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One trivial zero phenomenon for p-adic analytic function is considered. We then prove that
the first derivative of this function is essentially the Kummer class associated with p.
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1. Introduction. In this paper we always fix an odd prime p > 2. For n > 1, fix a
p"th primitive root of unity ,» such that §;’n+1 = Cpn. Let Ky = Qp(Cpn) and U =
lim O, . For B € A, we will define a 1-admissible distribution ug € %1(Qp,Q,[-1]1)*=!
(see Section 3). Consider the integral

Wi (B) = Lxxkuﬁ, (1.1)

r

then we have () = (1 —p*1). fln x*ug, so it will have a trivial zero at k = 1. Since
1—p*-1 is not an analytic function of k, hence we cannot take the derivative directly.
But gy is an analytic function of k, so the derivative exists. This phenomenon in which
the zero is forced by Euler factor is called trivial zero problem. Ferrero and Greenberg
[4] considered the trivial zero problem for the first time in 1978 and found that the
derivative has deep arithmetic meaning. The behavior of the derivative of some Kubota-
Leopoldt p-adic L-function with trivial zero has a deep relation with some arithmetic
Iwasawa module (see [6]). The second such trivial zero phenomenon was found by
Mazur et al. in [8], and then they conjectured that the derivative has a relation with £-
invariant. This conjecture was proved by Greenberg and Stevens in 1993 (see [7]). The
function yy is very close to Coates-Wiles kth derivative (see Section 7); actually, it only
differs by the factor (1 —p*~1), and was called Coates-Wiles homomorphism in de Shalit
[3]. The question to find the derivative at k = 1 of @ was proposed by Glenn Stevens in
1997. Simultaneously, we also tried to understand how the Bloch-Kato exponential map
€XPg, (1) can miss the Kummer class y,. Glenn Stevens predicted that the derivative of
Wy at 1 will give the Kummer class y,. We will prove this in this paper.

Let C, denote the completion of Q,,. For a field K c Cp, let Ox denote the ring of
integers. Choose Iwasawa’s log : C; — Cp, such that log(p) = 0. In Section 2, we will
review Fontaine’s rings briefly and describe Bloch-Kato exponential map. In Section 3,
we will define distributions and explain cohomology groups as Iwasawa module. In
Section 4, we will introduce algebraic Fourier transformation and use Coleman power
series to give some special distributions. In Section 5, we will review Perrin-Riou and
Colmez theorems. In Section 6, we will show that Iwasawa’s explicit reciprocity law
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is actually a special case of Perrin-Riou’s theorem. In Section 7, we use the theory we
developed so far to prove our theorem.

2. Fontaine’s rings and Bloch-Kato exponential map. Let O = Oc, /pOc,- Let R de-
note the projective limit of the diagram

O0—0—0—---, (2.1)

where the transition maps are given by x — x?. The ring % is a perfect ring with charac-
teristic p > 0 (see [5]). For x € R, x = (x,)nen satisfies x,, € O, and XZ+1 = xy. For each
n, choose X, € Oc, to be a representative of x,. Then one can show that for each m,
lim,,— Scfﬁm exists and the limit x™ does not depend on the choices of the represen-
tatives. Hence, x gives rise to a sequence (x™),,cy in Oc, such that (x+D)P = x(m),
On the other hand, if we have a sequence (x ™))y in O, such that (x™*+D)P = x(m),
then (x(™),,cy is an element in %. Hence, & is in one-to-one correspondence with the
set

{(x™) pen | VM EN, x™ € Oc,, (xMm1)P = xm}, (2.2)
Define a function vg, : R - QU {0} by
Vo (x ™) en) 1= v (x ), (2.3)

where v is the valuation of C, such that v(p) = 1. The ring % is complete with respect
to vg.

Let W(R) denote the Witt vector ring of %. Recall that the underlying set of W (%)
is the set ®N = {(xg,x1,...) | x; € R}. The ring structure is given in terms of Witt
polynomials (see [10]). Since O is an [_Fp-algebra, W(R) is a W([_Fp)-algebra. For x e R,
let

[x]:=(x,0,0,...) e W(R) (2.4)

denote the Teichmiiller representative of x. For (xg,X1,...,Xn,...) € W(R), we have the
identity

-1

(X0, X1,y Xy o) = [x0] +p[x1]7 -+ p" [xn]”

+---, (2.5)

where for x € R, [x]lf1 is the unique element w of W (%) such that w? = [x].
Let

0:W(®R) — Oc, (2.6)

be defined by

0(xo0,x1,...) = > p"xV. (2.7)
n=0
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Then itis easy to see that 0 is a Z,-homomorphism and it is surjective. The Frobenius on
9% induces a continuous Frobenius map on W (%) with respect to the product topology,
we denote it by @, which sends (xo,x1,...,Xn,...) to (x},xV,...,xh,...). The map @ is
an isomorphism, semilinear over W ([,). The ring W (%) can also be endowed with p-
adic topology and I-adic topology. Let € = (1,Lp,Cp2,...) € R. The element [¢] € W (%)
has the property 0([£]) = 1. The element @1 ([£]) = [(E,,,Cr,z,...),0,0,...]. Let u =
([e]-1)/(@~t[e] -1). The kernel of @ is a principal ideal of W (%), which is generated
by u [5].
We will use Big, Bar, Acrys, Bliyss Beryss Amax, and Bmay from Colmez [2].

LEMMA 2.1. The following sequences are exact:

_ i1<0
0— Qp — B 22— Bar/Bip — 0, (2.8)
0 — Qp — Fil Bpax 2 Bmax — 0, (2.9)

where @ is the Frobenius of Bqr Which is induced by the one from 9.
PROOF. See Colmez [2, Appendix Al. |

For a continuous Gq, -representation V, finite-dimensional Q,-vector space, define
Derys(V) := (Barys ® V) @, Dag (V) := (Bgr ® V) “2 . Then Deyys (V) is a finite-dimensional
Qp-vector space, with a Frobenius action (acts on V trivially) [5]. The operator Dgr has
a filtration given by Fil'(Dgr (V)) = (Bip ® V)% . The dimensions have the following
relation:

dimq, (Days(V)) < dimg, (Dar(V)) < dimg, (V). (2.10)

If dimg, (Dgr(V)) = dimg,(V), then V is called a de Rham representation. If
dimg, (Darys(V)) = dimg, (V), then V is called a crystalline representation. Note that
a crystalline representation must be a de Rham representation. In the following, all
representations are assumed to be de Rham representations. Similarly, we can also de-
fine Diax (V) := (Bmax ® V)G@r'; Colmez proved that this is the same as Dys(V). For a
crystalline representation V, let D(V) = Depys (V).

