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1. Introduction. As was shown in [8] (see also [9, 10]), under certain conditions,

the Carleman classes of vectors of a normal operator in a complex Hilbert space can be

characterized in terms of the operator’s spectral measure (the resolution of the identity).

The purpose of the present paper is to generalize this characterization to the case

of a scalar type spectral operator in a complex reflexive Banach space.

2. Preliminaries

2.1. The Carleman classes of vectors. Let A be a linear operator in a Banach space

X with norm ‖·‖, {mn}∞n=0 a sequence of positive numbers, and

C∞(A) def=
∞⋂
n=0

D
(
An

)
(2.1)

(D(·) is the domain of an operator).

The sets

C{mn}(A)
def= {

f ∈ C∞(A) | ∃α> 0, ∃c > 0 :
∥∥Anf∥∥≤ cαnmn, n= 0,1,2, . . .

}
,

C(mn)(A)
def= {

f ∈ C∞(A) | ∀α> 0 ∃c > 0 :
∥∥Anf∥∥≤ cαnmn, n= 0,1,2, . . .

} (2.2)

are called the Carleman classes of vectors of the operator A corresponding to the se-

quence {mn}∞n=0 of Roumie’s and Beurling’s types, respectively.

Obviously, the inclusion

C(mn)(A)⊆ C{mn}(A) (2.3)

holds.

For mn := [n!]β (or, due to Stirling’s formula, for mn := nβn), n = 0,1,2, . . . (0 ≤ β <
∞), we obtain the well-known βth-order Gevrey classes of vectors, �{β}(A) and �(β)(A),
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respectively. In particular, �{1}(A) are the analytic and �(1)(A) are the entire vectors of

the operator A [7, 17].

The sequence {mn}∞n=0 will be subject to the following condition.

(WGR) For any α> 0, there exist such a C = C(α) > 0 that

Cαn ≤mn, n= 0,1,2, . . . . (2.4)

Note that the name WGR originates from the words “weak growth.”

Under this condition, the numerical function

T(λ) :=m0

∞∑
n=0

λn

mn
, 0≤ λ <∞, (00 := 1

)
, (2.5)

first introduced by Mandelbrojt [15], is well defined.

This function is nonnegative, continuous, and increasing.

As established in [8] (see also [9, 10]), for a normal operator Awith a spectral measure

EA(·) in a complex Hilbert space H with inner product (·,·) and the sequence {mn}∞n=0

satisfying the condition (WGR),

C{mn}(A)=
⋃
t>0

D
(
T(t|A|)),

C(mn)(A)=
⋂
t>0

D
(
T(t|A|)), (2.6)

the normal operators T(t|A|) (0 < t < ∞) being defined in the sense of the spectral

operational calculus for a normal operator:

T(t|A|) :=
∫
σ(A)

T(t|λ|)dEA,

D
(
T(t|A|)) :=

{
f ∈H |

∫
σ(A)

T 2(t|λ|)(dEA(λ)f ,f )<∞
}
,

(2.7)

where the function T(·) can be replaced by any nonnegative, continuous, and increasing

function L(·) defined on [0,∞) such that

c1L
(
γ1λ

)≤ T(λ)≤ c2L
(
γ2λ

)
, λ > R, (2.8)

with some positive γ1, γ2, c1, c2, and a nonnegative R.

In particular, T(·) in (2.6) is replaceable by

S(λ) :=m0 sup
n≥0

λn

mn
, 0≤ λ <∞, (2.9)
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or

P(λ) :=m0

[ ∞∑
n=0

λ2n

m2
n

]1/2

, 0≤ λ <∞, (2.10)

(see [10]).

2.2. Carleman ultradifferentiability. Let I be an interval of the real axis, C∞(I) the

set of all complex-valued functions strongly infinite differentiable on I, and {mn}∞n=0 a

sequence of positive numbers.

C{mn}(I)
def=




{
f(·)∈ C∞(I) | ∀[a,b]⊆ I, ∃α> 0, ∃c > 0 :

maxa≤x≤b
∥∥f (n)(x)∥∥≤ cαnmn, n= 0,1,2, . . .

}
,{

f(·)∈ C∞(I) | ∀[a,b]⊆ I, ∀α> 0, ∃c > 0 :

maxa≤x≤b
∥∥f (n)(x)∥∥≤ cαnmn, n= 0,1,2, . . .

