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We extend some results and concepts of single-time covariant Hamiltonian field theory to
the new context of multitime covariant Hamiltonian theory. In this sense, we point out the
role of the polysymplectic structure δ⊗J, we prove that the dual action is indefinite, we find
the eigenvalues and the eigenfunctions of the operator (δ⊗J)(∂/∂t)with periodic boundary
conditions, and we obtain interesting inequalities relating functionals created by the new
context. As an important example for physics and differential geometry, we study the mul-
titime Yang-Mills-Witten Hamiltonian, extending the Legendre transformation in a suitable
way. Our original results are accompanied by well-known relations between Lagrangian and
Hamiltonian, and by geometrical explanations regarding the Yang-Mills-Witten Lagrangian.
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1. Introduction. As it is well known, the fields theories have a Lagrangian and Hamil-

tonian structure, since the interactions are mathematically modeled with energetic

Lagrangians-Hamiltonians (related by Legendre transformations) and their associated

action functionals.

The single-time Hamilton equations appeared for the first time in a paper of Lagrange

(1809) on perturbation theory, but it was Cauchy (1831) who first gave the true signif-

icance of those equations. In 1835, Hamilton put those equations at the basis of his

analytical mechanics and gave the first exact formulation of the least action principle.

The theory of single-time Hamilton equations with periodic boundary conditions was

initiated by Birkhoff (1917) who proved that the dual action is indefinite. Since then,

there were produced a lot of valuable papers that are now summarized in the book of

Mawhin and Willem [6].

The multitime Hamilton equations were first written in a book by de Donder [2].

But, to the authors’ knowledge, there is no prior work aimed at developing a theory

of multitime Hamilton equations with periodic boundary conditions. This is the first

subject of the present paper.

Some of the most important Lagrangians are those defined by Yang and Mills (1953)

and Witten [18] to produce modern explanations in quantum field theory (Maxwell or

Dirac equations). The second subject of the present paper is to introduce and study the

(single-time and multitime) Hamiltonian for a Yang-Mills-Witten functional.

Section 1 of this paper contains historical and bibliographical notes. Section 2 (Sec-

tion 3) recalls the relations between the equations of single-time (multitime) first-order

Lagrangian field theory and the covariant Hamilton equations on the finite-dimen-

sional symplectic (polysymplectic) phase space of covariant Hamiltonian field theory.
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http://dx.doi.org/10.1155/ijmms
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Section 4 develops a theory of multitime Hamilton equations with boundary conditions.

Section 5 studies the Yang-Mills-Witten Hamiltonian.

2. Single-time Hamilton canonical equations. If L :R×R2n→R, (t,xi, ẋi)→ L(t,xi,
ẋi) is a given Lagrangian, then the associated Euler-Lagrange equations are

d
dt
∂L
∂ẋi

= ∂L
∂xi

, i= 1, . . . ,n. (2.1)

Hamilton (1834) simplified the structure of the Euler-Lagrange equations and turned

them into a form that has remarkable symmetry by

(1) introducing the conjugate momenta

pi = ∂L
∂ẋi

; (2.2)

(2) considering the Hamiltonian

H = piẋi−L (2.3)

as a function of t, x, p.

We suppose that (2.2) defines, for every x, a diffeomorphism ẋi → pi. This map is

called the Legendre transform.

Theorem 2.1. The Euler-Lagrange equations (2.1) are equivalent to the Hamilton

equations

dxi

dt
= ∂H
∂pi

,
dpi
dt

=− ∂H
∂xi

, i= 1, . . . ,n. (2.4)

Proof. The definitions (2.2) and (2.3) imply

∂H
∂xi

= pj ∂ẋ
j

∂xi
− ∂L
∂xi

− ∂L
∂ẋj

∂ẋj

∂xi
=− ∂L

∂xi
=− d

dt
pi,

∂H
∂pi

= ẋi+pj ∂ẋ
j

∂pi
− ∂L
∂ẋj

∂ẋj

∂pi
= ẋi.