For a de Rham representation V, taking tensor product with the exact sequence (2.8),
we have the following exact sequence:

0—V — Bl ®V — Bar/Bir®V — 0; (2.11)
taking the Galois cohomology, we have a map
(Bar /Bl ® V)% — H'(Q,,V). (2.12)
Then the Bloch-Kato exponential map
expy : (B ®V)°? — H'(Qp,V) (2.13)
is defined as the composition

(Bar®V)“Y — (Bar/Bir ®V)“¥ — H'(Q,,V). (2.14)
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The kernel of this map is FilODdR(V) +DcryS(V)q’:1, and the image is H.(Qp,V) :=
ker{H'(Qp,V) — H'(Qp, B8y ®V)}.
For a Galois representation V, let V (k) denote the kth cyclotomic twist of V. That is,
let x denote the cyclotomic character, C;n = Eﬁﬁg) forall n =1, V(k):=V(x%).
Consider the example V = Q,(1) = Qp - ¢; in this case, Daqr(V) = Qp - (e/t) is a
one-dimensional vector space, where t = log([£]). The isomorphism H! (Qp,Qp(1)) =

Qp ® Q, is given by the Kummer map. To be more precise, it is generated by y1.,, ¥y,
where, for « € Q;,

T(x/P"
ya:T—»logs(...,%,..)@e (2.15)

is the Kummer class. Hence, we have H! (Qp,Qp(1)) = Q%, then the exponential map
for Qp is

exXPg, 1) : Dar (Qp (1)) — H' (Qp,Qp(1)). (2.16)

LEMMA 2.2. It follows that

e Yi+p
=i 2.17
&Py (t) log(1+p) ( )
PROOF. In the exact sequence
0 — Qp — Bfax — Bar/Bir — 0, (2.18)

log[l/jr_;a]/t -log(1+p) mapsto1/t,so (log[lfﬁo]/t -log(1+p))®emapsto (1/t)®e €
Dar(Qp (1)), hence the class expq, 1) (e/t) is represented by

log[1+p] ®e>

T— (T_l)'<t-log(1+p)

L (log([(., T+ ), ])

tlog(1+p)
“log ([(-ey (L) VP70, ]) ) e

(g ([ (TG L)) (2.19)
tlog(1+p) T Qe )

_; 1+p (T)

_tlog(l+p)(log[5¥ p(M])

_ Yiep(™)

“log(l+p)° .

For k > 1, it is easy to see that dimq, Dar (Q) (k)) = dimg, H! (Qp,Qp(k)) =1 and
exXPq, (k) i an isomorphism. In some sense, y, and y1., should have the same positions
in H' (Qp,Qp(1)). Note that for k = 1, the left-hand side has dimension 1 and the right-
hand side has dimension 2, so the image is a one-dimensional vector space, and y, is
not in the image. In this paper, we will show that the “derivative of Bloch-Kato map” is
essentially y,. To be a little bit more precise, we need the following definitions.
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Let ¥ = Homcont(zx,(C§) which is identical to B(u,-1,1) and there is an obvious in-
clusion 7 c %.

DEFINITION 2.3. Given ¥ C &, a rigid analytic subspace over Q,, an analytic family
of Galois representations over ¥ is a pair (V, p), where (1) V is a de Rham representation
of Gaq,, (2) p:FXGq, — GIQV (V) is continuous in o and is analytic in k.

DEFINITION 2.4. Let (V,p) over ¥ be a family of Galois representations of Ga, and
let Vi denote the Galois representation of Gg, such that the underlying space is V and
the action is given by

gov =p(o)(oW)). (2.20)

A family of classes & € H'(Qp, Vi) is said to be an analytic family if there is a cocycle
representation o — & (o) such that for all o € Gq,,, & (07) is an analytic function of k.

Now, we can go back to answer the question on y,. In Section 7, we will show that
W= (1=p' %) /(1 -p%)) (k—1)lexpy, (1x) is an analytic family of cohomology classes
in H'(Qp,Qp (k) and (d/dk) (pi) k=1 = —(1—p~1)~ly,. In other words, y, appears in
the first coefficient of the “Taylor expansion” of Bloch-Kato exponential map.

3. Distributions and Iwasawa module. Let [ C Z be a subset and let LP! = {x*.
laspnz, |k €1, a € Qp}. An algebraic I-distribution with values in M is a finitely ad-
ditive function y : LPT — M. Let Qbfﬂg(Qp,M ) denote all the algebraic I-distributions
with values in M. For X C Q, a compact open subset, let LPI(X) = {xk-. Larpnzy)nxts
then gz)glg(x ,M) is defined with respect to these test functions. Especially, we have
Dag(Zy, M), Dhyg(Zp,M). Let D, (Qp, M) (resp., D, (Qp,M)) denote the case I = N
(resp., I = —N). Note that when we say N we always mean N = {0,1,2,...}.

Let LA = {locally analytic compactly supported functions in Q, with values in Q,}.
Let LA" = {f : Q, \ {0} — Q| f is locally analytic and compact supported such that
thereexists N € N, xN f € LA}. LA and LA’ have Morita topology.

We let A, (X) denote the Q,-affinoid algebra of B[X,p "]. In particular, A, (X) is a
Banach algebra under the Gauss norm. For a p-adic Banach space A, let @cont(Qp, A) :=
{u:LA — Alu is linear and continuous with respect to Morita topology}. Note that u is
continuous if and only if it is continuous when restricted on each s, (X), n € Z, X open.

DEFINITION 3.1. (a) Let u € Dcont(Y,A). For each n € Z and every compact open
subset X of Y, define |[ull4, (x) to be the norm of the continuous linear function p :
An(X) — A obtained by restricting u to s, (X).

