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1. Introduction. In this paper we always fix an odd prime p > 2. For n ≥ 1, fix a

pnth primitive root of unity ζpn such that ζppn+1 = ζpn . Let Kn = Qp(ζpn) and � =
lim←����������������������������������� O

×
Kn . For β∈�, we will define a 1-admissible distribution µβ ∈�1(Qp,Qp[−1])Φ=1

(see Section 3). Consider the integral

ψk(β)=
∫
Z×p
xkµβ, (1.1)

then we have ψk(β) = (1−pk−1) · ∫Zp xkµβ, so it will have a trivial zero at k = 1. Since

1−pk−1 is not an analytic function of k, hence we cannot take the derivative directly.

But ψk is an analytic function of k, so the derivative exists. This phenomenon in which

the zero is forced by Euler factor is called trivial zero problem. Ferrero and Greenberg

[4] considered the trivial zero problem for the first time in 1978 and found that the

derivative has deep arithmetic meaning. The behavior of the derivative of some Kubota-

Leopoldt p-adic L-function with trivial zero has a deep relation with some arithmetic

Iwasawa module (see [6]). The second such trivial zero phenomenon was found by

Mazur et al. in [8], and then they conjectured that the derivative has a relation with L-

invariant. This conjecture was proved by Greenberg and Stevens in 1993 (see [7]). The

function ψk is very close to Coates-Wiles kth derivative (see Section 7); actually, it only

differs by the factor (1−pk−1), and was called Coates-Wiles homomorphism in de Shalit

[3]. The question to find the derivative at k= 1 ofψk was proposed by Glenn Stevens in

1997. Simultaneously, we also tried to understand how the Bloch-Kato exponential map

expQp(1) can miss the Kummer class γp . Glenn Stevens predicted that the derivative of

ψk at 1 will give the Kummer class γp . We will prove this in this paper.

Let Cp denote the completion of Q̄p . For a field K ⊂ Cp , let OK denote the ring of

integers. Choose Iwasawa’s log : C×p → Cp such that log(p) = 0. In Section 2, we will

review Fontaine’s rings briefly and describe Bloch-Kato exponential map. In Section 3,

we will define distributions and explain cohomology groups as Iwasawa module. In

Section 4, we will introduce algebraic Fourier transformation and use Coleman power

series to give some special distributions. In Section 5, we will review Perrin-Riou and

Colmez theorems. In Section 6, we will show that Iwasawa’s explicit reciprocity law
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is actually a special case of Perrin-Riou’s theorem. In Section 7, we use the theory we

developed so far to prove our theorem.

2. Fontaine’s rings and Bloch-Kato exponential map. Let Ō =OCp/pOCp . Let � de-

note the projective limit of the diagram

Ō←� Ō←� Ō←� ··· , (2.1)

where the transition maps are given by x→ xp . The ring � is a perfect ring with charac-

teristic p > 0 (see [5]). For x ∈�, x = (xn)n∈N satisfies xn ∈ Ō, and xpn+1 = xn. For each

n, choose x̃n ∈OCp to be a representative of xn. Then one can show that for each m,

limn→∞ x̃
pn
n+m exists and the limit x(m) does not depend on the choices of the represen-

tatives. Hence, x gives rise to a sequence (x(m))m∈N in OCp such that (x(m+1))p = x(m).
On the other hand, if we have a sequence (x(m))m∈N in OCp such that (x(m+1))p = x(m),
then (x̄(m))m∈N is an element in �. Hence, � is in one-to-one correspondence with the

set

{(
x(m)

)
m∈N | ∀m∈N, x(m) ∈OCp ,

(
x(m+1))p = x(m)}. (2.2)

Define a function v� : �→Q∪{∞} by

v�

((
x(m)

)
m∈N

)
:= v(x(0)), (2.3)

where v is the valuation of Cp such that v(p)= 1. The ring � is complete with respect

to v�.

Let W(�) denote the Witt vector ring of �. Recall that the underlying set of W(�)
is the set �N = {(x0,x1, . . .) | xi ∈ �}. The ring structure is given in terms of Witt

polynomials (see [10]). Since Ō is an F̄p-algebra, W(�) is a W(F̄p)-algebra. For x ∈ �,

let

[x] := (x,0,0, . . .)∈W(�) (2.4)

denote the Teichmüller representative of x. For (x0,x1, . . . ,xn, . . .)∈W(�), we have the

identity

(
x0,x1, . . . ,xn, . . .

)= [x0
]+p[x1

]p−1+···+pn[xn]p−n+··· , (2.5)

where for x ∈�, [x]p−1
is the unique element w of W(�) such that wp = [x].

Let

θ :W(�) �→OCp (2.6)

be defined by

θ
(
x0,x1, . . .

)= ∞∑
n=0

pnx(n)n . (2.7)
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Then it is easy to see that θ is a Zp-homomorphism and it is surjective. The Frobenius on

� induces a continuous Frobenius map on W(�) with respect to the product topology,

we denote it by ϕ, which sends (x0,x1, . . . ,xn, . . .) to (xp0 ,x
p
1 , . . . ,x

p
n, . . .). The map ϕ is

an isomorphism, semilinear over W(F̄p). The ring W(�) can also be endowed with p-

adic topology and I-adic topology. Let ε = (1,ζp,ζp2 , . . .)∈�. The element [ε]∈W(�)
has the property θ([ε]) = 1. The element ϕ−1([ε])= [(ζp,ζp2 , . . .),0,0, . . .]. Let u =
([ε]−1)/(ϕ−1[ε]−1). The kernel of θ is a principal ideal of W(�), which is generated

by u [5].

We will use B+dR, BdR, Acrys,B+crys, Bcrys, Amax, and Bmax from Colmez [2].

Lemma 2.1. The following sequences are exact:

0 �→Qp �→ Bϕ=1
max

Fil<0

������������������������������������������������������������������������������������������������������→ BdR/B+dR �→ 0, (2.8)

0 �→Qp �→ Fil0Bmax
ϕ−1
��������������������������������������������������������������������������������������������������→ Bmax �→ 0, (2.9)

where ϕ is the Frobenius of BdR which is induced by the one from �.

Proof. See Colmez [2, Appendix A].

For a continuous GQp -representation V , finite-dimensional Qp-vector space, define

Dcrys(V) := (Bcrys⊗V)GQp ,DdR(V) := (BdR⊗V)GQp . ThenDcrys(V) is a finite-dimensional

Qp-vector space, with a Frobenius action (acts on V trivially) [5]. The operator DdR has

a filtration given by Fili(DdR(V)) = (BidR⊗V)GQp . The dimensions have the following

relation:

dimQp

(
Dcrys(V)

)≤ dimQp

(
DdR(V)

)≤ dimQp (V). (2.10)

If dimQp (DdR(V)) = dimQp (V), then V is called a de Rham representation. If

dimQp (Dcrys(V)) = dimQp (V), then V is called a crystalline representation. Note that

a crystalline representation must be a de Rham representation. In the following, all

representations are assumed to be de Rham representations. Similarly, we can also de-

fine Dmax(V) := (Bmax⊗V)GQp ; Colmez proved that this is the same as Dcrys(V). For a

crystalline representation V , let D(V)=Dcrys(V).
For a de Rham representation V , taking tensor product with the exact sequence (2.8),

we have the following exact sequence:

0 �→ V �→ Bϕ=1
max ⊗V �→ BdR/B+dR⊗V �→ 0; (2.11)

taking the Galois cohomology, we have a map(
BdR/B+dR⊗V

)GQp �→H1(Qp,V). (2.12)

Then the Bloch-Kato exponential map

expV :
(
BdR⊗V

)GQp �→H1(Qp,V) (2.13)

is defined as the composition(
BdR⊗V

)GQp �→ (
BdR/B+dR⊗V

)GQp �→H1(Qp,V). (2.14)
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The kernel of this map is Fil0DdR(V)+Dcrys(V)ϕ=1, and the image is He(Qp,V) :=
ker{H1(Qp,V)→H1(Qp,B

ϕ=1
crys ⊗V)}.