}
(2.11)

are the Carleman classes of ultradifferentiable functions of Roumie’s and Beurling’s

types, respectively, [1, 12, 13, 14].

In particular, for mn := [n!]β (or, due to Stirling’s formula, for mn := nβn), n =
0,1,2, . . . (0 ≤ β <∞), these are the well-known βth-order Gevrey classes, �{β}(I) and

�(β)(I), respectively, [6, 12, 13, 14].

Observe that �{1}(I) is the class of the real analytic on I functions and �(1)(I) is the

class of entire functions, that is, the restrictions to I of analytic and entire functions,

correspondingly, [15].

Note that condition (WGR), in particular, implies that limn→∞mn = ∞. Since, as is

easily seen, the Carleman classes of vectors and functions coincide for the sequence

{mn}∞n=1 and the sequence {dmn}∞n=1 for any d> 0, without loss of generality, we can

regard that

inf
n≥0

mn ≥ 1. (2.12)

2.3. Scalar type spectral operators. Henceforth, unless specified otherwise, A is a

scalar type spectral operator in a complex Banach space X with norm ‖·‖ and EA(·) is

its spectral measure (the resolution of the identity), the operator’s spectrum σ(A) being

the support for the latter [2, 5].

Note that, in a Hilbert space, the scalar type spectral operators are those similar to

the normal ones [21].

For such operators, there has been developed an operational calculus for Borel mea-

surable functions on C (on σ(A)) [2, 5], F(·) being such a function; a new scalar type

spectral operator

F(A)=
∫
C
F(λ)dEA(λ)=

∫
σ(A)

F(λ)dEA(λ) (2.13)
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is defined as follows:

F(A)f := lim
n→∞Fn(A)f , f ∈D(F(A)),

D
(
F(A)

)
:=

{
f ∈X | lim

n→∞Fn(A)f exists
} (2.14)

(D(·) is the domain of an operator), where

Fn(·) := F(·)χ{λ∈σ(A)||F(λ)|≤n}(·), n= 1,2, . . . , (2.15)

(χα(·) is the characteristic function of a set α), and

Fn(A) :=
∫
σ(A)

Fn(λ)dEA(λ), n= 1,2, . . . , (2.16)

being the integrals of bounded Borel measurable functions on σ(A), are bounded scalar

type spectral operators on X defined in the same manner as for normal operators (see,

e.g., [4, 19]).

The properties of the spectral measure, EA(·), and the operational calculus underlying

the entire subsequent argument are exhaustively delineated in [2, 5]. We just observe

here that, due to its strong countable additivity, the spectral measure EA(·) is bounded

[3], that is, there is an M > 0 such that, for any Borel set δ,

∥∥EA(δ)∥∥≤M. (2.17)

Observe that, in (2.17), the notation ‖·‖ was used to designate the norm in the space

of bounded linear operators on X. We will adhere to this rather common economy of

symbols in what follows adopting the same notation for the norm in the dual space X∗

as well.

Due to (2.17), for any f ∈ X and g∗ ∈ X∗ (X∗ is the dual space), the total variation

v(f ,g∗,·) of the complex-valued measure 〈EA(·)f ,g∗〉 (〈·,·〉 is the pairing between

the space X and its dual, X∗) is bounded. Indeed, δ being an arbitrary Borel subset of

σ(A), [3],

v
(
f ,g∗,σ(A)

)
≤ 4 sup

δ⊆σ(A)

∣∣〈EA(δ)f ,g∗〉∣∣≤ 4 sup
δ⊆σ(A)

∥∥EA(δ)∥∥‖f‖∥∥g∗∥∥ (by (2.17))

≤ 4M‖f‖∥∥g∗∥∥.
(2.18)

For the reader’s convenience, we reformulate here [16, Proposition 3.1], heavily relied

upon in what follows, which allows to characterize the domains of the Borel measurable
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functions of a scalar type spectral operator in terms of positive measures (see [16] for

a complete proof).

On account of compactness, the terms spectral measure and operational calculus

for scalar type spectral operators, frequently referred to, will be abbreviated to s.m.

and o.c., respectively.

