to the leading-order solution of the Stokes

problem is given by

f0(Re)v0(x)

= 4π
lnRe

{
V

(
x,− i1

4π|Γ |

)
+η0V

(
x,

1
4π

(
Ψ− 1

|Γ |
∫
Γ
Ψ dl

))
+W

(
x,

1
4π

Ψ
)
−η1

∫
Γ
Ψ dl

}
,

(5.4)

where Ψ is the unique continuous solution of (3.13). Moreover, we have

f0(Re)p0(x)

= 4π
lnRe

{
Ps
(

x,− i1
4π|Γ |

)
+η0Ps

(
x,

1
4π

(
Ψ− 1

|Γ |
∫
Γ
Ψ dl

))
+Pd

(
x,

1
4π

Ψ
)}
.

(5.5)

Furthermore, taking into account the asymptotic expansions (2.9) and the expres-

sions (5.4) and (5.5), we find that

f̂1(Re)= 4π
lnRe

(5.6)

and that (v̂1, p̂1) is the flow due to an Oseenlet located at the origin and oriented in the

x1-direction. Therefore, we have

f̂1(Re)v̂1
i (x̂)

= 4π
lnRe

{
− 1

4π
ex̂1/2K0

(
|x̂|
2

)
δi1− 1

4π

[
ex̂1/2K1

(
|x̂|
2

)
− 2
|x̂|

]
x̂i
|x̂|δi1

}
.

(5.7)
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In order to study the asymptotic behavior of the inner flow velocity field far from

the origin, we expand the two-dimensional Stokeslet �(x−y) in a Taylor series with

respect to y about the origin. Then we obtain the following asymptotic expansion of

the inner flow velocity field:

f0(Re)v0
j (x)=

4π
lnRe

{
−�ji(x)

δi1
4π

+···+Wj
(

x,
1

4π
Ψ
)
−η1

∫
Γ
ψj dl

}

= 4π
lnRe

{
− 1

4π
�j1(x)+···+Wj

(
x,

1
4π

Ψ
)
−η1

∫
Γ
ψj dl

}
.

(5.8)

The above expansion shows that the asymptotic form of the inner flow velocity field

far from the origin is the velocity field due to a Stokeslet located at the origin plus

a constant vector. Moreover, we use the fact that the outer flow velocity field up to

the first-order approximation at large distances from the origin is the velocity field of

a uniform flow in the x1-direction plus the velocity field due to an Oseenlet located

at the origin and oriented in the x1-direction. Therefore, we find that the mismatch

between f0(Re)v0, from the inner region, and the sum f̂0(Re)v̂0+ f̂1(Re)v̂1, from the

outer region, has the same terms as the mismatch provided by Proudman and Pearson

[11], up to the same order of approximation for the singular perturbation solution of

a uniform flow past a circular cylinder at small Reynolds number (see also [7] and [9,

page 240]). This mismatch denoted by

∆≡ f̂0(Re)v̂0+ f̂1(Re)v̂1−f0(Re)v0 (5.9)

is hence given by

∆∼ 1
lnRe

{(
γ0− ln4

)
i1+4πη1

∫
Γ
Ψ dl

}
, (5.10)

where γ0 = 0.5772 . . . is the Euler constant and Ψ is the unique continuous solution of

(3.13). Further, according to the fact that this mismatched uniform flow is �((lnRe)−1),
we deduce that (v1,p1) will be a solution of the Stokes equation, since the term (v0 ·
∇)v0 in the second equation of (2.7) is asymptotically negligible with respect to any

inverse power of lnRe. Consequently, the first-order inner velocity and pressure fields

are also given by (3.1) and (3.5) with

f1(Re)= 4π
(lnRe)2

, F= (γ0− ln4
)
i1+4πη1

∫
Γ
Ψ dl. (5.11)

Hence the vector density of the corresponding double-layer potential for the first-order

approximation is given by the unique continuous solution of (3.10) with the constant

vector F given by the second equation of (5.11). Accordingly, the hydrodynamic force

FT acting on the cylinder is provided by the single-layer potentials V(·,−(4π)−1|Γ |−1i1)
and V(·,−(4π)−1|Γ |−1F), where F has been mentioned previously. The components FT,j
of this force, up to �((lnRe)−2), are given by

FT,j = 4π
lnRe

δ1j+ 4π
(lnRe)2

{(
γ0− ln4

)
δ1j+4πη1

∫
Γ
ψj dl

}
+�

(
(lnRe)−3). (5.12)
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From (5.12) it follows that the contribution of �((lnRe)−1) to the hydrodynamic force

does not depend on the cylinder geometry. However, the contribution of �((lnRe)−2)
to the drag force depends on the cylinder geometry, since it contains the term

∫
Γψ1dl.

Also, the lift force of �((lnRe)−2) depends on the cylinder geometry by the fact that it

is expressed in terms of
∫
Γψ2dl, where Ψ = (ψ1,ψ2) is the unique continuous solution

of (3.13). Consequently, the dependency of the hydrodynamic force on the cylinder

geometry appears in the second-order approximation and is provided by the matching

asymptotic procedure.

In the case η1 = 1/(4π), the asymptotic formula (5.12) reduces to that obtained by

Power [7]; see also [9, page 240].