For a Galois representation V , let V(k) denote the kth cyclotomic twist of V . That is,

let χ denote the cyclotomic character, ζσpn = ζχ(σ)pn for all n≥ 1, V(k) := V(χk).
Consider the example V = Qp(1) = Qp · e; in this case, DdR(V) = Qp · (e/t) is a

one-dimensional vector space, where t = log([ε]). The isomorphism H1(Qp,Qp(1)) �
Q̂×p ⊗Qp is given by the Kummer map. To be more precise, it is generated by γ1+p , γp ,

where, for α∈Q×p ,

γα : τ �→ logε

(
. . . ,
τ
(
α1/pn)
α1/pn , . . .

)
⊗e (2.15)

is the Kummer class. Hence, we have H1(Qp,Qp(1)) � Q2
p , then the exponential map

for Qp is

expQp(1) :DdR
(
Qp(1)

)
�→H1(Qp,Qp(1)). (2.16)

Lemma 2.2. It follows that

expQp(1)

(
e
t

)
= γ1+p

log(1+p) . (2.17)

Proof. In the exact sequence

0 �→Qp �→ Bϕ=1
max �→ BdR/B+dR �→ 0, (2.18)

log[1̃+p]/t · log(1+p)maps to 1/t, so (log[1̃+p]/t · log(1+p))⊗emaps to (1/t)⊗e∈
DdR(Qp(1)), hence the class expQp(1)(e/t) is represented by

τ �→ (τ−1)·
(

log
[
1̃+p]

t · log(1+p) ⊗e
)

= 1
t log(1+p)

(
log

([(
. . . ,τ

(
(1+p)1/pn), . . .), . . .])

− log
([(
. . . ,(1+p)1/pn , . . .), . . .]))⊗e

= 1
t log(1+p)

(
log

([(
. . . ,
τ
(
(1+p)1/pn)
(1+p)1/pn , . . .

)
, . . .

]))
= 1
t log(1+p)

(
log

[
εγ1+p(τ)])

= γ1+p(τ)
log(1+p) .

(2.19)

For k > 1, it is easy to see that dimQp DdR(Qp(k)) = dimQp H1(Qp,Qp(k)) = 1 and

expQp(k) is an isomorphism. In some sense, γp and γ1+p should have the same positions

in H1(Qp,Qp(1)). Note that for k= 1, the left-hand side has dimension 1 and the right-

hand side has dimension 2, so the image is a one-dimensional vector space, and γp is

not in the image. In this paper, we will show that the “derivative of Bloch-Kato map” is

essentially γp . To be a little bit more precise, we need the following definitions.
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Let � = Homcont(Z×p,C×p) which is identical to B(µp−1,1) and there is an obvious in-

clusion Z⊂�.

Definition 2.3. Given � ⊂ �, a rigid analytic subspace over Qp , an analytic family

of Galois representations over � is a pair (V ,ρ), where (1) V is a de Rham representation

of GQp , (2) ρ : �×GQp → GlQp (V) is continuous in σ and is analytic in k.

Definition 2.4. Let (V ,ρ) over � be a family of Galois representations of GQp and

let Vk denote the Galois representation of GQp such that the underlying space is V and

the action is given by

σ ◦v = ρk(σ)
(
σ(v)

)
. (2.20)

A family of classes ξk ∈H1(Qp,Vk) is said to be an analytic family if there is a cocycle

representation σ → ξk(σ) such that for all σ ∈GQp , ξk(σ) is an analytic function of k.

Now, we can go back to answer the question on γp . In Section 7, we will show that

ψk = ((1−p1−k)/(1−p−k))(k−1)!expVk(1k) is an analytic family of cohomology classes

in H1(Qp,Qp(k)) and (d/dk)(ψk)|k=1 =−(1−p−1)−1γp . In other words, γp appears in

the first coefficient of the “Taylor expansion” of Bloch-Kato exponential map.

3. Distributions and Iwasawa module. Let I ⊂ Z be a subset and let LPI = {xk ·
1a+pnZp |k ∈ I, a ∈ Qp}. An algebraic I-distribution with values in M is a finitely ad-

ditive function µ : LPI → M . Let �Ialg(Qp,M) denote all the algebraic I-distributions

with values in M . For X ⊂Qp , a compact open subset, let LPI(X) = {xk ·1(a+pnZp)∩X},
then �Ialg(X,M) is defined with respect to these test functions. Especially, we have

�Ialg(Z×p,M), �Ialg(Zp,M). Let �+alg(Qp,M) (resp., �−alg(Qp,M)) denote the case I = N
(resp., I =−N). Note that when we say N we always mean N= {0,1,2, . . .}.

Let LA = {locally analytic compactly supported functions in Qp with values in Qp}.
Let LA′ = {f : Qp \ {0} → Qp|f is locally analytic and compact supported such that

thereexists N ∈N, xNf ∈ LA}. LA and LA′ have Morita topology.

We let An(X) denote the Qp-affinoid algebra of B[X,p−n]. In particular, An(X) is a

Banach algebra under the Gauss norm. For a p-adic Banach space A, let �cont(Qp,A) :=
{µ : LA→A|µ is linear and continuous with respect to Morita topology}. Note that µ is

continuous if and only if it is continuous when restricted on each �n(X),n∈ Z, X open.

Definition 3.1. (a) Let µ ∈ �cont(Y ,A). For each n ∈ Z and every compact open

subset X of Y , define ‖µ‖�n(X) to be the norm of the continuous linear function µ :

�n(X)→A obtained by restricting µ to �n(X).
(b) Similarly, if µ ∈ �Ialg(Y ,A), then for each n ∈ Z and every compact open subset

X of Y , define ‖µ‖LPIn(X) to be the norm of the continuous linear function µ : LPI(X)∩
�n(X) → A obtained by restricting µ to LPI(X)∩�n(X). If X ⊂ Qp is compact, then

actually

‖µ‖�n(X) = sup
a∈X, j≥0

∥∥∥∥∫
a+pnZp

(
x−a
pn

)j
µ
∥∥∥∥. (3.1)
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Definition 3.2. For r ∈ R̄+, µ ∈ �cont(Qp,A) is said to be tempered of order r if

for every compact open subset X ⊂Qp , p−[nr]‖µ‖�n(X) is r -bounded. Let �r (Qp,A)⊂
�cont(Qp,A) denote the set of distributions of order r . For r1 < r2, �r1(Qp,A)
⊂�r2(Qp,A). Let �temp(Qp,A)=∪r≥0�r (Qp,A) denote all tempered distributions with

values in A. From the above remark we see that µ is r -bounded if and only if

p−[nr] sup
a∈X, j≥0

∥∥∥∥∫
a+pnZp

(
x−a
pn

)j
µ
∥∥∥∥ (3.2)

is r -bounded. A distribution with order r is also called an r -admissible distribution.

Lemma 3.3. For µ ∈�cont(Qp,A), µ has order r if and only if for all X compact open,

all x ∈X, 0≤ j ≤ r ,

p−[nr] sup
a∈X, 0≤j≤r

∥∥∥∥∫
a+pnZp

(
x−a
pn

)j
µ
∥∥∥∥ (3.3)

is r -bounded.