Proposition 2.1. Let A be a scalar type spectral operator in a complex Banach

space X and F(·) a complex-valued Borel measurable function on C (on σ(A)). Then

f ∈D(F(A)) if and only if

(i) for any g∗ ∈X∗,

∫
σ(A)

|F(λ)|dv(f ,g∗,λ)<∞, (2.19)

(ii)

sup
{g∗∈X∗|‖g∗‖=1}

∫
{λ∈σ(A)||F(λ)|>n}

|F(λ)|dv(f ,g∗,λ) �→ 0 as n �→∞. (2.20)

Observe that, for F(·) being an arbitrary Borel measurable function on C (on σ(A)),
for any f ∈D(F(A)), g∗ ∈X∗, and arbitrary Borel sets δ⊆ σ,

∫
σ
|F(λ)|dv(f ,g∗,λ) (see [3])

≤ 4sup
δ⊆σ

∣∣∣∣
∫
δ
F(λ)d

〈
EA(λ)f ,g∗

〉∣∣∣∣
= 4sup

δ⊆σ

∣∣∣∣
∫
σ
χδ(λ)F(λ)d

〈
EA(λ)f ,g∗

〉∣∣∣∣ (by the properties of the o.c.)

= 4sup
δ⊆σ

∣∣∣∣
〈∫

σ
χδ(λ)F(λ)dEA(λ)f ,g∗

�∣∣∣∣ (by the properties of the o.c.)

= 4sup
δ⊆σ

∣∣〈EA(δ)EA(σ)F(A)f ,g∗〉∣∣
≤ 4sup

δ⊆σ

∥∥EA(δ)EA(σ)F(A)f∥∥∥∥g∗∥∥
≤ 4sup

δ⊆σ

∥∥EA(δ)∥∥∥∥EA(σ)F(A)f∥∥∥∥g∗∥∥ (by (2.17))

≤ 4M
∥∥EA(σ)F(A)f∥∥∥∥g∗∥∥≤ 4M

∥∥EA(σ)∥∥∥∥F(A)f∥∥∥∥g∗∥∥.
(2.21)

In particular,

∫
σ(A)

|F(λ)|dv(f ,g∗,λ) (by (2.21))

≤ 4M
∥∥EA(σ(A))∥∥∥∥F(A)f∥∥∥∥g∗∥∥

(since EA(σ(A))= I (I is the identity operator in X))

≤ 4M
∥∥F(A)f∥∥∥∥g∗∥∥.

(2.22)
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3. The Carleman classes of a scalar type spectral operator

Theorem 3.1. Let A be a scalar type spectral operator in a complex reflexive Banach

space X. If a sequence of positive numbers {mn}∞n=0 satisfies condition (WGR), equalities

(2.6) hold, the scalar type spectral operators T(t|A|) (0< t <∞) defined in the sense of

the operational calculus for a scalar type spectral operator and the function T(·) being

replaceable by any nonnegative, continuous, and increasing function L(·) defined on

[0,∞) such that

c1L
(
γ1λ

)≤ T(λ)≤ c2L
(
γ2λ

)
, λ > R, (3.1)

with some positive γ1, γ2, c1, c2, and a nonnegative R.

Proof. First, we prove the replaceability of T(·) in (2.6) by a nonnegative, contin-

uous, and increasing function satisfying (3.1) with some positive γ1, γ2, c1, c2, and a

nonnegative R ≥ 0.

Let

f ∈
⋃
t>0

T(t|A|)
(⋂
t>0

T(t|A|)
)
. (3.2)

Then, for some (any) 0 < t <∞, f ∈ D(T(t|A|)), which, according to Proposition 2.1,

implies, in particular, that, for any g∗ ∈X∗,

∫
σ(A)

T(t|λ|)dv(f ,g∗,λ)<∞. (3.3)

For any g∗ ∈X∗,

∫
σ(A)

L
(
γ1t|λ|

)
dv

(
f ,g∗,λ

)
<∞. (3.4)

Indeed,

∫
σ(A)

L
(
γ1t|λ|

)
dv

(
f ,g∗,λ

)

=
∫
{λ∈σ(A)|t|λ|≤R}

L
(
γ1t|λ|

)
dv

(
f ,g∗,λ

)+
∫
{λ∈σ(A)|t|λ|>R}

L
(
γ1t|λ|

)
dv

(
f ,g∗,λ

)

≤ L(γ1R
)
v
(
f ,g∗,σ(A)

)+
∫
{λ∈σ(A)|t|λ|>R}

L
(
γ1t|λ|

)
dv

(
f ,g∗,λ

)
(by (2.18))