6. Inertial effects. The inner and outer asymptotic expansions (2.4) and (2.9), for

which it can be proved that fn(Re) = (lnRe)−(n+1) and f̂n(Re) = (lnRe)−n, do not in-

clude the inertial effects of order �(Re) that are asymptotically smaller than the terms

of order �((lnRe)−n) for each n as Re→ 0. Proudman and Pearson [11] proposed a pro-

cedure for removing this inconvenience, which consists in the addition of the following

series to the expansions (2.4) and (2.9) (see also [7] and [9, page 242]):

∞∑
m=0

∞∑
n=0

Rem(lnRe)−nvm,n,
∞∑
m=0

∞∑
n=0

Rem(lnRe)−npm,n, (6.1)

and, respectively,

∞∑
m=0

∞∑
n=0

Rem(lnRe)−nv̂m,n,
∞∑
m=0

∞∑
n=0

Rem(lnRe)−np̂m,n. (6.2)

We have to require that these expansions satisfy the same boundary and matching

conditions as in the previous analysis. The terms vm,n and pm,n can be determined

by using similar arguments as before. These terms satisfy either the homogeneous

Stokes equation or nonhomogeneous versions of this equation. For example, the terms

v0,0 and p0,0 lead to a nonhomogeneous equation for v1,2 and p1,2, whose particular

solution (v1,2
p ,p1,2

p ) can be expressed in terms of the two-dimensional Stokeslet and its

associated pressure vector as follows:

v1,2
p (x)=

∫
D

�(x−y)·(v0,0(y)·∇v0,0(y)
)
dy,

p1,2
p (x)=

∫
D
ΠS(x−y)·(v0,0(y)·∇v0,0(y)

)
dy,

(6.3)

whereD is the flow domain. Note that the particular solution (v1,2
p ,p1,2

p ) has to be added

to the general solution given by (3.1) and (3.5) in order to complete the inner solution

(v1,2,p1,2).
If we use arguments similar to those for the terms (vm,n,pm,n), all the terms

(v̂m,n,p̂m,n) can be computed too. They satisfy either the homogeneous Oseen equa-

tion or nonhomogeneous versions of this equation. These outer higher-order approxi-

mations were obtained by Proudman and Pearson [11]. Both inner and outer solutions

can be completed by applying the above matching asymptotic method.
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7. Conclusions. In this paper, we have applied the method of matched asymptotic

expansions to the low Reynolds number flow of an incompressible Newtonian fluid

past a cylinder of arbitrary cross section. The hydrodynamic force on the cylinder is

expressed in terms of the unique continuous solution of the Fredholm integral equation

of the second kind (3.13). We note that this equation is uniquely solvable when the

cylinder cross-sectional boundary is an arbitrary simple closed Lyapunov curve and

the parameters η0 and η1 satisfy the conditions η0 > 0 and η1 �= 0. For η1 = 1/(4π),
the hydrodynamic force FT given by formula (5.12) is identical to the corresponding

result due to Power [7]. Note that the matched asymptotic analysis developed by Power

is based on the CDLBIEM, in order to solve the resulting inner problems, and on the

singularity method applied to solve the resulting outer problems (see also [9, Section

6.3.4]).

The matched asymptotic analysis developed in this paper differs from that of Power

[7], since we have used the compound double-layer method due to Hsiao and Kress [1]

instead of the CDLBIEM, which is the basis of Power’s approach.

Finally, we note that another matched asymptotic analysis of low Reynolds number

flow past a cylinder of arbitrary cross section was obtained by Lee and Leal [6]. This

analysis uses the boundary integral method due to Youngren and Acrivos [14], which

reduces the resulting inner problems to integral equations of the first kind.

References

[1] G. C. Hsiao and R. Kress, On an integral equation for the two-dimensional exterior Stokes
problem, Appl. Numer. Math. 1 (1985), no. 1, 77–93.

[2] S. Kaplun, Low Reynolds number flow past a circular cylinder, J. Math. Mech. 6 (1957),
595–603.

[3] S. J. Karrila and S. Kim, Integral equations of the second kind for Stokes flow: direct solution
for physical variables removal of inherent accuracy limitations, Chem. Eng. Commun.
82 (1989), 123–161.

[4] S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications,
Butterworth-Heinemann, London, 1991.

[5] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and
Breach Science Publishers, New York, 1963, translated from the Russian by Richard
A. Silverman.

[6] S. H. Lee and L. G. Leal, Low-Reynolds-number flow past cylindrical bodies of arbitrary
cross-sectional shape, J. Fluid Mech. 164 (1986), 401–427.

[7] H. Power, Matched-asymptotic analysis of low-Reynolds number flow past a cylinder of ar-
bitrary cross-sectional shape, Mat. Apl. Comput. 9 (1990), no. 2, 111–122.

[8] H. Power and G. Miranda, Second kind integral equation formulation of Stokes’ flows past
a particle of arbitrary shape, SIAM J. Appl. Math. 47 (1987), no. 4, 689–698.

[9] H. Power and L. C. Wrobel, Boundary Integral Methods in Fluid Mechanics, Computational
Mechanics Publications, Southampton, 1995.

[10] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow,
Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge,
1992.

[11] I. Proudman and J. R. A. Pearson, Expansions at small Reynolds numbers for the flow past
a sphere and a circular cylinder, J. Fluid Mech. 2 (1957), 237–262.

[12] K. Shintani, A. Umemura, and A. Takano, Low-Reynolds-number flow past an elliptic cylin-
der, J. Fluid Mech. 136 (1983), 277–289.



AN APPLICATION OF THE METHOD OF MATCHED ASYMPTOTIC. . . 2535

[13] A. Umemura, Matched-asymptotic analysis of low-Reynolds-number flow past two equal
circular cylinders, J. Fluid Mech. 121 (1982), 345–363.

[14] G. K. Youngren and A. Acrivos, Stokes flow past a particle of arbitrary shape: a numerical
method of solution, J. Fluid Mech. 69 (1975), 377–403.

Mirela Kohr: Department of Applied Mathematics, Faculty of Mathematics and Computer Sci-
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