(b) Similarly, if u € @glg(Y,A), then for each n € Z and every compact open subset
X of Y, define ||“HLP£[ (x) to be the norm of the continuous linear function p : LPT(X) N
An(X) — A obtained by restricting pu to LPT(X) nsl, (X). If X C Qp is compact, then

actually

lulls,x) = sup
aeX, j=0

Lw% (xp_na)juH. (3.1)
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DEFINITION 3.2. For v € R*, pt € Beoni(Qp,A) is said to be tempered of order v if
for every compact open subset X C Qy, p~nr] letllsa, () 18 7-bounded. Let 9, (Qp,A) C
Deont(Qp,A) denote the set of distributions of order v. For r < 72, %, (Qp,A)
C Dy, (Qp,A). Let Diemp (Qp, A) = Upr=0D (Qp,A) denote all tempered distributions with
values in A. From the above remark we see that u is r-bounded if and only if

Jyo, (")
a+p"zy pn

is -bounded. A distribution with order 7 is also called an »-admissible distribution.

p "1 sup ‘ (3.2)

aeX, j=0

LEMMA 3.3. For i € Deont (Qp,A), u has order v if and only if for all X compact open,
alxe X,0<j<vr,

Joowy C)
a+pnzy \ P" H

—[nr]

p sup

aeX,0<j<r

‘ (3.3)

is v -bounded.
PROOEF. Since j > 7, then p(nU-"1| fquyan (x—a)’| tends to zero when n — . 0O

If V is a crystalline representation of Gq,, we have a twist map

Deont (Qp, D (V) = Beont (Qp, D (V(~1))) (3.4)

which sends u to (—tx)u.
LEMMA 3.4. The kernelker(Tw) = 6o D(V), Tw is surjective.

PROOF. Obviously, we have Tw (6o®D(V)) = 0.If u € ker(Tw), then supp(u) = {0}.
Let py = u— ([ )8, then [ f(x)p1 = [ f(x)pu— () - £(0) = £(0) - (Jp)— ([ ) - £(0) =0,
hence u = ([ u) ® 5.

For the surjectivity, given v € Deont(Qp,D(V(-1))), define w € Deont (Qp, D (V)) such
that

f—=f0)-1z
_(_ -1 P
waf( t )J > v, (3.5)
then [ f(x)(—tx)w = [ fv, hence (-tx)w = v. O
For u e @élg(prA), define an operator Qg as

J f(x)cp@u:zf fpx)p. (3.6)
Qn Ql/’

If A is a Dieudonne module, then @ can act on it, hence both @ and @g can act on
@glg(Qp,A). Then we define ® = g ® @.

LEMMA 3.5. The twist map Tw induces a map

Beont (Qp, D (V))* ™ — Beont (@, D(V(=1)))* " (3.7)
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with kernel = 5o ® D(V)®=1, image = {V € Deont (Qp,D(V(-1)))?=1 | fz; x~1v =0}, and
cokernel =D(V(-1)) /(¢ —p)D(V(-1)) =D(V)/(p-1)D(V).

PROOF. Assume that §p®d is in the kernel, ®(6p® d) = 69 ® d. For all f, we have
[fd(So®d) = [fSo®d = f(0)®d, thatis, p(f(0)®d) = £f(0)®d, hence d € D(V)?~1.

Now, we calculate the image. If v = Tw (u) = (—tx)u, then from the Colman-Colmez
exact sequence [2], we have fz; xly = fzﬁ (—t)u = 0. On the other hand, if v satisfies
fz? x~1v =0, w maps to v from Lemma 3.4, we need to show that ®(w) = w. That is,
for all f, [ f-®(w) = [ fw. The calculation shows that

[ o~ re
o)
zq’(Jf(pX)(:{;?).lzn V) ‘Jf“’ (3.8)
) (_t)_ljfm—f(o;.1Zn<x/p>v_(_t)_lJwv

1,4 - f(0
o [0,

The statement about cokernel follows immediately. |

Define Bremp(Qp,D(V)) := lim @ remp (Qp, D (V))®=!, where the transition maps are
given by the above twist map.

LEMMA 3.6. For i € Deont(Z;,A), 4 has orderr if and only if xu has order r.

PROOF. Assume that py has order r with » € R, then there is a constant C > 0
such that for all j > 0, [l f4,,nz, (x —a)/pll < Cpt""=7, hence || [z, x (x —a)/pll =
I ju+pnzp (x —a)/*ly—pht-pl faﬂ,nzp a(x—a)ull < Cpmr=D1 If v ¢ R, then we take
that C = C, tends to zero.

If 1 has order 7, by using the expansion fa+pnlp (x—a)" (u/x)= faﬂ,% (x—a)"(1/@a+
(= DH=[gipnz, (X =) -1/a-Tj-o((x —a) /@), we see that || [, pnz, (X —a)" /)
< CpMm=01 this proves the lemma. ]

For p € Deont(Zp,Cp), define the Amice transformation
sﬁu(T):JZ (1+T)*ueC[[T]]. (3.9)
P

DEFINITION 3.7. A formal power series f(T) = >.a,T" € C,[[T]] is said to be of
order v if p""1a,, is r-bounded.

LEMMA 3.8. A distribution p € Deont(Zp,Cp) has order v if and only if 1,,(T) has
order v.

PROOF. See [1]. O
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4. Fourier transformation and Coleman power series. Recall that we fixed Cpn
which is a p"th root of unity. Let &, := (Tpn,Cpn+1,...) € R, note that sﬁn =g [en] €
W(R). For x € Qp, x = p~" -y with some n € N and y € 7, define &* := & € R.
Obviously, this is well defined, and we get an element [¢¥] € W(%). For x € Q,
exp(tx) = X5 ((tx)k/k!) converges. Define £(x) := [e¥]/exp(tx) for x € Q,. Then
&(x) has the following properties:

(i) if x p‘"Zf,, with n > 0, then £(x) is a p™th root of unity, (x) =1 if and only

if x € Z,. Moreover, €(1/p™) = Cyn;

(ii) it follows that
”"Z’l (ax) p", if a=0(modp"), @l
20 \pn) = 0, otherwise for a € 7, \ p"Z,; '
(iii) for x,y € Q, e(x+y) =¢&(x)e(y);
(iv) for a cyclotomic character x, o(e(x)) = e(x(o)x).
If f is a locally constant function with compact support in Q,, define