≤ L(γ1R
)
4M‖f‖∥∥g∗∥∥+

∫
{λ∈σ(A)|t|λ|>R}

L
(
γ1t|λ|

)
dv

(
f ,g∗,λ

)
(by (3.1))

≤ L(γ1R
)
4M‖f‖∥∥g∗∥∥+ 1

c1

∫
{λ∈σ(A)|t|λ|>R}

F(t|λ|)dv(f ,g∗,λ)

≤ L(γ1R
)
4M‖f‖∥∥g∗∥∥+ 1

c1

∫
σ(A)

F(t|λ|)dv(f ,g∗,λ) (by (3.3))

<∞.
(3.5)
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Further,

sup
{g∗∈X∗|‖g∗‖=1}

∫
{λ∈σ(A)|t|λ|≤R, L(γ1t|λ|)>n}

L
(
γ1t|λ|

)
dv

(
f ,g∗,λ

)= 0 (3.6)

for all sufficiently large natural n’s since, when t|λ| ≤ R, L(γ1t|λ|)≤ L(γ1R).
On the other hand,

∫
{λ∈σ(A)|t|λ|>R, L(γ1t|λ|)>n}

L
(
γ1t|λ|

)
dv

(
f ,g∗,λ

)
(by (3.1))

≤ 1
c1

∫
{λ∈σ(A)|t|λ|>R, T(t|λ|)>c1n}

T(t|λ|)dv(f ,g∗,λ) (by (2.21))

≤ 1
c1

∥∥EA({λ∈ σ(A) | T(t|λ|) > c1n
})
T(t|A|)f∥∥∥∥g∗∥∥

(by the continuity of the s.m.)

�→ 0 as n �→∞.

(3.7)

Therefore, by Proposition 2.1, f ∈D(L(γ1t|A|)).
Thus, we have proved the inclusions

⋃
t>0

D
(
T(t|A|))⊆⋃

t>0

D
(
L(t|A|)),

⋂
t>0

D
(
T(t|A|))⊆⋂

t>0

D
(
L(t|A|)). (3.8)

Similarly, one can derive from (3.1) the inverse inclusions:

⋃
t>0

D
(
T(t|A|))⊇⋃

t>0

D
(
L(t|A|)),

⋂
t>0

D
(
T(t|A|))⊇⋂

t>0

D
(
L(t|A|)). (3.9)

Thus,

⋃
t>0

D
(
T(t|A|))=⋃

t>0

D
(
L(t|A|)),

⋂
t>0

D
(
T(t|A|))=⋂

t>0

D
(
L(t|A|)). (3.10)
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Let f ∈ C{mn}(A) (C(mn)(A)). Then f ∈ C∞(A) and, for a certain (an arbitrary) α > 0,

there is a c > 0 such that

∥∥Anf∥∥≤ cαnmn, n= 0,1,2, . . . . (3.11)

For any g∗ ∈X∗,

∫
σ(A)

T
(

1
2α
|λ|

)
dv

(
f ,g∗,λ

)=
∫
σ(A)

∞∑
n=0

|λ|n
2nαnmn

dv
(
f ,g∗,λ

)

(by the monotone convergence theorem)

=
∞∑
n=0

∫
σ(A)

|λ|n
2nαnmn

dv
(
f ,g∗,λ

)

=
∞∑
n=0

1
2nαnmn

∫
σ(A)

|λ|ndv(f ,g∗,λ) (by (2.22))

≤
∞∑
n=0

1
2nαnmn

4M
∥∥Anf∥∥∥∥g∗∥∥ (by (3.11))

≤ 4Mc
∞∑
n=0

1
2n

∥∥g∗∥∥= 8Mc
∥∥g∗∥∥<∞.

(3.12)

Let

∆n := {
λ∈ σ(A) | |λ| ≤n}, n= 0,1,2, . . . . (3.13)

By the properties of the o.c., T((1/2α)|A|)EA(∆n), n= 0,1,2, . . . , is a bounded operator

on X and

∥∥∥∥T
(

1
2α
|A|

)
EA

(
∆n

)∥∥∥∥≤ 4M
∞∑
k=0

nk

2kαkmk(
by condition (WGR), there is a C = C(α,n) > 0 :

nk

αkmk
≤ C, k= 0,1, . . .