Proof. Since j > r , then p[n(j−r)]‖∫a+pnZp (x−a)j‖ tends to zero when n→∞.

If V is a crystalline representation of GQp , we have a twist map

�cont
(
Qp,D(V)

) Tw
���������������������������������������������������������������������������→�cont

(
Qp,D

(
V(−1)

))
(3.4)

which sends µ to (−tx)µ.

Lemma 3.4. The kernel ker(Tw)= δ0⊗D(V), Tw is surjective.

Proof. Obviously, we have Tw(δ0⊗D(V))= 0. If µ ∈ ker(Tw), then supp(µ)= {0}.
Let µ1 = µ−(

∫
µ)δ0, then

∫
f(x)µ1 =

∫
f(x)µ−(∫ µ)·f(0)= f(0)·(∫ µ)−(∫ µ)·f(0)= 0,

hence µ = (∫ µ)⊗δ0.

For the surjectivity, given ν ∈�cont(Qp,D(V(−1))), defineω∈�cont(Qp,D(V)) such

that ∫
fω= (−t−1)∫ f −f(0)·1Zp

x
ν, (3.5)

then
∫
f(x)(−tx)ω= ∫ fν , hence (−tx)ω= ν .

For µ ∈�Ialg(Qp,A), define an operator ϕ� as∫
Qp
f (x)ϕ�µ :=

∫
Qp
f (px)µ. (3.6)

If A is a Dieudonne module, then ϕ can act on it, hence both ϕ and ϕ� can act on

�Ialg(Qp,A). Then we define Φ =ϕ�⊗ϕ.

Lemma 3.5. The twist map Tw induces a map

�cont
(
Qp,D(V)

)Φ=1
�→�cont

(
Qp,D

(
V(−1)

))Φ=1
(3.7)
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with kernel = δ0⊗D(V)ϕ=1, image= {v ∈�cont(Qp,D(V(−1)))Φ=1 | ∫Z×p x−1ν = 0}, and

cokernel =D(V(−1))/(ϕ−p)D(V(−1))�D(V)/(ϕ−1)D(V).

Proof. Assume that δ0⊗d is in the kernel, Φ(δ0⊗d) = δ0⊗d. For all f , we have∫
fΦ(δ0⊗d)=

∫
fδ0⊗d= f(0)⊗d, that is,ϕ(f(0)⊗d)= f(0)⊗d, hence d∈D(V)ϕ=1.

Now, we calculate the image. If ν = Tw(µ)= (−tx)µ, then from the Colman-Colmez

exact sequence [2], we have
∫
Z×p x

−1ν = ∫Z×p (−t)µ = 0. On the other hand, if ν satisfies∫
Z×p x

−1ν = 0, ω maps to ν from Lemma 3.4, we need to show that Φ(ω) =ω. That is,

for all f ,
∫
f ·Φ(ω)= ∫ fω. The calculation shows that

∫
fΦ(ω)−

∫
fω

=ϕ
(∫
f(px)ω

)
−
∫
fω

=ϕ
(∫ f(px)−f(0)·1Zp

(−tx) ν
)
−
∫
fω

= (−t)−1
∫ f(x)−f(0)·1Zp (x/p)

x
ν−(−t)−1

∫ f(x)−f(0)·1Zp
x

ν

= (−t)−1
∫ 1Z×p ·f(0)

x
ν = 0.

(3.8)

The statement about cokernel follows immediately.

Define �̃temp(Qp,D(V)) := lim←����������������������������������� �temp(Qp,D(V))Φ=1, where the transition maps are

given by the above twist map.

Lemma 3.6. For µ ∈�cont(Z×p,A), µ has order r if and only if xµ has order r .

Proof. Assume that µ has order r with r ∈ R, then there is a constant C > 0

such that for all j ≥ 0, ‖∫a+pnZp (x−a)jµ‖ ≤ Cp[n(r−j)], hence ‖∫a+pnZp x(x−a)jµ‖ =
‖∫a+pnZp (x−a)j+1µ−p[n(r−j)] ∫a+pnZp a(x−a)jµ‖ ≤ Cp[n(r−j)]. If r ∉ R, then we take

that C = Cn tends to zero.

If µ has order r , by using the expansion
∫
a+pnZp (x−a)r (µ/x)=

∫
a+pnZp (x−a)r (1/(a+

(x−a)))µ=∫a+pnZp (x−a)r ·1/a·∑k≥0((x−a)/a)kµ, we see that ‖∫a+pnZp (x−a)r (µ/x)‖
≤ Cp[n(r−j)], this proves the lemma.

For µ ∈�cont(Zp,Cp), define the Amice transformation

�µ(T)=
∫
Zp
(1+T)xµ ∈ C[[T]]. (3.9)

Definition 3.7. A formal power series f(T) = ∑anTn ∈ Cp[[T]] is said to be of

order r if p[nr]an is r -bounded.

Lemma 3.8. A distribution µ ∈�cont(Zp,Cp) has order r if and only if �µ(T) has

order r .

Proof. See [1].
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4. Fourier transformation and Coleman power series. Recall that we fixed ζpn
which is a pnth root of unity. Let εn := (ζpn,ζpn+1 , . . .) ∈ �, note that εp

n
n = ε, [εn] ∈

W(�). For x ∈ Qp , x = p−n ·y with some n ∈ N and y ∈ Zp , define εx := εyn ∈ �.

Obviously, this is well defined, and we get an element [εx] ∈ W(�). For x ∈ Qp ,

exp(tx) = ∑+∞
k=0((tx)k/k!) converges. Define ε(x) := [εx]/exp(tx) for x ∈ Qp . Then

ε(x) has the following properties:

(i) if x ∈ p−nZ×p , with n≥ 0, then ε(x) is a pnth root of unity, ε(x)= 1 if and only

if x ∈ Zp . Moreover, ε(1/pn)= ζpn ;

(ii) it follows that

pn−1∑
x=0

ε
(
ax
pn

)
=
pn, if a≡ 0

(
modpn

)
,

0, otherwise for a∈ Zp \pnZp ;
(4.1)

(iii) for x,y ∈Q, ε(x+y)= ε(x)ε(y);
(iv) for a cyclotomic character χ, σ(ε(x))= ε(χ(σ)x).
If f is a locally constant function with compact support in Qp , define

�alg(f )(y) :=
∫
Qp
f (x)ε(xy)µHaar(x), (4.2)

where µHaar ∈ �naive(Qp,Qp) such that µHaar(a+pnZp) = 1/pn. Since f is locally con-

stant, this means that we can find an m such that on a+pmZp , f is constant, hence

the integral equals

∑
a

∫
a+pmZp

f (x)ε(xy)µHaar(x)= 1
pm

∑
amodpm

f(a)
∑

x∈a+pmZp
ε(xy). (4.3)

From property (ii) of ε(x), if y is outside of p−mZp , then this sum is zero, hence �alg(f )
is well defined and compactly supported. On the other hand, since f is compactly

supported, we can assume that f is supported on p−mZp for somem. Since ε(p−my) is

locally constant, this implies that �alg(f ) is locally constant. Extend the above definition

to test function {xk ·1a+pnZp , k≥ 0}, define

�alg(f ′)(y) := (−ty)�alg(f )(y). (4.4)

Proposition 4.1. The Fourier transformation �alg enjoys the following properties:

(i) �alg(f (x+a))(y)= ε(−ay)�alg(f )(y), for a∈Qp ,

(ii) �alg(ε(ax)f(x))(y)=�alg(f )(y+a),
(iii) �alg(f (cx))(y)= |c|−1�alg(f )(c−1y),
(iv) �alg(xk · 1a+pnZp )(y) = p−n · (k!/(−ty)k)ε(ay)1p−nZp (y) if k ≥ 0, n ∈ Z,

a∈Qp ,

(v) �alg ◦�alg(f )(y)= f(−y).
Proof. The properties follow easily from the definitions.

