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MAGNETOHYDRODYNAMICS EFFECT ON THREE-DIMENSIONAL
VISCOUS INCOMPRESSIBLE FLOW BETWEEN TWO HORIZONTAL

PARALLEL POROUS PLATES AND HEAT TRANSFER WITH
PERIODIC INJECTION/SUCTION
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We investigate the hydromagnetic effect on viscous incompressible flow between two hor-
izontal parallel porous flat plates with transverse sinusoidal injection of the fluid at the
stationary plate and its corresponding removal by periodic suction through the plate in
uniform motion. The flow becomes three dimensional due to this injection/suction veloc-
ity. Approximate solutions are obtained for the flow field, the pressure, the skin-friction, the
temperature field, and the rate of heat transfer. The dependence of solution onM (Hartmann
number) and λ (injection/suction) is investigated by the graphs and tables.
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1. Introduction. The problem of laminar flow control has become very important

in recent years, particularly in the field of aeronautical engineering, owing to its ap-

plication in reducing drag and hence in enhancing the vehicle power by a substantial

amount. Several methods have been developed for the purpose of artificially controlling

the boundary layer and the developments on this subject. The boundary layer suction

is one of the effective methods of reducing the drag coefficient, which entails large

energy losses. The effect of different arrangements and configurations of the suction

holes and slits has been studied by various scholars. Gersten and Gross [2] have in-

vestigated the flow and heat transfer along a plane wall with periodic suction velocity.

Effects of such a suction velocity on various flow and heat transfer problems along

flat and vertical porous plates have been studied by Singh et al. [10, 11] and Singh [8].

Recently the problem of transpiration cooling with the application of the transverse

sinusoidal injection/suction velocity has been studied by Singh [9].

Magnetic fields influence many natural and man-made flows. They are routinely used

in industry to heat, pump, stir, and levitate liquid metals. There are the terrestrial mag-

netic field, which is maintained by fluid motion in the earth’s core, the solar magnetic

field which generates sunspots and solar flares, and the galactic field which influences

the formation of stars. The flow problems of an electrically conducting fluid under the

influence of magnetic field have attracted the interest of many authors in view of their

applications to geophysics, astrophysics, engineering, and to the boundary layer con-

trol in the field of aerodynamics. On the other hand, in view of the increasing technical

applications using magnetohydrodynamics (MHD) effect, it is desirable to extend many

of the available viscous hydrodynamic solutions to include the effects of magnetic field
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for those cases when the viscous fluid is electrically conducting. Rossow [5], Greenspan

and Carrier [3], and Singh [6, 7] have studied extensively the hydromagnetic effects

on the flow past a plate with or without injection/suction. The hydromagnetic chan-

nel flow and temperature field was investigated by Attia and Kotb [1]. Hossain et al.

[4] have studied the MHD free convection flow when the surface is kept at oscillating

surface heat flux. Boundary layer flows of fluids of small electrical conductivity are im-

portant, particularly in the field of aeronautical engineering. Therefore the object of the

present note is to study the effects of the magnetic field on the flow of a viscous, in-

compressible, and electrically conducting fluid between two horizontal parallel porous

plates with transverse sinusoidal injection of the fluid at the stationary plate and its

corresponding removal by periodic suction through the plate in uniform motion.

2. Formulation of the problem. We consider the Couette flow of a viscous incom-

pressible electrically conducting fluid between two parallel flat porous plates with trans-

verse sinusoidal injection of the fluid at the stationary plate and its corresponding re-

moval by periodic suction through the plate in uniform motion U . Let the x∗−z∗ plane

lie along the plates and let the y∗-axis be taken normal to the free-stream velocity. The

distance d is taken between the plates. Denote the velocity components by u∗, v∗, w∗

in the x∗-, y∗-, z∗-directions, respectively. The lower and upper plates are assumed

to be at constant temperature T0 and T1, respectively, with T1 > T0. We derive the gov-

erning equations with the assumption that the flow is steady and laminar, and is of

a finitely conducting fluid. The magnetic field of uniform strength B is applied to the

perpendicular of the free-stream velocity (see Figure 2.1); at lower magnetic Reynolds

number, the magnetic field is practically independent of the flow motion and the in-

duced magnetic field is neglected. The Hall effects, electrical and polarization effects

also have been neglected. All physical quantities are independent of x∗ for this problem

of fully developed laminar flow, but the flow remains three-dimensional due to the in-

jection/suction velocity V∗(z∗)=V(1+εcosπz∗/d). Thus, under these assumptions,

the problem is governed by the following nondimensional system of equations:

vy+wz = 0, (2.1)

vuy+wuz =
[
uyy+uzz−M2(u−1)