)

≤ 4MC
∞∑
k=0

1
2k
= 8MC.

(3.14)
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For any 1≤m<n,

∣∣∣∣
〈
T
(

1
2α
|A|

)
EA

(
∆n

)
f −T

(
1

2α
|A|

)
EA

(
∆m

)
f ,g∗

�∣∣∣∣
(by the properties of the o.c.)∣∣∣∣

〈∫
{λ∈σ(A)|m<|λ|≤n}

T
(

1
2α
|λ|

)
dEA(λ)f ,g∗

�∣∣∣∣
(by the properties of the o.c.)

=
∣∣∣∣
∫
{λ∈σ(A)|m<|λ|≤n}

T
(

1
2α
|λ|

)
d
〈
EA(λ)f ,g∗

〉∣∣∣∣
≤
∫
{λ∈σ(A)|m<|λ|}

T
(

1
2α
|λ|

)
dv

(
f ,g∗,λ

)
(by (3.12))

�→ 0 as m �→∞.

(3.15)

Since a reflexive Banach space is weakly complete (see, e.g., [3]), we infer that the se-

quence {T((1/2α)|A|)EA(∆n)f}∞n=1 weakly converges in X. This, considering the fact

that, by the continuity of the s.m.,

EA
(
∆n

)
f �→ f as n �→∞ (3.16)

and the closedness of the operator T((1/2α)|A|), implies

f ∈D
(
T
(

1
2α
|A|

))
. (3.17)

Therefore,

f ∈
⋃
t>0

D
(
T(t|A|))

(⋂
t>0

D
(
T(t|A|)), resp.

)
, (3.18)

which proves the inclusions

C{mn}(A)⊆
⋃
t>0

D
(
T(t|A|)),

C(mn)(A)⊆
⋂
t>0

D
(
T(t|A|)). (3.19)

Now, we are to prove the inverse inclusions.
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Let

f ∈
⋃
t>0

D
(
T(t|A|))

(⋂
t>0

D
(
T(t|A|))

)
. (3.20)

Then, for a certain (any) t > 0, f ∈D(T(t|A|)).
We infer from the latter that f ∈ C∞(A).
Indeed, for an arbitrary N = 0,1,2, . . . and any g∗ ∈X∗,

∫
σ(A)

tN

mN
|λ|N dv(f ,g∗,λ)≤

∫
σ(A)

∞∑
k=0

[t|λ|]k
mk

dv
(
f ,g∗,λ

)

=
∫
σ(A)

T(t|λ|)dv(f ,g∗,λ)
(by Proposition 2.1),

<∞.

(3.21)

Further, for any N = 0,1,2, . . . ,

sup
{g∗∈X∗|‖g∗‖=1}

∫
{λ∈σ(A)|(tN/mN)|λ|N>n}

tN

mN
|λ|N dv(f ,g∗,λ)

≤ sup
{g∗∈X∗|‖g∗‖=1}

∫
{λ∈σ(A)|T(t|λ|)>n}

T(t|λ|)dv(f ,g∗,λ) (by Proposition 2.1),

�→ 0 as n �→∞.
(3.22)

By Proposition 2.1, (3.21) and (3.22) imply that

f ∈ C∞(A). (3.23)

Further, by (2.22),

sup
{g∗∈X∗|‖g∗‖=1}

∫
σ(A)

T(t|λ|)dv(f ,g∗,λ) (by (2.22))

≤ 4M
∥∥T(t|A|)f∥∥<∞.

(3.24)

By (2.22),

0< c := sup
{g∗∈X∗|‖g∗‖=1}

∫
σ(A)

T(t|λ|)dv(f ,g∗,λ)+1

≤ 4M
∥∥T(t|A|)f∥∥<∞.

(3.25)
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Whence, for any n= 0,1,2, . . . ,

c ≥ sup
{g∗∈X∗|‖g∗‖=1}

∫
σ(A)

tn

mn
|λ|ndv(f ,g∗,λ)

≥ tn

mn
sup

{g∗∈X∗|‖g∗‖=1}

∣∣∣∣
∫
σ(A)

λnd
〈
EA(λ)f ,g∗

〉∣∣∣∣
(by the properties of the o.c.)

≥ tn

mn
sup

{g∗∈X∗|‖g∗‖=1}

∣∣∣∣
〈∫

σ(A)
λndEA(λ)f ,g∗

�∣∣∣∣
(by the properties of the o.c.)