Fatg (f) () 1= JQ £ €0 itaar (X), 4.2)
4

where Uiaar € Dnaive (Qp, Qp) such that pyaar(a +p"Z,) = 1/p™. Since f is locally con-
stant, this means that we can find an m such that on a + p™Z,, f is constant, hence
the integral equals

zj f(x)f(xy)UHaar(X):L > fla) > elxy). (4.3)
2 Ja+pmz, pm

amodp™ xea+pMzy

From property (ii) of £(x), if v is outside of p~"Z,, then this sum is zero, hence Fyg (f)
is well defined and compactly supported. On the other hand, since f is compactly
supported, we can assume that f is supported on p~™Z, for some m. Since e(p~"y) is
locally constant, this implies that Fa4(f) is locally constant. Extend the above definition
to test function {x*-1,,pnz,, k = 0}, define

Fag(f) ()= (=t)Fag(f) (). (4.4)

PROPOSITION 4.1. The Fourier transformation % enjoys the following properties:
D) Fag(f(x+a))(y) =e(-ay)Fag(f) (), fora € Qp,
(i) Faglelax)f(x))(y) =Fag(f)(y+a),
(iil) Fag(f(cx))(¥) = lcl 1 Fag(f)(cy),
(V) Fag(xX - Lazpnz,)(¥) = p - (kK (=ty))e(ay)lp-nz,(¥) if k = 0, n € Z,
ac Qp,
(V) g;algog'zalg(f)()’) = f(_y)

PROOF. The properties follow easily from the definitions.
For h € Z, define the twist for Fu, as

FE () 1= ()" Fag (X LF () (1), 4.5)



ON A TRIVIAL ZERO PROBLEM 303
where f € LP1-h+°) then we have

o(h) (k+h—1)!

ag%uWMth"Fwwawmwmn (4.6)
foralk=1-h,nez, ac Q. O
Now, we define the algebraic Fourier transformation on distributions as follows. For

pe sy, " (Qp,D(V)), define Fif) (1) such that
Jo, feoFiw = [ ahou (4.7

For « € Z;, let T = p . Let Jr(x) € Z,[[x]1] be a Frobenius corresponding to 1, so
fr(x) =mx(moddeg?2) and fr(x) = x? (modp). Let § be the one-dimensional Lubin-
Tate formal group over Z, corresponding to fr and let [+] denote the formal addition.
Let W2 := {x € C, | f" (x) = 0}, Ky = Q, (W), and K« = Up>1Ky,. Hence, Koo /Q, is a
totally ramified extension with Galois group Z;. We call this tower the Lubin-Tate tower
corresponding to the formal group §. Let R = Z,[[T]] and U = @Oén, where the map
is with respect to the norm map. Assume that 8 € A, then Coleman’s theorem tells us
that there is a unique (Coleman) power series gg € Z,,[[T]] such that

(i) gp(w;) =pB;foralli=1,
(i) gg o fr(x) =TTyewr gpx[+]w).

Assume that f € AU such that f, = 1(mod wy). Then gg(T) = 1mod(p, T), hence we
can define

f(;f;{g,s(if):=loggB(T)—l Z loggp(TI[+]1w). (4.8)

wewk

The property (ii) of the Coleman power series implies that ﬁgB(T) has integral coef-

ficients. Define an algebraic distribution ug € ED;{]g(Z,,,@%\T ) such that

Jz (1+T)*ug(x) =loggpgeon(T). 4.9)
1

PROPOSITION 4.2. (i) The restriction of pg to Z; gl z is a measure and its Amice
transformation is faégﬁ on(T).

(ii) The distribution pgl| 75 is a measure in %1 (Qy, @5\7 )®=1 and has the following Galois
property:

dLJWWFLJWW”WV” (4.10)

for all f(x):Qp — Qp.

PROOF. It is easy to see that

JX(1+T)X[JB:J (1+T)XUg—J (1+T)X[.15. 4.11)
7 Zp prZp
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By property (ii),

gpofre(X)= [] gp(X[+]w);

wewk

let X = n(T), then

gpofr(n(T)) = [T gs(n(T)[+In(C-1))

Ceup

=[] gsn(C1+T)-1).

Cepp

By using fron =n?®o[p], we see that

(ggem)?¥olpl=]](gpm) (CA+T)-1);
z

taking logarithm, and using the definition for ug, we have

m(Ln (1+ [p]T)Xus) = %Ln CX(1L+T) g = vLZp(l +T)* pg.

Hence,
1
LX (1+T)*pp =loggpn(T) - ;cp(loggzs on¥o([pIT))
P
1
=loggpgon-— ;10&95 o fron(T)
= 1rOVggBOW(T)

has integral coefficients, hence pg |z; is a measure.
To prove the second property, since

n(T): Gm — Fn,
by comparing the values at T;, = Cp» — 1, we can show that
o(n(T) =n((1+T)¥? -1) Vo €Gq,.
From this property, we see that

U(LH(HT)’“H/;) =0 (loggpon(T))

=loggp oo (n(T))
=loggpon((1+ T -1)

:J (1+T)w(g)xu[;,
Zp

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)



ON A TRIVIAL ZERO PROBLEM 305

so for general f, we have
0<Lpf(x)u/s) = Lpf(tl/(o)x)uﬁ; (4.20)

by extending pg to Q,, we have for all f,

a(J@pf(x)uﬁ) - Jpr(wwm)uﬁ. @.21)

To show that g is 1-admissible, by definition and Lemma 3.3, we only need to show that
pn=p Jaspnz, (x —a)/ g is r-bounded for j = 0,1. For j = 0, if a # 0, then since gl
is a measure, the integral p" jﬁpnzp ugp is always bounded. If a = 0, then p" fpnzp Hpg =
(p”(fzn Hg) = @™loggg(0) =loggp(0), hence, bounded.