For h∈ Z, define the twist for �alg as

�(h)alg (f ) := (−ty)h−1�alg
(
xh−1f(x)

)
(y), (4.5)
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where f ∈ LP[1−h,+∞), then we have

�(h)alg

(
xk ·1a+pnZp

)
(y)= p−n (k+h−1)!

(−ty)k ε(ay)1p−nZp (y) (4.6)

for all k≥ 1−h, n∈ Z, a∈Qp .

Now, we define the algebraic Fourier transformation on distributions as follows. For

µ ∈�(−∞,h−1]
alg (Qp,D(V)), define �(h)alg (µ) such that∫

Qp
f (x)�(h)alg (µ) :=

∫
Qp

�(h)alg (f )µ. (4.7)

For α ∈ Z×p , let π = pα. Let fπ(x) ∈ Zp[[x]] be a Frobenius corresponding to π , so

fπ(x) ≡ πx(moddeg2) and fπ(x) ≡ xp(modp). Let F be the one-dimensional Lubin-

Tate formal group over Zp corresponding to fπ and let [+] denote the formal addition.

Let Wn
π := {x ∈ Cp | f (n)π (x)= 0}, Kn =Qp(Wn

π ), and K∞ = ∪n≥1Kn. Hence, K∞/Qp is a

totally ramified extension with Galois group Z×p . We call this tower the Lubin-Tate tower

corresponding to the formal group F. Let R = Zp[[T]] and �= lim←����������������������������������� O
×
Kn , where the map

is with respect to the norm map. Assume that β∈�, then Coleman’s theorem tells us

that there is a unique (Coleman) power series gβ ∈ Zp[[T]] such that

(i) gβ(ωi)= βi for all i≥ 1,

(ii) gϕβ ◦fπ(x)=
∏
w∈W1

π
gβ(x[+]w).

Assume that β ∈� such that βn ≡ 1(modωn). Then gβ(T) ≡ 1mod(p,T ), hence we

can define

l̃oggβ(T) := loggβ(T)− 1
p

∑
w∈W1

π

loggβ
(
T[+]w). (4.8)

The property (ii) of the Coleman power series implies that l̃oggβ(T) has integral coef-

ficients. Define an algebraic distribution µβ ∈�+alg(Zp,�Qurp ) such that∫
Zp
(1+T)xµβ(x)= loggβ ◦η(T). (4.9)

Proposition 4.2. (i) The restriction of µβ to Z×p µβ|Z×p is a measure and its Amice

transformation is l̃oggβ ◦η(T).
(ii) The distribution µβ|Z×p is a measure in �1(Qp,�Qurp )Φ=1 and has the following Galois

property:

σ
(∫

Qp
f (x)µβ

)
=
∫
Qp
f
(
ψ(σ)x

)
µβ ∀σ (4.10)

for all f(x) :Qp →Qp .

Proof. It is easy to see that∫
Z×p
(1+T)xµβ =

∫
Zp
(1+T)xµβ−

∫
pZp
(1+T)xµβ. (4.11)
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By property (ii),

gβ ◦fπ(X)=
∏
w∈W1

π

gβ
(
X[+]w); (4.12)

let X = η(T), then

gβ◦fπ
(
η(T)

)= ∏
ζ∈µp

gβ
(
η(T)[+]η(ζ−1)

)
=

∏
ζ∈µp

gβη
(
ζ(1+T)−1

)
.

(4.13)

By using fπ ◦η= ηϕ ◦[p], we see that

(
gβ◦η

)ϕ ◦[p]=∏
ζ

(
gβη

)(
ζ(1+T)−1

)
; (4.14)

taking logarithm, and using the definition for µβ, we have

ϕ
(∫

Zp

(
1+[p]T)xµβ)=∑

ζ

∫
Zp
ζx(1+T)xµβ = p

∫
pZp
(1+T)xµβ. (4.15)

Hence, ∫
Z×p
(1+T)xµβ = loggβη(T)− 1

p
ϕ
(
loggβ◦ηϕ ◦

(
[p]T

))
= loggβ ◦η− 1

p
loggβ◦fπ ◦η(T)

= l̃oggβ ◦η(T)

(4.16)

has integral coefficients, hence µβ|Z×p is a measure.

To prove the second property, since

η(T) :Gm �→�π , (4.17)

by comparing the values at Tn = ζpn−1, we can show that

σ
(
η(T)

)= η((1+T)ψ(σ)−1
) ∀σ ∈GQp . (4.18)

From this property, we see that

σ
(∫

Zp
(1+T)xµβ

)
= σ( loggβ◦η(T)

)
= loggβ ◦σ

(
η(T)

)
= loggβ ◦η

(
(1+T)ψ(σ)−1

)
=
∫
Zp
(1+T)ψ(σ)xµβ,

(4.19)
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so for general f , we have

σ
(∫

Zp
f (x)µβ

)
=
∫
Zp
f
(
ψ(σ)x

)
µβ; (4.20)

by extending µβ to Qp , we have for all f ,

σ
(∫

Qp
f (x)µβ

)
=
∫
Qp
f
(
ψ(σ)x

)
µβ. (4.21)

To show that µβ is 1-admissible, by definition and Lemma 3.3, we only need to show that

pn(1−j)
∫
a+pnZp (x−a)jµβ is r -bounded for j = 0,1. For j = 0, if a �= 0, then since µβ|Z×p

is a measure, the integral pn
∫
a+pnZp µβ is always bounded. If a = 0, then pn

∫
pnZp µβ =

ϕn(
∫
Zp µβ)=ϕn loggβ(0)= loggβ(0), hence, bounded.

For j=1, ifa �= 0, then
∫
a+pnZp xµβ is bounded. Ifa=0, then

∫
pnZp xµβ=ϕn(

∫
Zp xµβ)=

ϕn(Ω·g′β(0)/gβ(0))=αnΩ(g′β(0))/gβ(0)), hence, bounded.

5. Perrin-Riou and Colmez theorems. Let Kn =Qp(ζpn) and K∞ = ∪n≥1Kn. Let Γ =
Gal(K∞/Qp), χ : Γ � Z×p be the cyclotomic character. For x ∈ K∞ and n ∈ N, define

Tn(x) = (1/pm)TrKm/Kn(x) for m � 1. For a crystalline representation V , that is, a

finite-dimensional Qp-vector space such that GQp has a continuous action on it and

V is crystalline, let D(V) := Dcrys(V) denote the Dieudonne module of V . Then from

Colmez [2], Tn can be extended to BGK∞dR ⊗D(V). Then it is known that D(V) has a

Frobenius endomorphism and a filtration which we denote by FiliD(V). This filtration

is decreasing, separated, and exhausted. That is,

FiliD(V)⊇ Fili+1D(V), ∩i FiliD(V)= {0}, ∪i FiliD(V)=D(V). (5.1)

If F ∈ K∞((t))⊗D(V), F =
∑
k�−∞ tkdk with dk ∈ K∞ ⊗D(V), define δV(−k)(F) to be

tkdk. For I ⊂ Z, we have the algebraic distribution �Ialg(Qp,D(V)) from Section 3. For

h ∈ Z, we defined the algebraic Fourier transformation �(h)alg : �(−∞,h−1]
alg (Qp,D(V)) →