= tn

mn
sup

{g∗∈X∗|‖g∗‖=1}

∣∣〈Anf ,g∗〉∣∣
(as follows from the Hahn-Banach theorem)

= tn

mn

∥∥Anf∥∥.

(3.26)

Thus, for some (any) t > 0,

∥∥Anf∥∥≤ c(1
t

)n
mn, n= 0,1,2, . . . . (3.27)

Hence,

f ∈ C{mn}(A)
(
C(mn)(A), resp.

)
, (3.28)

which proves the inverse inclusions

C{mn}(A)⊇
⋃
t>0

D
(
T(t|A|)),

C(mn)(A)⊇
⋂
t>0

D
(
T(t|A|)). (3.29)

From (3.19) and (3.29), we infer equalities (2.6).

Remark 3.2. Observe that the assumption of the reflexivity of the space X was

utilized for proving the inclusions

C{mn}(A)⊆
⋃
t>0

D
(
T(t|A|)),

C(mn)(A)⊆
⋂
t>0

D
(
T(t|A|)) (3.30)

only.

The inverse inclusions

C{mn}(A)⊇
⋃
t>0

D
(
T(t|A|)),

C(mn)(A)⊇
⋂
t>0

D
(
T(t|A|)) (3.31)

hold regardless whether X is reflexive or not.
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4. The Gevrey classes of a scalar type spectral operator. Let 0< β<∞. As is easily

seen, the sequence mn = [n!]β, n = 0,1,2, . . . , satisfies condition (WGR) and, thus, the

function

T(λ) :=
∞∑
n=0

λn

[n!]β
, 0≤ λ <∞, (4.1)

is well defined.

According to Stirling’s formula,

nβn ∼ (2πn)−β/2eβn[n!]β as n �→∞. (4.2)

Hence, there is such a C = C(β)≥ 1 such that

[n!]β ≤nβn ≤ C(2πn)−β/2eβn[n!]β ≤ Ceβn[n!]β, n= 0,1,2, . . . . (4.3)

Taking this into account, we infer

sup
n≥0

λn

nβn
≤

∞∑
n=0

λn

nβn
≤ T(λ)≤ C

∞∑
n=0

(
eβλ

)n
nβn

= C
∞∑
n=0

1
2n

(
2eβλ

)n
nβn

≤ C sup
n≥0

(
2eβλ

)n
nβn

∞∑
n=0

1
2n
= 2C sup

n≥0

(
2eβλ

)n
nβn

, 0≤ λ <∞.
(4.4)

Now, we consider the family of functions

ρλ(x) := λx

xβx
, 0≤ x <∞, 1≤ λ <∞ (

00 := 1
)
. (4.5)

It is easy to make sure that the function ρλ(·) attains its maximum value on [0,∞) at

the point xλ = e−1λ1/β.

Therefore,

sup
n≥0

λn

nβn
≤ sup

x≥0

λx

xβx
= ρλ

(
xλ

)= eβe−1λ1/β
. (4.6)

For λ≥ eβ, let N be the integer part of xλ = e−1λ1/β.

Hence, N ≥ 1 and

sup
n≥0

λn

nβn
≥ λN

NβN
= exp

(
N lnλ−βN lnN

)

≥ exp
((
xλ−1

)
lnλ−βxλ lnxλ

)= 1
λ
eβe

−1λ1/β
, λ≥ eβ.

(4.7)

Obviously, for all sufficiently large positive λ’s,

e−(βe
−1/2)λ1/β ≤ 1

λ
. (4.8)
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Based on (4.4), (4.6), (4.7), and (4.8), for all sufficiently large positive λ’s,

e(β
β(e−β/2β)λ)1/β ≤ T(λ)≤ 2C sup

n≥0

(
2eβλ

)n
nβn

≤ 2C sup
x≥0

ρ2eβλ(x)

= 2Ceβe
−1(2eβλ)

1/β ≤ e(4ββλ)1/β .
(4.9)

Thus, by Theorem 3.1, in the considered case, the function T(λ) can be replaced by

eλ1/β
(0≤ λ <∞) and we arrive at the following.

Corollary 4.1. Let A be a scalar type spectral operator in a complex reflexive Ba-

nach space and 0< β<∞. Then

�{β}(A)=
⋃
t>0

D
(
et|A|

1/β
)
,

�(β)(A)=
⋂
t>0

D
(
et|A|

1/β
)
.