Forj=1,ifa # 0, then [;, ,nz, XHp isbounded.If a=0, then [,nz, Xpp =" ([z, xHp) =
P"(Q-g;(0)/gp(0)) = x"Q(gp(0))/gp(0)), hence, bounded. ]

5. Perrin-Riou and Colmez theorems. Let K, = Q,(Cyn) and Ko = Up>1Ky. Let T =
Gal(Ke/Qp), x : T = Z; be the cyclotomic character. For x € Ko, and n € N, define
Tn(x) = (1/p™)Trk,,/k, (x) for m > 1. For a crystalline representation V, that is, a
finite-dimensional Q,-vector space such that Ga, has a continuous action on it and
V is crystalline, let D(V) := De¢rys (V) denote the Dieudonne module of V. Then from
Colmez [2], T,, can be extended to Bg]f‘” ® D (V). Then it is known that D(V) has a
Frobenius endomorphism and a filtration which we denote by Fil' D(V). This filtration
is decreasing, separated, and exhausted. That is,

Fl'D(V) 2Fl"*'D(V), n;Fl'D(V)=1{0}, U;Fl'D(V)=D(V). (5.1)

If FeKo((t)®D(V), F=s_otXdy with dy € K, ® D(V), define Sy (g (F) to be
tkdy. For I c Z, we have the algebraic distribution Qbfﬂg(Q,,,D(V)) from Section 3. For

h € Z, we defined the algebraic Fourier transformation @;ﬁ; : Eb;fg”’h_”(Q,,, D)) —
Bl " (Qp, Bar® V) as

anﬂx)@;{g(u) - j@n F(f)u, (5.2)

then Perrin-Riou and Colmez proved that the image is fixed by Gq,, and the Perrin-Riou
exponential map Expy,  is defined as the composition of the following maps:

@;i;o’h_l] (Qp,D(V)) . @;[ﬂlg—h,-%—oo) (Qp:BdR ® V)GQ,,

— Dy " (25, Ba /Bl ®V) S (5.3)

— HY(Qp, 2k " (25,V)),

where the last map is the connecting map of the following exact sequence:

0 — DL (Z3,V) — DL, (25, Bl ©V) — Bl (255, Bar /B ®V) — 0. (5.4)
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Recall that
gbtcmp(@p,D(V)) Zlir_ngbtcmp(stD(V(k)))a (5.5)

where the projective limit map is given by u — (—tx)u. Then Perrin-Riou [9] first proved
the following theorem.

THEOREM 5.1 (Perrin-Riou). Assume thatV is a crystalline representation, h € 7 such
thatFil'"D(V) =D(V).Ifu € Dremp (Qp, D (V))*=1, then Expy, v (1) restricted to Ko is in
H! (Koo, Dremp (25, V).

From Section 4, we know that for pg € Gemp(Qp, D(Q,(1)))®=1, we could have that
Faig(Ug) is not tempered, so the miracle of this theorem is that Exp, ,, sends tempered
distribution to tempered distribution (not only algebraic distribution). Then Perrin-Riou
gets the following theorem.

THEOREM 5.2 (Perrin-Riou). Assume thatV is a crystalline representation, h € Z such
that Fil'"D(V) =D(V), fork =1—h,

Jz; xKExpyy (1) = expy ) ((1 —@)(1-pleT ((k+h—1)!L; (ffX)"»’

Lﬂo"zp XKExppy (1) = (k+h—1)!expy (q;—nn <Lv g(%) (_fx)k»’ 56

forn =1, aezg.

The significance of this theorem is that for k € Z,,, the left-hand side (hence the right-
hand side) gives an analytic family of cohomology classes in the sense of Section 3.
The ring % (73, Q) has an action on both the distribution side gyl =hl (Qp,D(V))

alg
and the cohomology side Hl(Qp,@ggl‘”)(ZX,V)). That is, for A € 90(Z;,Qp) and
pe > M@y, D(V)), € € H'(Qy, 3L, "™ (Z3,V)), then the action * (which is es-
sentially induced by the map Z; xXQp = Qp, (x,¥) — xy) is defined as
| reorsu= | [ remneum, 6.7)
Qp Qp JZp
[ roonse= [ | remawzm. (5.8)
z; 7y )1y

LEMMA 5.3. (i) The action (5.7) commutes with the action ®, hence induces an action
on Ebélg(Q,,,D(V))‘b:l, and it sends tempered distributions to tempered distributions.

(ii) The action (5.8) commutes with the Galois action, hence it is well defined on
HY(Qp, Dl (Z5,V)).

(iii) The map Expy,  is sesquilinear with respect to these actions, that is,

EXpy,,y (A% 1) =AY % Expy, v (W), (5.9

where ./ is induced by x — x~! and defined to be

jxf(xw = j S DA (5.10)
7y 7
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PROOF. These follow from the definitions. O
For the “negative” power, Colmez proved the following theorem.

THEOREM 5.4 (Colmez). Assume thatV is a crystalline representation, h € Z, k > h,
then

(tx)k
(k—h)!

expy () (JZ;X’kEXDh,v(u)) = (—1)’1’1(1—1)’1<19’1)JZ u. (5.11)

REMARK 5.5. Colmez [2] proved Theorem 5.4, for k > 1; we will prove the statement
for k > h in another paper [11]; this can also be found in [12]. From his proof, we can
get the following theorem.

THEOREM 5.6. Assume thath € Z and u € @temp(Qp,D(V))‘bzl, fork = h,n > 1, then

_ PR x\ (tx)k
expy (g, <L+pnsz kEXDh,V(H)) =(-Dh 1q;_n Zf(ﬁ) (k_h)!u- (5.12)

PrROOF. Choose r € N large enough such that F, = an [eX](u/(=tx)") exists. Theo-
rem IV.1.1 in [2] implies that

(_1)h+r—1(k_h)!J % )
o = * -
Ovi o Tn (Fr) eXpV(_k)( (k+71)! 1+pnsz Expny (W) ) (5.13)
by using [2, the formula in II.2.1], we get
(tx)k

exXpy (k) (LWW X_kEXph,V(H)> = (=Dt tp LMV G Tt 614

and the theorem follows from the condition ® (u) = p. |

The significance of these two theorems is that for k > 1, (exp‘*,H())‘1 gives rise to
an analytic family of cohomology. Theorems 5.4 and 5.6 are called explicit reciprocity
law.