�[1−h,+∞)alg (Qp,BdR⊗V) as

∫
Qp
f (x)�(h)alg (µ) :=

∫
Qp

�(h)alg (f )µ, (5.2)

then Perrin-Riou and Colmez proved that the image is fixed by GQp , and the Perrin-Riou

exponential map Exph,V is defined as the composition of the following maps:

�(−∞,h−1]
alg

(
Qp,D(V)

)
�→�[1−h,+∞)alg

(
Qp,BdR⊗V

)GQp
�→�[1−h,+∞)alg (Z×p,BdR/B+dR⊗V)GQp

�→H1(Qp,�[1−h,+∞)alg

(
Z×p,V

))
,

(5.3)

where the last map is the connecting map of the following exact sequence:

0 �→�Ialg

(
Z×p,V

)
�→�Ialg

(
Z×p,B

ϕ=1
max ⊗V

)
�→�Ialg

(
Z×p,BdR/B+dR⊗V

)
�→ 0. (5.4)
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Recall that

�̃temp
(
Qp,D(V)

)= lim←����������������������������������� �temp
(
Qp,D

(
V(k)

))
, (5.5)

where the projective limit map is given by µ→ (−tx)µ. Then Perrin-Riou [9] first proved

the following theorem.

Theorem 5.1 (Perrin-Riou). Assume that V is a crystalline representation, h∈ Z such

that Fil−hD(V)=D(V). If µ ∈ �̃temp(Qp,D(V))Φ=1, then Exph,V (µ) restricted to K∞ is in

H1(K∞,�temp(Z×p,V)).

From Section 4, we know that for µβ ∈ �̃temp(Qp,D(Qp(1)))Φ=1, we could have that

�alg(µβ) is not tempered, so the miracle of this theorem is that Exph,V sends tempered

distribution to tempered distribution (not only algebraic distribution). Then Perrin-Riou

gets the following theorem.

Theorem 5.2 (Perrin-Riou). Assume that V is a crystalline representation, h∈ Z such

that Fil−hD(V)=D(V), for k≥ 1−h,∫
Z×p
xkExph,V (µ)= expV(k)

(
(1−ϕ)−1(1−p−1ϕ−1)((k+h−1)!

∫
Z×p

µ
(−tx)k

))
,∫

a+pnZp
xkExph,V (µ)= (k+h−1)!expV(k)

(
ϕ−n

pn

(∫
Zp
ε
(
ax
pn

)
µ

(−tx)k
))
,

for n≥ 1, a∈ Z×p.

(5.6)

The significance of this theorem is that for k∈ Zp , the left-hand side (hence the right-

hand side) gives an analytic family of cohomology classes in the sense of Section 3.

The ring �0(Z×p,Qp) has an action on both the distribution side �(−∞,1−h]alg (Qp,D(V))
and the cohomology side H1(Qp,�

[h−1,∞)
alg (Z×p,V)). That is, for λ ∈ �0(Z×p,Qp) and

µ ∈ �(−∞,1−h]alg (Qp,D(V)), ξ ∈ H1(Qp,�
[h−1,∞)
alg (Z×p,V)), then the action ∗ (which is es-

sentially induced by the map Z×p×Qp →Qp , (x,y)→ xy) is defined as∫
Qp
f (x)λ∗µ :=

∫
Qp

∫
Z×p
f (xy)λ(x)µ(y), (5.7)∫

Z×p
f (x)λ∗ξ :=

∫
Z×p

∫
Z×p
f (xy)λ(x)ξ(y). (5.8)

Lemma 5.3. (i) The action (5.7) commutes with the action Φ, hence induces an action

on �Ialg(Qp,D(V))Φ=1, and it sends tempered distributions to tempered distributions.

(ii) The action (5.8) commutes with the Galois action, hence it is well defined on

H1(Qp,�Ialg(Z×p,V)).
(iii) The map Exph,V is sesquilinear with respect to these actions, that is,

Exph,V (λ∗µ)= λ
√
∗Exph,V (µ), (5.9)

where
√

is induced by x→ x−1 and defined to be∫
Z×p
f (x)λ

√
=
∫
Z×p
f
(
x−1)λ(x). (5.10)
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Proof. These follow from the definitions.

For the “negative” power, Colmez proved the following theorem.

Theorem 5.4 (Colmez). Assume that V is a crystalline representation, h ∈ Z, k ≥ h,

then

exp∗V(−k)

(∫
Z×p
x−kExph,V (µ)

)
= (−1)h−1(1−p−1ϕ−1)∫

Z

(tx)k

(k−h)!µ. (5.11)

Remark 5.5. Colmez [2] proved Theorem 5.4, for k� 1; we will prove the statement

for k ≥ h in another paper [11]; this can also be found in [12]. From his proof, we can

get the following theorem.

Theorem 5.6. Assume that h∈ Z and µ ∈ �̃temp(Qp,D(V))Φ=1, for k≥ h,n≥ 1, then

exp∗V(−k)

(∫
1+pnZp

x−kExph,V (µ)
)
= (−1)h−1ϕ−n

pn

∫
Zp
ε
(
x
pn

)
(tx)k

(k−h)!µ. (5.12)

Proof. Choose r ∈N large enough such that Fr =
∫
Qp [ε

x](µ/(−tx)r ) exists. Theo-

rem IV.1.1 in [2] implies that

δV(−k) ◦Tn
(
Fr
)= exp∗V(−k)

(
(−1)h+r−1(k−h)!

(k+r)!
∫

1+pnZp
x−kExph,V (µ)

)
; (5.13)

by using [2, the formula in II.2.1], we get

exp∗V(−k)

(∫
1+pnZp

x−kExph,V (µ)
)
= (−1)h−1 ·p−n

∫
p−nZp

ε(x)
(tx)k

(k−h)!µ, (5.14)

and the theorem follows from the condition Φ(µ)= µ.

The significance of these two theorems is that for k� 1, (exp∗V(−k))−1 gives rise to

an analytic family of cohomology. Theorems 5.4 and 5.6 are called explicit reciprocity

law.

To get the symmetric form of the explicit reciprocity law, one defines the following

pairing:

[·,·]D(V) : �̃temp
(
Qp,D(V)

)Φ=1×�̃temp
(
Qp,D

(
V∗(1)

))Φ=1
�→�temp

(
Z×p,Qp

)
(5.15)

as ∫
Z×p
f (x)

[
µ,µ′

]
D(V) =

∫∫
Z×p×Z×p

f
(
x−1y

)
µ⊗µ′. (5.16)

The pairing in the cohomology side is defined as

(·,·)V :H1(Qp,�temp
(
Z×p,V

))×H1(Qp,�temp
(
Z×p,V∗(1)

))
�→H2(Qp,�temp

(
Z×p×Z×p,V ⊗V∗(1)

))
��temp

(
Z×p,H2(Zp,Qp(1)))

��temp
(
Z×p,Qp

)
.

(5.17)
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From Theorems 5.4 and 5.6, we have the following theorem.

Theorem 5.7 (Perrin-Riou and Colmez). Assume that V is crystalline representation

of GQp , µ ∈ �̃temp(Qp,D(V))Φ=1, µ′ ∈ �̃temp(Qp,D(V∗(1)))Φ=1, then

(
Exph,V (µ),Exp1−h,V∗(1)

(
µ′
))= (−1)h

[
δ−1∗µ,µ′

]
D(V), (5.18)

where δ−1 is defined by

∫
Qp
f (x)δ−1∗µ =

∫
Qp
f (−x)µ. (5.19)

Perrin-Riou proved this theorem for V =Qp(1) and Colmez proved it for general crys-

talline representation.