]
λ

, (2.2)

vvy+wvz =−py+
[
vyy+vzz

]
λ

, (2.3)

vwy+wwz =−pz+
[
wyy+wzz−M2w

]
λ

, (2.4)

vθy+wθz =
(
θyy+θzz

)
λPr

, (2.5)

where y = y∗/d, z = z∗/d, u= u∗/U , v = v∗/V , w =w∗/V , p = p∗/ρV 2, Pr (Prandtl

number) = ν/α, M (Hartmann number) = (σB2d2/ρν)1/2, λ (injection/suction

parameter) = Vd/ν , and θ = (T∗−T0)/(T1−T0) are the dimensionless quantities and

V , ρ, ν , α, σ , and p are, respectively, injection/suction velocity, density, kinematic
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Figure 2.1. Schematic of the flow configuration.

viscosity, thermal diffusivity, electrical conductivity, and pressure. In energy equation

terms corresponding to viscous dissipation and Joule heating have been neglected due

to their small magnitude as compared to other terms. The (∗) stands for dimensional

quantities. The corresponding boundary conditions in the dimensionless form are

y = 0 :u= 0, v(z)= 1+εcosπz, w = 0, θ = 0,

y = 1 :u= 1, v(z)= 1+εcosπz, w = 0, θ = 1.
(2.6)

3. Solution of the problem. Since the amplitude of the injection/suction velocity

ε (� 1) is very small, we now assume the solution of the following form:

f(y,z)= f0(y)+εf1(y,z)+ε2(y,z)+··· , (3.1)

where f stands for any of u, v , w, p, and θ. When ε = 0, the problem is reduced to the

well-known two-dimensional flow. The solution of this two-dimensional problem is

u0(y)= 1+
[
exp

(
J2+J1y

)−exp
(
J1+J2y

)]
[
exp

(
J1
)−exp

(
J2
)] ,

θ0(y)=
[
exp(λPry)−1

]
[
exp(λPr)−1

] , v0 = 1, w0 = 0, p0 = constant,

(3.2)
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where

J1 =
[
λ+(λ2+4M2

)1/2
]

2
, J2 =

[
λ−(λ2+4M2

)1/2
]

2
. (3.3)

When ε ≠ 0, substituting (3.1) in (2.1)–(2.5) and comparing the coefficient of ε, neglecting

those of ε2,ε3, . . . , the following first-order equations are obtained with the help of

solution (3.2):

v1y+w1z = 0, (3.4)

v1u0y+u1y =
(
u1yy+u1zz−M2u1

)
λ

, (3.5)

v1y =−p1y+
(
v1yy+v1zz

)
λ

, (3.6)

w1y =−p1z+
(
w1yy+w1zz−M2w1

)
λ

, (3.7)

v1θ0y+θ1y =
(
θ1yy+θ1zz

)
λPr

. (3.8)

The corresponding boundary conditions reduce to

y = 0 :u1 = 0, v1 = cosπz, w1 = 0, θ1 = 0,

y = 1 :u1 = 0, v1 = cosπz, w1 = 0, θ1 = 0.
(3.9)

This is the set of linear partial differential equations, which describe the three-

dimensional flow. To solve these equations, we assume v1, w1, p1, u1, and θ1 of the

following form:

u1(y,z)=u11(y)cosπz,

v1(y,z)= v11(y)cosπz,

w1(y,z)=−
{
v′11(y)sinπz

}
π

,

p1(y,z)= p11(y)cosπz,

θ1(y,z)= θ11(y)cosπz,

(3.10)

where the prime denotes differentiation with respect to y . Expressions for v1(y,z)
and w1(y,z) have been chosen so that the equation of continuity (3.4) is satisfied.