(2.5)

Consequently, the (second-order) ODEs (2.1) are equivalent to (first-order) ODEs (2.4).

2.1. Conservation of the Hamiltonian. Since

d
dt
H = d

dt
(
piẋi−L

)= dpi
dt
ẋi+pi dẋ

i

dt
− ∂L
∂t
− ∂L
∂xi

dxi

dt
− ∂L
∂ẋi

dẋi

dt
=−∂L

∂t
, (2.6)

it follows that H is a first integral for the Hamilton equations if and only if the La-

grangian does not depend explicitly on t (autonomous Lagrangian).
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The Hamilton equations can be written in a compact form:

(
0 δij
−δij 0

)
dxj

dt
dpi
dt


+



∂H
∂xi
∂H
∂pi


=

(
0

0

)
, (2.7)

where J =
( 0 δij
−δij 0

)
is the symplectic (complex) structure on R2n.

The minimization of the dual single-time action, the eigenvalues and the eigenfunc-

tions of J(d/dt)with periodic boundary conditions, and existence of periodic solutions

of single-time Hamilton equations were discussed in [6].

3. Multitime Hamilton canonical equations. Let L :Rp×Rn×Rnp →R, (tα,xi,xiα)→
L(tα,xi,xiα), xiα = ∂xi/∂tα, be a given Lagrangian. The associated Euler-Lagrange equa-

tions are

∂
∂tα

∂L
∂xiα

= ∂L
∂xi

, i= 1, . . . ,n, α= 1, . . . ,p. (3.1)

In [2], de Donder turned these equations into a form that has remarkable symmetry.

He used

(1) the conjugate momenta

pαk =
∂L
∂xkα

; (3.2)

(2) the Hamiltonian

H = pαk xkα−L (3.3)

as a function of tα, xi, pαi .

Here it is, of course, required that (3.2) defines, for every x = (xi), a continuously

differentiable bijection xiα → pαi . This map is called the Legendre transform.

Theorem 3.1. The Euler-Lagrange equations (3.1) are equivalent to the Hamilton

equations

∂xi

∂tα
= ∂H
∂pαi

,
∂pαi
∂tα

=− ∂H
∂xi

, i= 1, . . . ,n, α= 1, . . . ,p (3.4)

(summation over α).

Proof. The definitions (3.2) and (3.3) imply

∂H
∂xi

= pαk
∂xkα
∂xi

− ∂L
∂xi

− ∂L
∂xkα

∂xkα
∂xi

=− ∂L
∂xi

=−∂p
α
i

∂tα
,

∂H
∂pαi

= xiα+pβk
∂xkβ
∂pαi

− ∂L
∂xkβ

∂xkβ
∂pαi

= xiα.
(3.5)

The Euler-Lagrange (second-order) PDEs (3.1) are equivalent to Hamilton (first-order)

PDEs (3.4).
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3.1. Conservation of the energy-momentum tensor field. The energy-momentum

tensor field is defined by

Tαβ = xiβ
∂L
∂xiα

−δαβL. (3.6)

We compute the divergence of this tensor field. We find

∂
∂tα

Tαβ =
∂
∂tα

(
xiβp

α
i
)−δαβ

(
∂L
∂tα

+ ∂L
∂xi

xiα+
∂L
∂xiγ

∂xiγ
∂tα

)

= ∂x
i
β

∂tα
pαi +xiβ

∂pαi
∂tα

− ∂L
∂tβ

− ∂L
∂xi

xiβ−
∂L
∂xiγ

∂xiγ
∂tβ

= xiβ
(∂pαi
∂tα

− ∂L
∂xi

)
− ∂L
∂tβ

=− ∂L
∂tβ
.

(3.7)

Consequently, the energy-momentum tensor field is conserved if and only if the La-

grangian L does not depend explicitly on tα (autonomous Lagrangian).