(4.10)

In particular, for β= 1, Corollary 4.1 gives the description of the analytic and entire

vectors of the scalar type spectral operator A.

Corollary 4.1 generalizes the corresponding result of [8] (see also [9, 10]) for a normal

operator in a complex Hilbert space.

Observe that the inclusions

�{β}(A)⊇
⋃
t>0

D
(
et|A|

1/β
)
,

�(β)(A)⊇
⋂
t>0

D
(
et|A|

1/β
)
.

(4.11)

are valid without the assumption of the reflexivity of X (see Remark 3.2).

5. A theorem of the Paley-Wiener type. Consider the self-adjoint differential op-

erator A = i(d/dx) (i is the imaginary unit ) in the complex Hilbert space L2(−∞,∞).
With the unitary equivalence of this operator and the operator of multiplication by the

independent variable x in view, by Theorem 3.1 as well as by [9, 10], we arrive at the

following theorem of the Paley-Wiener type [18, 22].

Theorem 5.1. Let {mn}∞n=0 be a sequence of positive numbers satisfying condition

(WGR), then

f ∈ C{mn}(A)
(
C(mn)(A)

)⇐⇒
∫∞
−∞

∣∣f̂ (x)∣∣2T 2(t|x|)dx <∞ (5.1)

(f̂ is the Fourier transform of f ) for some (any) 0 < t < ∞, the function T(·) being

replaceable by any nonnegative, continuous, and increasing function L(·) defined on

[0,∞) and satisfying (3.1) with some positive γ1, γ2, c1, c2, and a nonnegative R.

The only natural question to be answered now is how the abstract smoothness rela-

tive to the differential operator A in L2(−∞,∞) reveals itself as the smoothness in the

ordinary sense.
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For any f ∈Wn
2 (I), where I is an interval of the real axis and Wn

2 (I) = Hn(I) is the

nth-order Sobolev space [20], let f(·) be the representative of the equivalence class f
continuously differentiable n−1 times and such that f (n−1)(·) is absolutely continuous

on I.
For

f ∈W∞
2 (−∞,∞) :=

∞⋂
n=0

Wn
2 (−∞,∞), (5.2)

let f(·) be the infinite-differentiable representative of the equivalence class f such that

∫∞
−∞

∣∣f (n)(t)∣∣2dt <∞, n= 0,1,2, . . . . (5.3)

Let

Ĉ{mn}(−∞,∞) def=
{
f ∈W∞

2 (−∞,∞) | ∀[a,b]⊆ (−∞,∞) ∃α> 0,

∃c > 0 : max
a≤t≤b

∥∥f (n)(t)∥∥≤ cαnmn, n= 0,1,2, . . .
}
,

Ĉ(mn)(−∞,∞) def=
{
f ∈W∞

2 (−∞,∞) | ∀[a,b]⊆ (−∞,∞), ∀α> 0

∃c > 0 : max
a≤t≤b

∥∥f (n)(t)∥∥≤ cαnmn, n= 0,1,2, . . .
}
.

(5.4)

We will impose upon the sequence {mn}∞n=0 an additional condition.

(DI) There are an L > 0 and a γ > 1 such that

mn+1 ≤ Lγnmn, n= 0,1,2, . . . .

Note that the name (DI) originates from the words “differentiation invariant” since,

as is easily verifiable, under this condition, the Carleman classes C{mn}(−∞,∞) and

C(mn)(−∞,∞) along with a function f(·) contain its first derivative, f ′(·).
Observe that, for 0 ≤ β <∞, the Gevrey sequence mn = [n!]β, n = 0,1,2, . . . , meets

condition (DI) with any γ > 1. Indeed, in this case, mn+1/mn = (n+1)β, n= 0,1,2, . . . .

Lemma 5.2. Let a sequence of positive numbers {mn}∞n=0 satisfy condition (DI). Then

C{mn}(A)⊆ Ĉ{mn}(−∞,∞),
C(mn)(A)⊆ Ĉ(mn)(−∞,∞).