Substituting (3.10) in (3.5)–(3.8) and applying the corresponding boundary conditions,
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we get the solutions for v1, w1, p1, u1, and θ1 as follows:

v1(y,z)= (A)−1[A1 exp
(
J3y

)+A2 exp
(
J4y

)−A3 exp
(
J5y

)−A4 exp
(
J6y

)]
cosπz,

w1(y,z)=−(πA)−1[A1J3 exp
(
J3y

)+A2J4 exp
(
J4y

)−A3J5 exp
(
J5y

)

−A4J6 exp
(
J6y

)]
sinπz,

p1(y,z)=
(
π2λA

)−1[A1J3
(
J1J3−λJ3−M2)exp

(
J3y

)+A2J4
(
J1J4−λJ4−M2)exp

(
J4y

)

−A3J5
(
J2J5−λJ5−M2)exp

(
J5y

)

−A4J6
(
J2J6−λJ6−M2)exp

(
J6y

)]
cosπz,

u1(y,z)=
[
E exp

(
g1y

)+F exp
(
g2y

)

+b1

{
A1

(
J1 exp

(
J2+J1y+J3y

)
b2

− J2 exp
(
J1+J2y+J3y

)
b6

)

+A2

(
J1 exp

(
J2+J1y+J4y

)
b3

− J2 exp
(
J1+J2y+J4y

)
b7

)

−A3

(
J1 exp

(
J2+J1y+J5y

)
b8

− J2 exp
(
J1+J2y+J5y

)
b4

)

−A4

(
J1 exp

(
J2+J1y+J6y

)
b9

− J2 exp
(
J1+J2y+J6y

)
b5

)}]
cosπz,

θ1(y,z)=
[
Rexp

(
s1y

)+S exp
(
s2y

)

+C1

{
A1 exp

(
J3y+λPry

)
C2

+ A2 exp
(
J4y+λPry

)
C3

− A3 exp
(
J5y+λPry

)
C4

− A4 exp
(
J6y+λPry

)
C5

}]
cosπz,

(3.11)

where

A= [J4J5+J3J6−J3J5−J4J6
]{

exp
(
J5+J6

)+exp
(
J3+J4

)}

−[J4J5+J3J6−J3J4−J5J6
]{

exp
(
J3+J5

)+exp
(
J4+J6

)}

−[J5J6+J3J4−J3J5−J4J6
]{

exp
(
J3+J6

)+exp
(
J4+J5

)}
,

A1 =
[
J4J6−J5J6

]
exp

(
J4+J5

)−[J4J5−J5J6
]
exp

(
J4+J6

)+[J4J5−J4J6
]
exp

(
J5+J6

)

+[J4J5−J4J6
]
exp

(
J4
)+[J5J6−J4J5

]
exp

(
J5
)+[J4J6−J5J6

]
exp

(
J6
)
,
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A2 =
[
J3J5−J5J6

]
exp

(
J3+J6

)−[J3J6−J5J6
]
exp

(
J3+J5

)−[J3J5−J3J6
]
exp

(
J5+J6

)

+[J3J6−J3J5
]
exp

(
J3
)+[J3J5−J5J6

]
exp

(
J5
)+[J5J6−J3J6

]
exp

(
J6
)
,

A3 =
[
J4J6−J3J6

]
exp

(
J3+J4

)+[J3J4−J4J6
]
exp

(
J3+J6

)−[J3J4−J3J6
]
exp

(
J4+J6

)

−[J3J4−J3J6
]
exp

(
J3
)−[J4J6−J3J4

]
exp

(
J4
)−[J3J6−J4J6

]
exp

(
J6
)
,

A4 =
[
J3J5−J4J5

]
exp

(
J3+J4

)+[J4J5−J3J4
]
exp

(
J3+J5

)−[J3J5−J3J4
]
exp

(
J4+J5

)

−[J3J5−J3J4
]
exp

(
J3
)−[J3J4−J4J5

]
exp

(
J4
)−[J4J5−J3J5

]
exp

(
J5
)
,

J3 =
[
J1+

(
J2

1 +4π2
)1/2

]

2
, J4 =

[
J1−

(
J2

1 +4π2
)1/2

]

2
, J5 =

[
J2+

(
J2

2 +4π2
)1/2

]