4. Minimization of dual multitime action. The Hamilton equations can be written

in the form

δαβδ
i
j
∂pβi
∂tα

+ ∂H
∂xj

= 0, −δαβδij
∂xj

∂tα
+ ∂H
∂pβi

= 0. (4.1)

We will use also the polysymplectic structure

δ⊗J =
(

0 δαβδ
i
j

−δαβδij 0

)
, δ=

(
δαβ
)
, J =

(
0 δij
−δij 0

)
(4.2)

discovered by the first author [13, 16, 17]. In this sense, we introduce the notations

X =Rn, X∗ = dual of X, Y =Rp, Y∗ = dual of Y ,

δ= idX⊗Y , δ⊗J =
(

0 ϕ(δ)
−ϑ(δ) 0

)
,

(4.3)

where ϕ, ϑ are the canonical isomorphisms:

ϕ : End(X⊗Y) �→Hom
(
X∗⊗EndY ,X∗

)
ϑ : End(X⊗Y) �→Hom

(
X⊗Y∗,X⊗Y∗). (4.4)

Then

δ⊗J ∈Hom
((
X⊗Y∗)⊕(X∗⊗EndY

)
,X∗⊕(X⊗Y∗)) (4.5)

and we can give the Hamilton equations the following more compact form:

(δ⊗J)



∂x
∂t
∂p
∂t


=−



∂H
∂x
∂H
∂p


 . (4.6)
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According to the standard Riemannian metric on Rn+np , which is given by the matrix

G =
(δij 0

0 δαβδij

)
, the associated Hamilton multitime action ψ is given by

ψ(u)=
∫
Ω

�
(
t,u,u′

)
dv, Ω = [0,T ]p ⊂Rp, T > 0, (4.7)

where u= (x,p), u′ = ∂u/∂t, dv = dt1∧···∧dtp , and

�
(
t,u,u′

)= 1
2

(∂pαi
∂tα

xi− ∂x
i

∂tα
pαi
)
+H(t,x,p)

= 1
2

(∂pαj
∂tα

,−∂x
j

∂tβ

)(δij 0

0 δβαδij

)(
xi

pαi

)
+H(t,x(t),p(t)).

(4.8)

As it is well known, the Euler-Lagrange equations associated with the action ψ are

equivalent to (3.4). The action ψ is indefinite. This is easily shown by substituting the

function u with the sequence of functions

uk =
(
xk,pk

)
, xik(t)= ci cos

(
λktβ

)
, pαk,i(t)= cαi sin

(
λktβ

)
,

uk(t)= cos
(
λktβ

)
(δ⊗I)c−sin

(
λktβ

)
(δ⊗J)c, β= fixed,

(4.9)

into the previous integral; we choose λk = 2kπ/T , k∈ Z, c = (ci,cαi )∈Rn+np , ‖c‖ = 1.

It follows that ∥∥uk(t)∥∥= 1,(∂pαi
∂tα

,−∂x
i

∂tµ

)(δij 0

0 δµγδij

)(
xj

pγj

)
= λkcβj cj ∀k∈ Z. (4.10)

Consequently,

ψ
(
uk
)= kπ

T
Tpcβi c

i+
∫
Ω

(
t,uk(t)

)
dv �→−∞ or +∞ (4.11)

according to k → −∞ or k → +∞. That is why the direct method of the calculus of

variations cannot be applied directly and more sophisticated approaches like minimax

methods, isoperimetric natural constraints, or dual least action principles have to be

used. In a forthcoming paper, we will concentrate on the case where the Hamiltonian

H(t,u) is convex inu, in which case the dual least action principle seems to provide the

best results in the simplest way. Here we discuss the eigenvalues and the eigenfunctions

of the operator (δ⊗J)(∂/∂t) with periodic boundary conditions:

(δ⊗J)
(
∂u
∂t

)
= λu(t), u(0, . . . ,0)=u(k1T ,. . . ,kpT

)
, (4.12)

where λ ∈ R, ∂u/∂t is the matrix of elements ∂u/∂tα, and kα ∈ Z. The PDEs system

(4.12) is equivalent to

∂xi

∂tα
=−λpαi ,

∂pαi
∂tα

= λxi. (4.13)
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We get particular solutions by taking

xi(t)= ci cos
(
λiαtα

)
, pβi = cβi sin

(
µiαtα

)
, (4.14)

where λiα, µiα, ci, cβi are real numbers such that

Tλiα
2π

∈ Z, λiα = µiα, ciλiα = λcαi , cαi µiα = λci. (4.15)

Supposing that ci ≠ 0, we get

λ2 = δαβλiαλiβ, i= 1, . . . ,n. (4.16)

We have the following theorem.