To get the symmetric form of the explicit reciprocity law, one defines the following
pairing:

['; ']D(V) :gbtemp(QpaD(V))q):l X@temp(Qp:D(V*(l)))(b:l - gbtemp(Z;,(Qy) (5-15)

as
fo(x)[u,u’]mw =H SfxTy)pew'. (5.16)
7y Ly XLy

The pairing in the cohomology side is defined as

(v : HY (Qp, Dremp (2, V) x H (Qp, Dremp (25, V* (1))
— H?*(Qp, Dremp (Zy X Z;,V@V*(1)))
=~ Bremp (2, H* (Z,,Qp(1)))
= Dromp (25, Qp).

(5.17)
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From Theorems 5.4 and 5.6, we have the following theorem.

THEOREM 5.7 (Perrin-Riou and Colmez). Assume thatV is crystalline representation
of Ga,» M € Dremp (Qp, D (V))*=L, U’ € Dremp (Qp, D(V*(1)))*=1, then

(Expp.y (1), EXpy _pyy (') = (=D [S_1kp, 1 T, (5.18)

where 61 is defined by
| peosimu= | pexm (5.19)
Qp Qp

Perrin-Riou proved this theorem for V = Q, (1) and Colmez proved it for general crys-
talline representation.

Moreover, as Iwasawa modules, those pairings have the following properties.

PROPOSITION 5.8. (i) For 4 € Diemp(Qp, D (V))*=! and p' € Diemp (Qp, D (V*(1)))271,
the integral

Jxxi[u,u']vaU X'y, xiu’] , (5.20)
73 z D(V)

X X
p Zp

where the last pairing is defined in Section 3.
(ii) For & € HY(Qp, Dremp (Z,V)) and & € H (Qp, Dremp (Z5,V*(1))), the integral

J xi(&&’)ﬁj xlEUJ x'E, (5.21)
zp zp zp
where the cup product is given by

H'(Q,, V(i) UHY(Qp,V*(1-1)) — H*(Qp,Qp (1)) = Qp. (5.22)

(iii) [+, -Ip(v) is sesquilinear for the first variable and linear for the second variable,
that is,

[5*U:U,]D(v) =6V [U,U’]D(v);

, ] (5.23)
[[J,(S*u ]D(V) =0%* [uau ]D(V)'

(iv) (-, -)v is linear for the first variable and sesquilinear for the second variable, that
is,

(6*§!§,)V = 6* (E!gl)Vy

5.24
(E.6%E), = 67 % (EE),. 24
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PROOF. (i) and (ii) are just from definitions, which can also be found in Colmez [2].
For (iii), we have

J xi[é*u,u’]vaU X’i(é*u),J xiu']
3 p2s z3 D(V)

p P

B [Jz; L; x_iy_ia(y)u(X)’ Jzﬁ Xiu,]D(V)

Jroolf ] o]
7y 7y Zp D(V)

= jzxxicw* (1 )

p

(5.25)

and (iv) is similar to (iii). O
6. Iwasawa’s explicit reciprocity law. Recall that K, = Q,(Cpn) and let D = (1 +
T)(d/dT).For B € @O,ﬁn, let gg(T) € Z,[[T]] denote the Coleman power series.

THEOREM 6.1 (Iwasawa). Let &y, fn € Ok, such that ¢, = 1(wy) and B, € K} sits
in a norm coherence sequence B = (Bn)n, let gg denote the Coleman power series corre-
sponding to 3, and define

(0t B = (™),

[&n,Bnl, =P " Trk, 0, (logx,Dlog gg(wy)) (modp™).

(6.1)

Then
(D(H!Bn)n = g;[qﬁn’ﬁn]n; (62)

where wy = Cyn — 1.

In the following, we will show that Perrin-Riou-Colmez explicit reciprocity law, The-
orem 5.2, implies Iwasawa’s explicit reciprocity law.

Recall that we have the Bloch-Kato exponential map expg, v : (Bar®V) Ckn — HY (K, V).

Let V = Q, (1) and let U, denote the principal units of Ok,. To an element of lim Uy,
we will associate an element in %; (Q,,D(V))®=!. To an element in lim K3y, we will as-
sociate an element in H! (Qp,D0(Z3,V)).

For B € lim Uy, define pg € Eb;lg(Zp,D(V)) as

| asmug=toggpmies, 6.3)
Zp t

and extend it to Q, by defining

J L fopg = p"J fp™"x)pp = qo’”J f(p™"x) up. (6.4)
pnZp Zp Zp
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Then
JQP fx)Ppp = cP(JQp f(pX)uB)

1
=—-I f(px)ug
r Jo, 6.5)
; .
—E'PJpr(X)UB

- Jan(X)uﬁ,

hence &g = ug. By Proposition 4.2, ug is 1-admissible. Note that Coleman power series
has the property gg, s, = gs, - gg,- SO we get a map

im Uy, — %1(Qp, D(Qp(1)))". (6.6)

On the other hand, for g € lim K7, B = (Bn), then B, gives yg, € H! (Kn,Zp (1)) defined
by Kummer map. By using Colmez’s theorem in Section 5, we get an element B(T) =
limypg, (1) € imH' (K, Z, (1)) = H' (Qp,%0(Z};,Z,(1))). Hence, we have a map
im Ky — H'(Qp, %0 (25,2, (1)),
B— B,
which has the property ﬁz = B\l + B\z

We can also state this map by using integral, namely, for 8 € limK;, B €EH(Qp, % (z3,
Z,(1))) is the element such that

J B = yﬁn’ J B = yo’a(ﬁn)' (68)
1+pnzy a+pnZy

Especially, for g € lim Uy, we have

g €91 (Qp,D(Qy(1))",  Be HY(Qp,B0(Z5,2,(1)). (6.9)

The element (p,1-C,,1 - Q,z,...) elim K7 gives an element inH! (Qp, D0(Z;,7,(1))),
we denote it by p. Fix a,b € Z§ such that a = b(modp), a # b. For example, we can
take a =1 and b = 1 + p. Then the element (...,(C,j“,,1 - 1)/(C£n -1),...) € liLnUn, hence
gives a distribution, which we denote by 5. Recall that 6, € 90(Z5,Z,) is defined to
be the Dirac measure

fo(x>6a = f(a). (6.10)
Zp

Let 6ap = 6a—0p € Do(Z;,Z,). The following lemma describes the relationship between
ug and B, pap and p.