2
,

J6 =
[
J2−

(
J2

2 +4π2
)1/2

]

2
, g1 =

[
λ+(λ2+4π2+4M2

)1/2
]

2
,

g2 =
[
λ−(λ2+4π2+4M2

)1/2
]

2
, s1 =

[
λPr+(λ2Pr2+4π2

)1/2
]

2
,

s2 =
[
λPr−(λ2Pr2+4π2

)1/2
]

2
, b1 = λ[

A
{

exp
(
J1
)−exp

(
J2
)}] ,

b2 = 3J1J3−λJ3, b3 = 3J1J4−λJ4, b4 = 3J2J5−λJ5, b5 = 3J2J6−λJ6,

b6 = 2J2J3+J1J3−λJ3, b7 = 2J2J4+J1J4−λJ4, b8 = 2J1J5+J2J5−λJ5,

b9 = 2J1J6+J2J6−λJ6, C1 = λ2Pr2[
A
{

exp(λPr)−1
}] , C2 = J1J3+J3λPr,

C3 = J1J4+J4λPr, C4 = J2J5+J5λPr, C5 = J2J6+J6λPr,

C6 = λ[
A
{

exp
(
J1
)−exp

(
J2
)}·{exp

(
g1
)−exp

(
g2
)}] ,

C7 = λ2Pr2[
A
{

exp(λPr)−1
}·{exp

(
s1
)−exp

(
s2
)}] ,

E=C6

[
A1

{
J1
(
exp

(
J2+g2

)−exp
(
J1+J2+J3

))
b2

− J2
(
exp

(
J1+g2

)−exp
(
J1+J2+J3

))
b6

}

+A2

{
J1
(
exp

(
J2+g2

)−exp
(
J1+J2+J4

))
b3

−J2
(
exp

(
J1+g2

)−exp
(
J1+J2+J4

))
b7

}

−A3

{
J1
(
exp

(
J2+g2

)−exp
(
J1+J2+J5

))
b8

−J2
(
exp

(
J1+g2

)−exp
(
J1+J2+J5

))
b4

}

−A4

{
J1
(
exp

(
J2+g2

)−exp
(
J1+J2+J6

))
b9

− J2
(
exp

(
J1+g2

)−exp
(
J1+J2+J6

))
b5

}]
,
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F = C6

[
A1

{
J1
(
exp

(
J1+J2+J3

)−exp
(
J2+g1

))
b2

− J2
(
exp

(
J1+J2+J3

)−exp
(
J1+g1

))
b6

}

+A2

{
J1
(
exp

(
J1+J2+J4

)−exp
(
J2+g1

))
b3

− J2
(
exp

(
J1+J2+J4

)−exp
(
J1+g1

))
b7

}

−A3

{
J1
(
exp

(
J1+J2+J5

)−exp
(
J2+g1

))
b8

− J2
(
exp

(
J1+J2+J5

)−exp
(
J1+g1

))
b4

}

−A4

{
J1
(
exp

(
J1+J2+J6

)−exp
(
J2+g1

))
b9

− J2
(
exp

(
J1+J2+J6

)−exp
(
J1+g1

))
b5

}]
,

R = C7

[
A1
{

exp
(
s2
)−exp

(
J3+λPr

)}
C2

+ A2
{

exp
(
s2
)−exp

(
J4+λPr

)}
C3

− A3
{

exp
(
s2
)−exp

(
J5+λPr

)}
C4

− A4
{

exp
(
s2
)−exp

(
J6+λPr

)}
C5

]
,

S = C7

[
A1
{

exp
(
J3+λPr

)−exp
(
s1
)}

C2
+ A2

{
exp

(
J4+λPr

)−exp
(
s1
)}

C3

− A3
{

exp
(
J5+λPr

)−exp
(
s1
)}

C4
− A4

{
exp

(
J6+λPr

)−exp
(
s1
)}

C5

]
.