Theorem 4.1. The system (4.12) has a nontrivial solution of the form (4.14) if and

only if the equation T 2λ2 = 4π2δαβkαkβ has solutions (k1, . . . ,kp)∈ Zp .

Note 4.2. The PDEs system (4.12) is associated with the Lagrangian

L1

(
x,
∂x
∂t

)
= λ

2

(
δijxixj+δαβδijxiαxjβ

)
. (4.17)

We could consider the Hamiltonian

H2(x,p)= 1
2

[
gijxixj+Gijαβpαi pβj

]
, (4.18)

with real and constant coefficients gij ,G
ij
αβ. This generalizes the Hamiltonian associated

with the linear oscillator. The associated PDEs system will be linear and with constant

coefficients:

∂xi

∂tα
=Gijαβpβj ,

∂pαi
∂tα

=−gijxj. (4.19)

When we look for solutions of the form

xi(t)= ci exp
(
λαtα

)
, pβi (t)= cβi exp

(
λαtα

)
(4.20)

with constants ci, cβi , we obtain the algebraic equations

λαci =Gijαβcβj , λαcαi =−gijcj. (4.21)

Supposing that det(gij)≠ 0, we get further

cj =−gijcαi λα,
(
Gijαβ+gijλαλβ

)
cαi = 0. (4.22)

Remark 4.3. Since the set of eigenvalues λ of the differential operator δ⊗J is un-

bounded (from below and from above), the quadratic form

u �→ 1
2

∫
Ω

〈
(δ⊗J)∂u

∂t
(t),u(t)

�
dv (4.23)
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is indefinite on the space

H1
Ω =

{
u :Rp �→Rn+np |u= absolutely continuous,

kα ∈ Z �⇒u
(
t1, . . . , tp

)=u(t1+k1T ,. . . ,tp+kpT
)
,
∂u
∂t
∈ L2(Rp)}.

(4.24)

Theorem 4.4. If u∈H1
Ω, then

∫
Ω

∥∥u(t)∥∥2dv ≤ T 2

4π2

∫
Ω

∥∥∥∥∂u∂t (t)
∥∥∥∥

2

dv. (4.25)

Proof. By assumption, the function u has a Fourier expansion

u(t)=
∑

(k1,...,kp)∈Zp
c
(
k1, . . . ,kp

)
exp

(
2πi

k1t1+···+kptp
T

)
. (4.26)

If we denote k= (k1, . . . ,kp), then ‖k‖2 = k2
1+···+k2

p . The Perseval equality implies

∫
Ω

∥∥∥∥∂u∂t
∥∥∥∥

2

dv =
∑

k1,...,kp

Tp
4π2‖k‖2

T 2

∥∥c(k1, . . . ,kp
)∥∥2

≥ 4π2

T 2

∑
k1,...,kp

Tp
∥∥(k1, . . . ,kp

)∥∥2 = 4π2

T 2

∫
Ω

∥∥u(t)∥∥2dv.
(4.27)

Theorem 4.5. Every u∈H1
Ω satisfies the inequality

∫
Ω

〈
(δ⊗J)∂u

∂t
,u(t)

�
dv ≥−

√pT
2π

∫
Ω

∥∥∥∥∂u∂t (t)
∥∥∥∥dv. (4.28)

Proof. We use the deviation

ũ(t)=u(t)− 1
Tp

∫
Ω
u(t)dv. (4.29)

The Cauchy-Schwarz inequality and inequality (4.25) imply

∫
Ω

〈
(δ⊗J)∂u

∂t
,u(t)

�
dv =

∫
Ω

〈
(δ⊗J)∂u

∂t
,ũ(t)