LEMMA 6.2. (i) There is a homomorphism L : 1ir_nUn - @1(QP,D(QP(1)))‘I’:1, which
sends f to pg.
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(ii) There isa map & : lim K7 — HY(Qp,%0(Z,2,(1))), which sends B to B

(iii) For B € lim Uy, Exp, g, 1) (Hg) = B.
(iv) Fora,b € 7}, a = b(modp), a # b,

EXDP1,q, (1) (Hab) = 83, * P. 6.11)

PROOF. We have already proved (i) and (ii). For (iii), by Theorem 5.2,

" ax
Ex = ex (—J s(—) )
Lw% P1,a,1) (IJB) Pa, ) pr Ja, S\ pn Up

Q" IOggﬁ(Ua(wn)) >
pr t

= €XPq, 1) (

logo.(Bn (6.12)
= eXpr(l) (gf(ﬁ))

= yO’a(Bn)

- B
a+pnZy

(iv) Let B = (...,(le,‘n - 1)/(§£n —1),...). From (iii), we have EXP1,Q,,(1)(Hab) = B So we
only need to look at the relation between B and p. Let py = (..., C;‘n —1,...), then by (ii)
we have B = pa — pp.

The integral

[ bawp= [ ting, (080 (0P
1+pn2, 7

= J Lispnz, (@) p(y)
Zp

= J p(y) (6.13)
a+pnZy
- ap
1+p"Zp
- A
1+p"Zyp
hence p; = 6,1 x p. And we have B = (041 —0p-1) %P = 51&; * p. Hence, the lemma
follows. O

The relation Exp; g, (1) (Hab) = 6;; * p can make us extend Perrin-Riou exponential
map to some elements with denominator 6,5, and we can define

u .
EXP1,q,(1) (ﬁ) = p. (6.14)

This relation is significant in the sense that Bloch-Kato map expg,(;) cannot have y, as
the image, but Perrin-Riou map Exp; g, (1) can have p as the image. If we use Colmez’s
logarithm to explain this, this will correspond to Log(p) # 0, but log(p) = 0. Another
remark is that i, /04 does not depend on the choice of a, b subject to the condition
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a = bmod p. This can be seen as if we have ¢ = d mod p, then the Amice transformation
of Sap * Hea is given by [; (1+T)¥8ap * Hea = 10g(((1+T) = 1)((1+T)P4 —1)/((1 +
T)b¢ —1)((1+T)24 — 1)) which is the same as the Amice transformation of &cq * Hap.
Hence, 6ap * Hea = Oca * Hap. We denote this pseudomeasure pap/0ap by pp. For a
crystalline representation W such that there is a Galois inclusion Q, (1) C W, we have
the following theorem.

THEOREM 6.3. For W above, the map Exp, y (1) can be extended to the set including
Hp by using the inclusion H' (Qp,%0(Zy;,Qp(1))) = H'(Qp, Do (Z;,W)). For p € (up) &
Dremp(Qp, D(W))*=L, ' € D(Qp, D(W*(1)))*=1,

(EXpl,W(U)1EXp0,W*(1) (U,))w =—[6.1 *H:H,]D(W)- (6.15)

PROOF. We only need to show that for u = p,, this will follow from the definition,
the sesquilinear property of the exponential map, and the pairings

(Expyw (Hab ), EXPy+1)0 (M) = = [0 -1 Map, 1],
(830 * Expyy (Hp) ExPo s 1) (1)) = —[0-1 % Sap  pp, '], (6.16)
51}; * (EXpl,W (Nv),EXpo,W*(l) (W) = —5110 *[0_1 % pp, '],

since the convolution in %(Z},Q,) has cancellation law. This implies that

(Expyw (Mp) EXpo s 1y (M) = =[0-1 %k pp, 1" ]. (6.17)

(This can also be seen from that if 8,5 * u = 0, then [ ¥*5,4p * p = 0, hence [y*u =0,
hence yu=0.) |

Now, we use Perrin-Riou and Colmez explicit reciprocity law to prove Iwasawa’s ex-
plicit reciprocity law. Assume that &u,Bn € Ok, \ {0}, By sits in a norm coherence
sequence. Then B, = uy, - B, - w{l for u, a (p — 1)th root of unity, B, = 1(mod wy,),
Jj = 0. We know that the u,, will give (&, un)n =1 and oy,,, = 1. So we will consider the
case 3, = 1(mod w;,) and the case 8,, = w,, separately. For  with 8,, = 1(mod w,,), we
have g € 91(Qp, D(Qp(1)))*=1. Then (~tx)ug € D1 (Qp, Qp)*=1.

LEMMA 6.4. (i) For oy € Ok, \[0], exPk,,,Qp (1) (Jog(an)/t)®e) = Yuy-

(i) For all p € Diemp(Qp,D(Q,(1)))*~1, Expy g, (1) (1) = xExpy g, (—tXH)

(iii) If B has the property Bn = 1(mod wny), EXpo g, (—tXHp) = Blx.
(iv) The integral fzpe(x/p")xup =Cpn/wn.

PROOF. (i) Since (log[&]/t) ® e € By (1) is a lifting of (log(cxy)/t) ® e, by the
definition of exponential map and the Kummer class, we see (i). From [2] we know that

J x*Exp, g, 1) (M) = klexpg, (k1) (ﬂ(J K )>,
1+anp »p 14 pn Zp (,tx)k

J x L Expy g, (—txu) = klexpg <’<+“<ﬂ(J ; )>
1+anp Qp p p" Zp (7tx)k

then assertion (ii) follows.

(6.18)
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(iii) follows from (ii) and Lemma 6.2(iii).
(iv) Since pap = dap * Hp and this relation does not depend on the choices of a and
b,wecantakea=1+p", b =1,

R
7, \p" Hab = 7, \p" r 7, \p" r

:JZpS(X )((1+p )X Hp — X p) (6.19)
e

since pg,p corresponds to the power series ((1 + T)*P" —1)/T, hence

&

'G
:

sz E(%>X“ab =1+Dq +T)T+pn 14T ( : +:r);+v" - 1) T=con
=Cpn - %p (jn (6.20)
= v"%,
and this completes the proof of this lemma. |

Now, we come to the proof of Iwasawa’s explicit reciprocity law in two cases.