Moreover, as Iwasawa modules, those pairings have the following properties.

Proposition 5.8. (i) For µ ∈ �̃temp(Qp,D(V))Φ=1 and µ′ ∈ �̃temp(Qp,D(V∗(1)))Φ=1,

the integral

∫
Z×p
xi
[
µ,µ′

]
D(V) =

[∫
Z×p
x−iµ,

∫
Z×p
xiµ′

]
D(V)

, (5.20)

where the last pairing is defined in Section 3.

(ii) For ξ ∈H1(Qp,�temp(Z×p,V)) and ξ′ ∈H1(Qp,�temp(Z×p,V∗(1))), the integral

∫
Z×p
xi
(
ξ,ξ′

)
V =

∫
Z×p
xiξ∪

∫
Z×p
x−iξ′, (5.21)

where the cup product is given by

H1(Qp,V(i))∪H1(Qp,V∗(1−i)) �→H2(Qp,Qp(1))�Qp. (5.22)

(iii) [·,·]D(V) is sesquilinear for the first variable and linear for the second variable,

that is,

[
δ∗µ,µ′]D(V) = δ√∗[µ,µ′]D(V),[
µ,δ∗µ′]D(V) = δ∗[µ,µ′]D(V). (5.23)

(iv) (·,·)V is linear for the first variable and sesquilinear for the second variable, that

is,

(
δ∗ξ,ξ′)V = δ∗(ξ,ξ′)V ,(
ξ,δ∗ξ′)V = δ√∗(ξ,ξ′)V . (5.24)
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Proof. (i) and (ii) are just from definitions, which can also be found in Colmez [2].

For (iii), we have

∫
Z×p
xi
[
δ∗µ,µ′]D(V) = [∫

Z×p
x−i(δ∗µ),

∫
Z×p
xiµ′

]
D(V)

=
[∫

Z×p

∫
Z×p
x−iy−iδ(y)µ(x),

∫
Z×p
xiµ′

]
D(V)

=
∫
Z×p
y−iδ(y)

[∫
Z×p
x−iµ,

∫
Z×p
xiµ′

]
D(V)

=
∫
Z×p
xiδ

√
∗[µ,µ′]D(V),

(5.25)

and (iv) is similar to (iii).

6. Iwasawa’s explicit reciprocity law. Recall that Kn = Qp(ζpn) and let D = (1+
T)(d/dT). For β∈ lim←����������������������������������� O

×
Kn , let gβ(T)∈ Zp[[T]] denote the Coleman power series.

Theorem 6.1 (Iwasawa). Let αn,βn ∈ OKn such that αn ≡ 1(ωn) and βn ∈ K×n sits

in a norm coherence sequence β= (βn)n, let gβ denote the Coleman power series corre-

sponding to β, and define

(
αn,βn

)
n =

(
α1/pn
n

)σβn−1
,[

αn,βn
]
n = p−nTrKn/Qp

(
logαnD loggβ

(
ωn

))(
modpn

)
.

(6.1)

Then

(
αn,βn

)
n = ζ[αn,βn]npn , (6.2)

where ωn = ζpn−1.

In the following, we will show that Perrin-Riou-Colmez explicit reciprocity law, The-

orem 5.2, implies Iwasawa’s explicit reciprocity law.

Recall that we have the Bloch-Kato exponential map expKn,V : (BdR⊗V)GKn →H1(Kn,V).
Let V =Qp(1) and let Un denote the principal units of OKn . To an element of lim←����������������������������������� Un,

we will associate an element in �̃1(Qp,D(V))Φ=1. To an element in lim←����������������������������������� K
×
n , we will as-

sociate an element in H1(Qp,�0(Z×p,V)).
For β∈ lim←����������������������������������� Un, define µβ ∈�+alg(Zp,D(V)) as

∫
Zp
(1+T)xµβ = loggβ(T)⊗ et , (6.3)

and extend it to Qp by defining

∫
p−nZp

f (x)µβ = pn
∫
Zp
f
(
p−nx

)
µβ =ϕ−n

∫
Zp
f
(
p−nx

)
µβ. (6.4)
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Then ∫
Qp
f (x)Φµβ =ϕ

(∫
Qp
f (px)µβ

)
= 1
p
·
∫
Qp
f (px)µβ

= 1
p
·p

∫
Qp
f (x)µβ

=
∫
Qp
f (x)µβ,

(6.5)

hence Φµβ = µβ. By Proposition 4.2, µβ is 1-admissible. Note that Coleman power series

has the property gβ1β2 = gβ1 ·gβ2 . So we get a map

lim←����������������������������������� Un �→�1
(
Qp,D

(
Qp(1)

))Φ=1. (6.6)

On the other hand, for β∈ lim←����������������������������������� K
×
n , β= (βn), then βn gives γβn ∈H1(Kn,Zp(1)) defined

by Kummer map. By using Colmez’s theorem in Section 5, we get an element β̂(τ) :=
lim←����������������������������������� γβn(τ)∈ lim←����������������������������������� H

1(Kn,Zp(1))�H1(Qp,�0(Z×p,Zp(1))). Hence, we have a map

lim←����������������������������������� K
×
n �→H1(Qp,�0

(
Z×p,Zp(1)

))
,

β �→ β̂, (6.7)

which has the property β̂1 ·β2 = β̂1+ β̂2.

We can also state this map by using integral, namely, forβ∈ lim←����������������������������������� K
×
n , β̂∈H1(Qp,�0(Z×p,

Zp(1))) is the element such that∫
1+pnZp

β̂= γβn,
∫
a+pnZp

β̂= γσa(βn). (6.8)

Especially, for β∈ lim←����������������������������������� Un, we have

µβ ∈�1
(
Qp,D

(
Qp(1)

))Φ=1, β̂∈H1(Qp,�0
(
Z×p,Zp(1)

))
. (6.9)

The element (p,1−ζp,1−ζp2 , . . .)∈ lim←����������������������������������� K
×
n gives an element inH1(Qp,�0(Z×p,Zp(1))),

we denote it by p̂. Fix a,b ∈ Z×p such that a ≡ b(modp), a �= b. For example, we can

take a= 1 and b = 1+p. Then the element (. . . ,(ζapn−1)/(ζbpn−1), . . .)∈ lim←����������������������������������� Un, hence

gives a distribution, which we denote by µab. Recall that δa ∈ �0(Z×p,Zp) is defined to

be the Dirac measure ∫
Z×p
f (x)δa = f(a). (6.10)

Let δab = δa−δb ∈�0(Z×p,Zp). The following lemma describes the relationship between

µβ and β̂, µab and p̂.

Lemma 6.2. (i) There is a homomorphism µ : lim←����������������������������������� Un → �1(Qp,D(Qp(1)))Φ=1, which

sends β to µβ.
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(ii) There is a map ξ : lim←����������������������������������� K
×
n →H1(Qp,�0(Z×p,Zp(1))), which sends β to β̂.

(iii) For β∈ lim←����������������������������������� Un, Exp1,Qp(1)(µβ)= β̂.

(iv) For a,b ∈ Z×p , a≡ b(modp), a �= b,

Exp1,Qp(1)
(
µab

)= δ√ab∗ p̂. (6.11)

Proof. We have already proved (i) and (ii). For (iii), by Theorem 5.2,∫
a+pnZp

Exp1,Qp(1)
(
µβ
)= expQp(1)

(
ϕ−n

pn

∫
Zp
ε
(
ax
pn

)
µβ
)

= expQp(1)

(
ϕ−n

pn
loggβ

(
σa
(
ωn

))
t

)
= expQp(1)

(
logσa

(
βn
)

t

)
= γσa(βn)
=
∫
a+pnZp

β̂.