�
dv

≥−
(∫

Ω

∥∥∥∥(δ⊗J)∂u∂t (t)
∥∥∥∥

2

dv
)1/2(∫

Ω

∥∥ũ(t)∥∥2dv
)1/2

≥− T
2π

(∫
Ω

∥∥∥∥(δ⊗J)∂u∂t (t)
∥∥∥∥

2

dv
)1/2(∫

Ω

∥∥∥∥∂ũ∂t (t)
∥∥∥∥

2

dv
)1/2

≥−
√pT
2π

∫
Ω

∥∥∥∥∂u∂t (t)
∥∥∥∥

2

dv.

(4.30)

5. Witten-type Hamiltonians. The study of the Yang-Mills-Witten-type functionals

[1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15], which was initially related to a modern approach of

the Maxwell or Dirac equations, gave extremely important results for the development

of the differential geometry. This theory which is both experimentally and theoreti-

cally grounded, became very interesting and with many possible applications and open
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problems for research. In this section, we will apply the Hamiltonian formalism to a

functional of this type.

Let Spinc(4) = Spin(4)×Z2 S1 = [SU(2)×SU(2)]×Z2 S1. There is a natural identifica-

tion

Spinc(4)≡ {(a+,a−)∈U(2)×U(2); det
(
a+
)= det

(
a−
)}
, (5.1)

which induces the projections

�± : Spinc(4) �→U(2), (5.2)

and also the morphism

det : Spinc(4) �→ S1 (5.3)

defined by det(a+,a−) = det(a+) = det(a−) for any (a+,a−) ∈ Spinc(4). Let (X,g) be

a Riemannian, compact, and oriented 4-manifold. Let (Pc,γ) be a Spinc(4)-structure in

(X,g) and Σ± = Pc×�± C2, its associated spinor-vector bundles.

We will consider as well the complex line bundle detΣ+ ≡ detΣ− ≡ Pc ×det C and

also the space of the unitary connections in detΣ+, denoted by �(detΣ+). The space

�(detΣ+) has a natural structure of affine space modeled over the vector space iA1(X),
where A1(X) is the space of the C∞−1-forms defined on the manifold X. Let

W : �
(
detΣ+

)×A0(Σ+) �→R, (5.4)

W(A,ψ)= ∥∥∇Âψ∥∥2+ 1
16

∥∥FA∥∥2+ 1
4
‖ψ‖4

L4+ 1
4

∫
X
s|ψ|2 (5.5)

be the Witten-type functional, where (A,ψ) ∈ � = �(detΣ+)×A0(Σ+), |ψ|2 = ψψ̄, the

norms ‖·‖ are L2-norms, and Â is the connection naturally induced in Σ+ by A and by

the Levi-Civita connection of (X,g).
We assume that the restriction of the Riemannian structure g to a coordinate neigh-

borhood is Euclidean and we make our computations only over this neighborhood. It

follows that the Levi-Civita connection associated to g has its coefficients, the curvature,

and its scalar curvature all equal to 0. Under such conditions, we apply the single-time

or multitime Hamiltonian formalism, and we will use the symbol sigma with indices for

summation.

If the connection A has its local associated form ia, then ∇Âψ= dψ+(1/2)iaψ for

any ψ∈A0(Σ+). Of course, ψ= (ψ1,ψ2)= (ϕ1+iη1,ϕ2+iη2) and a= aαdtα.

Lemma 5.1. The Lagrangian associated to W is given by the formula

L(A,ψ)=
3∑
α=0

2∑
j=1

[
1
4

(
aα
)2
((
ϕj
)2+(ηj)2

)
+
(
ϕjα

)2+
(
ηjα
)2+

(
ϕjηjα−ηjϕjα

)
aα
]

+ 1
32

3∑
α,β=0

(
aα,β−aβ,α

)2+ 1
4

( 2∑
j=1

[(
ϕj
)2+(ηj)2

])2
(5.6)

for any ψ= (ϕ1+iη1,ϕ2+iη2)∈A0(Σ+), a= aαdtα.
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5.1. Single-time Hamilton equations. We can assume, under a suitable gauge trans-

formation, that a0 = 0.