CASE 1. Assume that 8, = 1(mod w,,) sits in the norm coherence sequence f. Take
V=Q,(1),h=1,k=1,and u = pg € Diemp(Qp,D(V))*=!, and using Theorem 5.6, we

have
o ([ 0= 5] ) m). e

that is,
eXPcE,, (L ; 713) = 7D10ggﬂ(wn) (6.22)
+p"Zp

We already know that

log x
€XPqy, (1) ( gt = ®e> = Yon- (6.23)

From the definition of the Hilbert symbol, we have

((Xnv BTL) pr"‘” an (624)
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From the definition of the dual exponential map, we have

(Yot Y8n) = (yan,J

1+pnZy )

= [(Xn; ﬁn]
Hence Iwasawa’s explicit reciprocity law follows.

CASE 2. For B, = wny, gg(T) = T. Using the sesquilinear property of Expj, ,, we see

that
expy (J x‘lﬁ) e (J s(i>(tx)u ) (6.26)
@\ J1ipnz, pm \Jz, \pn Pp :
that is,
expg pl= LDlog(T)(wn) by Lemma 6.4(iv), (6.27)
Qp L+pnZ, pn
combined with
log x
€XPq, 1) ( gt - ®e> = Yons (6.28)

then Iwasawa’s explicit reciprocity law follows as in Case 1.

REMARK 6.5. Lemma 6.4(iv) can be interpreted as a completion of the theory of Cole-
man power series. Namely, u, is the distribution whose Amice transformation is log(T’)
in the sense that xu, corresponds to Dlog(T).

7. A trivial zero problem. Recall that Ky, = Q,(Cpn) and U = @Oﬁn. For B €U, we
have a 1-admissible distribution pg € %1 (Q,,Q,[—-1])®=!. Consider the integral

Yr(p) = sz xKug, (7.1)

v

then

Yr(B) = Ln xkug —J xKug

prip
:Jz Xk“ﬁ_JQ Loz, XCup
P p
_ k _ k
—J x*ug J Lpz,x"®up (7.2)
Zp Qp

= Lp xfug—@ < JQP 1pz, (pX) (px)kuﬁ>

= (lfv"’l)J x* pg.
Zp
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The Euler factor 1 —p*k~! forces /; = 0 at k = 1. Since 1 — p*~! is not an analytic function
of k, hence we cannot take the derivative directly. But yy is an analytic function of k,
then dyy/dk|x=1 must exist. Glenn Stevens predicted that the derivative of g at 1 will
give the Kummer class y,. Based on the previous sections, now we can prove that this

is true.
LEMMA 7.1. The integral fZ; Hap = (1-1/p)log(a/b).

PROOF. Since we have

| T = Togg(m),
Zp
with g(T) = ((1+T)*-1)/((1+T)? —1), hence g(0) = a/b, and
—~ 1 a
L; Hap =10gg(T)|1=0 = (17 ;)logg.

LEMMA 7.2. Assume that u € @temp(zz,Qp) such that fz; u =0, then

u 1

— =————'lim~— Su.
z; 6ap log(a/b) slilt}s z;<x) H

PROOF. Letv =pu/dqp and u = 4p %V,
[ eoru=] t0ssa ey
7} 7}
:j () Sap (P)V(X)
73
= (@ =) [ o,
73
hence

J v=Ilim| (x)‘v
Zy s=0Jzp

. 1 .
= (b Jz; X u
1

R S | s
"~ log(a/b) 15111(}5 Jz; .

Let ky : U — HY(Qp,Q, (1 -7)) be given by ky(B) = fz; xTR.

LEMMA 7.3. The following diagram is commutative for v > 1:

H! (Qp;@p(r)) x H! (prQp(l_V)) —Q

Hom (U, Q, (r))" x U

Qp.

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

|

(7.8)
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PROOE. For & € HY(Qyp, Z,(7)),B = (Bn)n € U, let &, =res(§) € H (Ky,Z, (7)) be
the restriction, & € H'(Kw,Z, (r)) = Homr (U, Z, (¥)), then

& (B) :liylgn(ﬁn)- (7.9)

Since

[ wri=[ fmodnm,
1+p"Zp 1+p"Zp

Zp(1-7) - Zy
p"Z, ~ p"Z,

(7.10)

as Gk, modules ,

from the definition of Hilbert symbol we have &,(B,) = (&, [, pnz, x " B )ymod p™.
From the following commutative diagram:

HY (Qp,Z, (1)) xH (Qp,Z,(1-7)) ——= 7

resl Tcores (7.11)
Hl(Kn,Z,,(T)) le(Kn,Zp(l —7)) ——=Zp,
we have
(6], 78) = (gores ([, x8)) = (rescer ] x5)
(7.12)
= (Enyj Xﬁr.é) =&n(Bn) (modp™),
1+pnzy
this implies
(E,Jpx*ﬁ) ~limE, (Bn), (7.13)
P
which is & (B); this completes the proof. |

THEOREM 7.4. The derivative dyy/dklx-1 = —-(1—p~1) " ly,.

PROOE. This is equivalent to showing that dyy(B)/dklx-1 = —(1—-p~H) "Ly, (B), for
all g €.

Let p = Uap/Oap € D1(Zy,D(Qp(1))) and ' = (—txug) € D1 (Z3;,Q,), for all B € .
By Theorem 6.3 and Lemma 6.4(iii), we have

[UaH,]D(Qr,(l)) :_(ﬁ,xflﬁ)@p(l)- (7.14)

Taking the integral, we get

_JX[UyU,]D(Qp(l)) :Jx(ﬁsx_lﬁ)(@p(l)- (7.15)
Ly Zy
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By Lemmas 7.1 and 7.2, the left-hand side of (7.15) is

—JZ; [, 1@y 1) = —L

|:6ab1u

X
4

1 1 o
- )10g<5>'10g(a*1/b*1)'PE%EI z;<x>( XHp)

( 1
14
:—(1—l)hm1- (x)*-xpug
14 2
( 1
14

s—-0 S
d
—— (1= ) B
(7.16)
By Lemma 6.4, the right-hand side of (7.15) is
(px'P) = (J Xf),J Xx’lﬁ)
7 7y zy Qp (1)
= (YpaKl (B))Qp(l) (7.17)
=yp(B),
hence we have the formula
Ay __<1_l)_1 (7.18)
ak ey~ v Vp- .
This completes the proof of the theorem. |
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