(6.12)

(iv) Let β= (. . . ,(ζapn−1)/(ζbpn−1), . . .). From (iii), we have Exp1,Qp(1)(µab)= β̂. So we

only need to look at the relation between β̂ and p̂. Let pa = (. . . ,ζapn−1, . . .), then by (ii)

we have β̂= p̂a− p̂b.

The integral ∫
1+pnZp

δa−1∗ p̂ =
∫
Z×p

11+pnZp (xy)δa−1(x)p̂(y)

=
∫
Z×p

11+pnZp
(
a−1y

)
p̂(y)

=
∫
a+pnZp

p̂(y)

=
∫

1+pnZp
σ̂a(p)

=
∫

1+pnZp
p̂a,

(6.13)

hence p̂a = δa−1 ∗ p̂. And we have β̂ = (δa−1 −δb−1)∗ p̂ = δ
√
ab∗ p̂. Hence, the lemma

follows.

The relation Exp1,Qp(1)(µab) = δ
√
ab∗ p̂ can make us extend Perrin-Riou exponential

map to some elements with denominator δab and we can define

Exp1,Qp(1)

(
µab
δab

)
= p̂. (6.14)

This relation is significant in the sense that Bloch-Kato map expQp(1) cannot have γp as

the image, but Perrin-Riou map Exp1,Qp(1) can have p̂ as the image. If we use Colmez’s

logarithm to explain this, this will correspond to Log(p̂) �= 0, but log(p) = 0. Another

remark is that µab/δab does not depend on the choice of a, b subject to the condition
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a≡ bmodp. This can be seen as if we have c ≡ dmodp, then the Amice transformation

of δab∗µcd is given by
∫
Zp (1+T)xδab∗µcd = log(((1+T)ac −1)((1+T)bd−1)/((1+

T)bc −1)((1+T)ad−1)) which is the same as the Amice transformation of δcd∗µab.

Hence, δab ∗ µcd = δcd ∗ µab. We denote this pseudomeasure µab/δab by µp . For a

crystalline representation W such that there is a Galois inclusion Qp(1) ⊂W , we have

the following theorem.

Theorem 6.3. For W above, the map Exp1,V (µ) can be extended to the set including

µp by using the inclusion H1(Qp,�0(Z×p,Qp(1)))↩ H1(Qp,�0(Z×p,W)). For µ ∈ 〈µp〉⊕
�̃temp(Qp,D(W))Φ=1, µ′ ∈ �̃(Qp,D(W∗(1)))Φ=1,(

Exp1,W (µ),Exp0,W∗(1)
(
µ′
))
W =−

[
δ−1∗µ,µ′

]
D(W). (6.15)

Proof. We only need to show that for µ = µp , this will follow from the definition,

the sesquilinear property of the exponential map, and the pairings(
Exp1,W

(
µab

)
,ExpW∗(1),0

(
µ′
))=−[δ−1∗µab,µ′

]
,(

δ
√
ab∗Exp1,W

(
µp
)
,Exp0,W∗(1)

(
µ′
))=−[δ−1∗δab∗µp,µ′

]
,

δ
√
ab∗

(
Exp1,W

(
µp
)
,Exp0,W∗(1)

(
µ′
))=−δ√ab∗[δ−1∗µp,µ′

]
,

(6.16)

since the convolution in �0(Z×p,Qp) has cancellation law. This implies that(
Exp1,W

(
µp
)
,Exp0,W∗(1)

(
µ′
))=−[δ−1∗µp,µ′

]
. (6.17)

(This can also be seen from that if δab∗µ = 0, then
∫
ykδab∗µ = 0, hence

∫
ykµ = 0,

hence µ = 0.)

Now, we use Perrin-Riou and Colmez explicit reciprocity law to prove Iwasawa’s ex-

plicit reciprocity law. Assume that αn,βn ∈ OKn \ {0}, βn sits in a norm coherence

sequence. Then βn = un ·β′n ·ωjn for un a (p− 1)th root of unity, β′n ≡ 1(modωn),
j ≥ 0. We know that the un will give (αn,un)n = 1 and σun = 1. So we will consider the

case βn ≡ 1(modωn) and the case βn =ωn separately. For β with βn ≡ 1(modωn), we

have µβ ∈�1(Qp,D(Qp(1)))Φ=1. Then (−tx)µβ ∈�1(Qp,Qp)Φ=1.

Lemma 6.4. (i) For αn ∈OKn \[0], expKn,Qp(1)((log(αn)/t)⊗e)= γαn .

(ii) For all µ ∈ �̃temp(Qp,D(Qp(1)))Φ=1, Exp1,Qp (1)(µ)= xExp0,Qp (−txµ)
(iii) If β has the property βn ≡ 1(modωn), Exp0,Qp (−txµβ)= β̂/x.

(iv) The integral
∫
Zpε(x/p

n)xµp = ζpn/ωn.

Proof. (i) Since (log[α̃n]/t)⊗ e ∈ Bϕ=1
crys (1) is a lifting of (log(αn)/t)⊗ e, by the

definition of exponential map and the Kummer class, we see (i). From [2] we know that∫
1+pnZp

xkExp1,Qp(1)(µ)= k!expQp(k+1)

(
ϕ−n

pn

(∫
Zp

µ
(−tx)k

))
,∫

1+pnZp
xk+1 Exp0,Qp (−txµ)= k!expQp(k+1)

(
ϕ−n

pn

(∫
Zp

µ
(−tx)k

))
,

(6.18)

then assertion (ii) follows.
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(iii) follows from (ii) and Lemma 6.2(iii).

(iv) Since µab = δab∗µp and this relation does not depend on the choices of a and

b, we can take a= 1+pn, b = 1,

∫
Zp
ε
(
x
pn

)
xµab =

∫
Zp
ε
(
ax
pn

)
axµp−

∫
Zp
ε
(
bx
pn

)
bxµp

=
∫
Zp
ε
(
x
pn

)((
1+pn)xµp−xµp)

= pn
∫
Zp
ε
(
x
pn

)
xµp

(6.19)

since µab corresponds to the power series ((1+T)1+pn−1)/T , hence

∫
Zp
ε
(
x
pn

)
xµab = (1+T) T

(1+T)1+pn−1
d
dT

(
(1+T)1+pn−1

T

)∣∣∣∣
T=ωn

= ζpn ·ωnωnp
n · 1
ωn

= pn ζpn
ωn

,

(6.20)

and this completes the proof of this lemma.

Now, we come to the proof of Iwasawa’s explicit reciprocity law in two cases.

Case 1. Assume that βn ≡ 1(modωn) sits in the norm coherence sequence β. Take

V =Qp(1), h= 1, k= 1, and µ = µβ ∈ �̃temp(Qp,D(V))Φ=1, and using Theorem 5.6, we

have

exp∗Qp

(∫
1+pnZp

x−1β̂
)
= ϕ

−n

pn

(∫
Zp
ε
(
x
pn

)
(tx)µβ

)
, (6.21)

that is,

exp∗Qp

(∫
1+pnZp

x−1β̂
)
= 1
pn
D loggβ

(
ωn

)
. (6.22)

We already know that

expQp(1)

(
logαn
t

⊗e
)
= γαn. (6.23)

From the definition of the Hilbert symbol, we have

(
αn,βn

)= ζ(γαn ,γβn )pn . (6.24)
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From the definition of the dual exponential map, we have

(
γαn,γβn

)= (γαn,∫
1+pnZp

β̂
)

≡
(
γαn,

∫
1+pnZp

x−1β̂
)

= [αn,βn].
(6.25)

Hence Iwasawa’s explicit reciprocity law follows.