(5.5)

Proof. Let f ∈ C{mn}(A) (C(mn)(A)), Then

f ∈W∞
2 (−∞,∞), (5.6)

and for some (any) α> 0, there is a c > 0 such that

‖f‖L2(−∞,∞) =
[∫∞

−∞

∣∣f (n)(x)∣∣2dx
]1/2

≤ cαnmn, n= 0,1,2, . . . . (5.7)
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We fix a finite segment [a,b] of the real axis. Then, according to the Sobolev embedding

theorems [20] (see also [22, 23]), the space W 1
2 (a,b) is continuously embedded into

C[a,b], that is, for some M > 0 and any f ∈W 1
2 (a,b),

max
a≤t≤b

|f(x)| ≤M‖f‖W1
2 (a,b)

≤M
[
‖f‖L2(a,b)+

∥∥f ′∥∥L2(a,b)

]
. (5.8)

Since f ∈ C{mn}(A) (C(mn)(A)). Then, obviously, f (n) ∈W 1
2 (a,b) for any n = 0,1,2, . . . .

Therefore, for an arbitrary n= 0,1,2, . . . ,

max
a≤t≤b

∣∣f (n)(x)∣∣≤M‖f‖W1
2 (a,b)

≤M
[∥∥f (n)∥∥L2(a,b)+

∥∥f (n+1)∥∥
L2(a,b)

]

≤M
[∥∥f (n)∥∥L2(−∞,∞)+

∥∥f (n+1)∥∥
L2(−∞,∞)

]
≤M[

cαnmn+cαn+1mn+1
]

(by (DI))

≤M[
cαnmn+cαn+1Lγnmn

]=Mc[1+Lαγn]αnmn

(considering that γ > 1, there is a c1 > 0 such that γ > 1, c1 > 0)

≤ c1(γα)nmn, n= 0,1,2, . . . .

(5.9)

Based on this Lemma, we obtain the following proposition.

Proposition 5.3. Let {mn}∞n=0 be a sequence of positive numbers satisfying (WGR)

and (DI). If f ∈ L2(−∞,∞) is such that, for some (any) 0< t <∞,

∫∞
−∞

∣∣f̂ (x)∣∣2T 2(t|x|)dx <∞, (5.10)

there is a representative f(·) of the equivalence class f such that f(·)∈ C∞(−∞,∞),
∫∞
−∞

∣∣f (n)(x)∣∣2dx <∞, n= 0,1,2, . . . ,

f (·)∈ C{mn}(−∞,∞)
(
C(mn)(−∞,∞)

)
,

(5.11)

the function T(·) being replaceable by any nonnegative, continuous, and increasing func-

tion L(·) defined on [0,∞) and satisfying (3.1) with some positive γ1, γ2, c1, c2, and a

nonnegative R.

Corollary 5.4. Let 0< β<∞. If f ∈ L2(−∞,∞) is such that, for some (any) 0<t<∞,

∫∞
−∞

∣∣f̂ (x)∣∣2e2t|x|1/β dx <∞, (5.12)

there is a representative f(·) of the equivalence class f such that f(·)∈ C∞(−∞,∞),
∫∞
∞

∣∣f (n)(x)∣∣2dx <∞, n= 0,1,2, . . . ,

f (·)∈ �{β}(−∞,∞) (�(β)(−∞,∞)). (5.13)

In particular, for β = 1, we obtain sufficient conditions for the real analyticity and

entireness.
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6. Remarks. It is to be noted that, in [10] (see also [8, 9]), not only were equalities (2.6)

for a normal operator in a complex Hilbert space proved to hold in the set-theoretical

sense but also in the topological sense, the sets C{mn}(A) and C(mn)(A) considered as

the inductive and, respectively, projective limits of the Banach spaces

Cα[mn](A) :=
{
f ∈ C∞(A)| ∃c > 0 :

∥∥Anf∥∥≤ cαnmn, n= 0,1, . . .
}
, (6.1)

0<α<∞, with the norms

‖f‖Cα[mn](A) := sup
n≥0

∥∥Anf∥∥
αnmn

(6.2)

and the sets
⋃
t>0D(T(t|A|)) and

⋂
t>0D(T(t|A|)) as the inductive and, respectively,

projective limits of the Hilbert spaces

Ht[T](A) :=D(T(t|A|)), 0< t <∞, (6.3)

with inner products

(f ,g)Ht[T](A) := (
T(t|A|)f ,T(t|A|)g), 0< t <∞. (6.4)

Observe also that, in [11] (see also [10]), similar results were obtained for the generator

of a bounded analytic semigroup in a Banach space.
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