Lemma 5.2. The momenta associated to L are

pα = ∂L
∂aα,0

= 1
8
aα,0, qj = ∂L

∂ϕj0
= 2ϕj0, rj = ∂L

∂ηj0
= 2ηj0, (5.7)

with α= 1,2,3 and j = 1,2.

Lemma 5.3. The Hamilton density associated to W is

H = 4
3∑
s=1

(
ps
)2+ 1

4

2∑
j=1

[
q2
j +r 2

j
]

−
3∑
s=1

2∑
j=1

[
1
4

(
as
)2((ϕj)2+(ηj)2)+(ϕjs)2+(ηjs)2+(ϕjηjs−ηjϕjs)as

]

− 1
16

3∑
s,t=1

[(
as,t

)2−as,tat,s
]− 1

4

( 2∑
j=1

[(
ϕj
)2+(ηj)2])2

.

(5.8)

Theorem 5.4. The Hamilton generalized equations, associated to W , are

ȧs = 8ps, ϕ̇j = 1
2
qj, η̇j = 1

2
rj,

ṗs = 1
2
as|ψ|2+

2∑
j=1

(
ϕjηjs−ηjϕjs

)+ 1
8

3∑
t=1

(
as,tt−at,st

)
,

q̇j = |ψ|2ϕj+
3∑
t=1

(
1
2

(
at
)2ϕj+2ϕjtt−at,tηj

)
,

ṙj = |ψ|2ηj+
3∑
t=1

(
1
2

(
at
)2ηj+2ηjtt+at,tϕj

)
, j = 1,2; s = 1,2,3.

(5.9)

These equations follow from direct computations. Also, the first coordinate t0 has

been privileged and considered as a time variable.

5.2. Multitime Hamilton equations. There are a lot of problems in which there is no

reason to prefer one variable to the other by choosing it as time. In such cases, we use

those field theories which involve many time variables (multitime or multiparameter).

In this section, we study the same functional, but instead of a single-time one, we will

consider it as a multitime functional, with no privileged variable tα. We use for our com-

putations the appropriate Hamiltonian formalism which has been given in Section 3.

This formalism has been also studied and developed in [3, 4, 13, 16, 17]. The momenta

associated to L will be denoted by

pαβ = ∂L
∂aα,β

, qαj =
∂L
∂ϕjα

, rαj =
∂L
∂ηjα

, (5.10)

with α,β= 0,1,2,3 and j = 1,2.
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Lemma 5.5. The momenta associated to L are

pαβ = 1
8

(
aα,β−aβ,α

)
, qαj = 2ϕjα−aαηj, rαj = 2ηjα+aαϕj, (5.11)

with α,β= 0,1,2,3 and j = 1,2.

Remark 5.6. Since the first 16 relations of Lemma 5.5 (pαβ=··· , for α,β=0,1,2,3)
are not independent, the general conditions of the Hamiltonian formalism are not ful-

filled. It is yet possible to extend the Hamiltonian formalism so that such cases become

workable, in various ways. One way is the following. Suppose we have a Lagrangian

L(t,y,y ′) such that the generalized momenta

pαi =
∂L
∂yiα

(5.12)

are not independent. It is possible to find functions f iα(y,p) such that (5.12) be verified

when we write yiα = f iα(y,p). Suppose we made such a choice and define the formal

Hamiltonian

Hf(y,p)= f iαpαi −L
(
y,f(y,p)

)
(5.13)

by treating the variables pαi as if they were functionally independent. Then we get

∂Hf
∂yi

= ∂f
j
α

∂yi
pαj −

∂L
∂yi

− ∂L
∂yjβ

∂f jβ
∂yi

=− ∂L
∂yi

=−∂p
α
i

∂tα
,

∂Hf
∂pαi

= f iα+
∂f jβ
∂pαi

pβj −
∂L
∂yjβ

∂f jβ
∂pαi

= f iα =
∂yi

∂tα
.