Case 2. For βn =ωn, gβ(T) = T . Using the sesquilinear property of Exph,V , we see

that

exp∗Qp

(∫
1+pnZp

x−1p̂
)
= ϕ

−n

pn

(∫
Zp
ε
(
x
pn

)
(tx)µp

)
, (6.26)

that is,

exp∗Qp

(∫
1+pnZp

p̂
)
= 1
pn
D log(T)

(
ωn

)
by Lemma 6.4(iv), (6.27)

combined with

expQp(1)

(
logαn
t

⊗e
)
= γαn, (6.28)

then Iwasawa’s explicit reciprocity law follows as in Case 1.

Remark 6.5. Lemma 6.4(iv) can be interpreted as a completion of the theory of Cole-

man power series. Namely, µp is the distribution whose Amice transformation is log(T)
in the sense that xµp corresponds to D log(T).

7. A trivial zero problem. Recall that Kn =Qp(ζpn) and �= lim←����������������������������������� O
×
Kn . For β∈�, we

have a 1-admissible distribution µβ ∈�1(Qp,Qp[−1])Φ=1. Consider the integral

ψk(β)=
∫
Z×p
xkµβ, (7.1)

then

ψk(β)=
∫
Zp
xkµβ−

∫
pZp
xkµβ

=
∫
Zp
xkµβ−

∫
Qp

1pZpx
kµβ

=
∫
Zp
xkµβ−

∫
Qp

1pZpx
kΦµβ

=
∫
Zp
xkµβ−ϕ

(∫
Qp

1pZp (px)(px)
kµβ

)
= (1−pk−1)∫

Zp
xkµβ.

(7.2)
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The Euler factor 1−pk−1 forcesψ1 = 0 at k= 1. Since 1−pk−1 is not an analytic function

of k, hence we cannot take the derivative directly. But ψk is an analytic function of k,

then dψk/dk|k=1 must exist. Glenn Stevens predicted that the derivative ofψk at 1 will

give the Kummer class γp . Based on the previous sections, now we can prove that this

is true.

Lemma 7.1. The integral
∫
Z×p µab = (1−1/p) log(a/b).

Proof. Since we have ∫
Z×p
(1+T)xµab = l̃ogg(T), (7.3)

with g(T)= ((1+T)a−1)/((1+T)b−1), hence g(0)= a/b, and∫
Z×p
µab = l̃ogg(T)|T=0 =

(
1− 1
p

)
log
a
b
. (7.4)

Lemma 7.2. Assume that µ ∈�temp(Z×p,Qp) such that
∫
Z×p µ = 0, then

∫
Z×p

µ
δab

= 1
log(a/b)

· lim
s→0

1
s

∫
Z×p
〈x〉sµ. (7.5)

Proof. Let ν = µ/δab and µ = δab∗ν ,∫
Z×p
〈x〉sµ =

∫
Z×p
〈x〉sδab∗ν

=
∫
Z×p
〈xy〉sδab(y)ν(x)

= (〈a〉s−〈b〉s)∫
Z×p
〈x〉sν,

(7.6)

hence ∫
Z×p
ν = lim

s→0

∫
Z×p
〈x〉sν

= lim
s→0

1
〈a〉s−〈b〉s

∫
Z×p
〈x〉sµ

= 1
log(a/b)

· lim
s→0

1
s

∫
Z×p
〈x〉sµ.

(7.7)

Let κr : �→H1(Qp,Qp(1−r)) be given by κr (β)=
∫
Z×p x

−r β̂.

Lemma 7.3. The following diagram is commutative for r ≥ 1:

H1
(
Qp,Qp(r)

)×H1
(
Qp,Qp(1−r)

)
κr

Qp

Hom
(
�,Qp(r)

)Γ ×� Qp.

(7.8)
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Proof. For ξ ∈ H1(Qp , Zp(r)),β = (βn)n ∈ �, let ξn = res(ξ) ∈ H1(Kn,Zp(r)) be

the restriction, ξ∞ ∈H1(K∞,Zp(r))�HomΓ (�,Zp(r)), then

ξ∞(β)= lim← ξn
(
βn
)
. (7.9)

Since ∫
1+pnZp

x−r β̂≡
∫

1+pnZp
β̂
(
modpn

)
,

Zp(1−r)
pnZp

� Zp
pnZp

as GKn modules ,
(7.10)

from the definition of Hilbert symbol we have ξn(βn)≡ (ξn,
∫
1+pnZp x

−r β̂)modpn.

From the following commutative diagram:

H1
(
Qp,Zp(r)

)×H1
(
Qp,Zp(1−r)

)
cores

Zp

H1
(
Kn,Zp(r)

)×H1
(
Kn,Zp(1−r)

)res

Zp,

(7.11)

we have(
ξ,
∫
Z×p
x−r β̂

)
=
(
ξ,cores

(∫
1+pnZp

x−r β̂
))
=
(

res(ξ),
∫

1+pnZp
x−r β̂

)

≡
(
ξn,

∫
1+pnZp

x−r β̂
)
≡ ξn

(
βn
)(

modpn
)
,

(7.12)

this implies (
ξ,
∫
Z×p
x−r β̂

)
= lim← ξn

(
βn
)
, (7.13)

which is ξ∞(β); this completes the proof.

Theorem 7.4. The derivative dψk/dk|k=1 =−(1−p−1)−1γp .

Proof. This is equivalent to showing that dψk(β)/dk|k=1 =−(1−p−1)−1γp(β), for

all β∈�.

Let µ = µab/δab ∈ �1(Zp,D(Qp(1))) and µ′ = (−txµβ) ∈ �1(Z×p,Qp), for all β ∈ �.

By Theorem 6.3 and Lemma 6.4(iii), we have

[
µ,µ′

]
D(Qp(1)) =−

(
p̂,x−1β̂

)
Qp(1). (7.14)

Taking the integral, we get

−
∫
Z×p

[
µ,µ′

]
D(Qp(1)) =

∫
Z×p

(
p̂,x−1β̂

)
Qp(1). (7.15)
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By Lemmas 7.1 and 7.2, the left-hand side of (7.15) is

−
∫
Z×p

[
µ,µ′

]
D(Qp(1)) =−

∫
Z×p

[
µab
δab

,µ′
]

=−
∫
Z×p

[
µab,

µ′

δ
√
ab

]

=−
∫
Z×p
µab ·

∫
Z×p

µ′

δ
√
ab

=−
(

1− 1
p

)
log

(
a
b

)
· 1

log
(
a−1/b−1

) · lim
s→0

1
s
·
∫
Z×p
〈x〉s(−xµβ)

=−
(

1− 1
p

)
lim
s→0

1
s
·
∫
Z×p
〈x〉s ·xµβ

=−
(

1− 1
p

)
dψk
dk

(β)|k=1.

(7.16)

By Lemma 6.4, the right-hand side of (7.15) is∫
Z×p

(
p̂,x−1β̂

)= (∫
Z×p
p̂,
∫
Z×p
x−1β̂

)
Qp(1)

= (γp,κ1(β)
)
Qp(1)

= γp(β),
(7.17)

hence we have the formula

dψk
dk

∣∣∣∣
k=1
=−

(
1− 1
p

)−1

γp. (7.18)

This completes the proof of the theorem.
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