(5.14)

The equations thus obtained,

∂yi

∂tα
= ∂Hf
∂pαi

,
∂pαi
∂tα

=−∂Hf
∂yi

, (5.15)

will be named the generalized canonical equations. Note that Hf , as a function of the

variables pαi , depends on the choice of the functions f iα, but it becomes a well-defined

function on the momenta pαi by taking into consideration (5.12).

We apply this generalized Hamiltonian formalism to the functional (5.5) under the

same restrictions introduced at the beginning of Section 5. The corresponding Lagrang-

ian has been written in Lemma 5.1. The relations pαβ = (1/8)(aα,β−aβ,α)=−pβα show

that the momenta are not independent. In this case, we can choose the functions fαβ
such that

aα,β = fαβ(u,p)= 4pαβ+gαβ(u,p), (5.16)

where gαβ = gβα.
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Lemma 5.7. The Hamilton density associated to W and to the choice (5.16) is

Hf = 2
3∑

α,β=0

(
pαβ

)2+
3∑

α,β=0

pαβgαβ+ 1
4

3∑
α=0

2∑
j=1

[(
qαj
)2+(rαj )2]

+ 1
2

3∑
α=0

2∑
j=1

(
ηjqαj −ϕjrαj

)
aα− 1

4

( 2∑
j=1

[(
ϕj
)2+(ηj)2]

)2

.

(5.17)

Theorem 5.8. The Hamilton generalized equations associated to Hf are

∂aα
∂tβ

= 4pαβ+gαβ, ∂ϕj

∂tα
=−1

2

(
qαj +aαηj

)
,

∂ηj

∂tα
= 1

2

(
rαj −aαϕj

)
,

∂pαβ

∂tβ
= 1

2

(
ηjqαj −ϕjrαj

)
,

∂qβj
∂tβ

= 1
2
aαrαj +

( 2∑
k=1

[(
ϕk

)2+(ηk)2])ϕj,
∂rβj
∂tβ

=−aαqαj +
( 2∑
k=1

[(
ϕk

)2+(ηk)2])ηj, j = 1,2; α,β= 0,1,2,3.

(5.18)

These equations follow from direct computations.

Remarks 5.9. (1) In the particular case gαβ = 0, the solutions of the previous equa-

tions are subject to the conditions ∂aα/∂tβ =−∂aβ/∂tα.

(2) From Lemma 5.5, it follows that pαβ = −pβα. When we take into consideration

these relations, any choice of the functions fαβ gives the same Hamilton density

H = 2
3∑

α,β=0

(
pαβ

)2+ 1
4

3∑
α=0

2∑
j=1

[(
qαj
)2+(rαj )2]

+ 1
2

3∑
α=0

2∑
j=1

(
ηjqαj −ϕjrαj

)
aα− 1

4

( 2∑
j=1

[(
ϕj
)2+(ηj)2])2

.

(5.19)

Suitable computations give the formal Hamilton equations

∂aα
∂tβ

= 4pαβ,
∂ϕj

∂tα
= 1

2

(
qαj +aαηj

)
,

∂ηj

∂tα
= 1

2

(
rαj −aαϕj

)
,

∂pαβ

∂tβ
=−1

2

(
ηjqαj −ϕjrαj

)
,

∂qβj
∂tβ

= 1
2
aαrαj +

( 2∑
k=1

[(
ϕk

)2+(ηk)2])ϕj,
∂rβj
∂tβ

=−1
2
aαqαj +

( 2∑
k=1

[(
ϕk

)2+(ηk)2])ηj, j = 1,2; α,β= 0,1,2,3.

(5.20)

These are the equations from Theorem 5.8 in the particular case gαβ = 0.

(3) The first formula of Theorem 5.8 requires the integrability conditions

∂2aα
∂tβ∂tγ

− ∂2aα
∂tγ∂tβ

= 4
(
∂pαβ

∂tγ
− ∂p

αγ

∂tβ

)
+ ∂gαβ
∂tγ

− ∂gαγ
∂tβ

= 0. (5.21)
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