(3.12)

Now, after knowing the velocity field, we can calculate skin-friction components τx and

τz in the main and transverse directions, respectively, as follows:

τx = dτ
∗
x

µU
=
(
du0

dy

)
y=0

+ε
(
du11

dy

)
y=0

cosπz,

τx = C8+ε
[
Eg1+Fg2

+b1

{
A1

((J2
1+J1J3

)·exp
(
J2
)

b2
−
(
J2

2 +J2J3
)·exp

(
J1
)

b6

)

+A2

((J2
1 +J1J4

)·exp
(
J2
)

b3
−
(
J2

2+J2J4
)·exp

(
J1
)

b7

)

−A3

((J2
1 +J1J5

)·exp
(
J2
)

b8
−
(
J2

2+J2J5
)·exp

(
J1
)

b4

)

−A4

((J2
1 +J1J6

)·exp
(
J2
)

b9
−
(
J2

2+J2J6
)·exp

(
J1
)

b5

)}]
cosπz,
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Figure 4.1. The velocity profiles for ε = 0.02 and z = 0.

τz = dτ
∗
z

µV
= ε
(
∂w1

∂y

)
y=0

,

τz =−ε(πA)−1[A1J2
3 +A2J2

4 −A3J2
5 −A4J2

6

]
sinπz.

(3.13)

From the temperature field, we can obtain the heat transfer coefficient in terms of

Nusselt number as follows:

Nu= dq∗[
k
(
T0−T1

)] =
(
dθ0

dy

)
y=0

+ε
(
dθ11

dy

)
y=0

cosπz,

Nu= C9+ε
[
Rs1+Ss2+C1

{
A1
(
J3+λPr

)
C2

+ A2
(
J4+λPr

)
C3

− A3
(
J5+λPr

)
C4

− A4
(
J6+λPr

)
C5

}]
cosπz,

(3.14)

where C8 = [J1 exp(J2)−J2 exp(J1)]/[exp(J1)−exp(J2)], C9 = λPr/[{exp(λPr)−1}].

4. Discussion. The main-flow velocity profiles are presented in Figure 4.1. The graph

reveals that the main-flow velocity increases with the increase of M (Hartmann num-

ber), while a reverse effect is observed with the increase of λ (injection/suction). The

transverse velocity component is presented in Figure 4.2. It is observed that forward
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Figure 4.2. The transverse velocity components for z = 0.5.

Table 4.1. The values of pressure (p1) for z = 0.

y λ= 0.2, M = 0 λ= 0.5, M = 0 λ= 0.5, M = 2

0 22.468 8.8780 8.9312

0.1 15.752 6.2182 6.3015

0.2 10.604 4.1773 4.2728

0.3 6.5114 2.5520 2.6355

0.4 3.0665 1.1807 1.2316

0.5 −0.0732 −0.0773 −0.0661

0.6 −3.2202 −1.3342 −1.3715

0.7 −6.6877 −2.7281 −2.7983

0.8 −10.820 −4.3934 −4.4752

0.9 −16.030 −6.4960 −6.5628

1.0 −22.835 −9.2450 −9.2758

flow is developed from y = 0 to about y = 0.5, and then, onwards, there is backward

flow. It is due to the fact that the dragging action of the faster layer exerted on the

fluid particles in the neighborhood of the stationary plate is sufficient to overcome the

adverse pressure gradient, and hence there is forward flow. The dragging action of the

faster layer exerted on the fluid particles will be reduced due to the periodic suction at

the upper plate, and hence this dragging action is insufficient to overcome the adverse

pressure gradient and there is backward flow. It is noted that this backward flow is

just the optical image of the forward flow. Further, it is evident from this figure that



3366 P. K. SHARMA AND R. C. CHAUDHARY

2.5

2

1.5

1

0.5

0
0 0.2 0.4 0.6 0.8 1

τ
x

λ

M = 2

M = 0

Figure 4.3. The values of skin-friction in the main flow direction for z = 0
and ε = 0.2.

Table 4.2. The values of skin-friction component (τz) for ε = 0.2 and z = 0.5.

λ M = 0 M = 2

0.1 0.35621 0.34489

0.2 0.35286 0.34177

0.3 0.34951 0.33866

0.4 0.34618 0.33556

0.5 0.34286 0.33247

0.6 0.33955 0.32940

0.7 0.33625 0.32634

0.8 0.33297 0.32329

0.9 0.32971 0.32026

1.0 0.32647 0.31724

the velocity w1 decreases with the increase of M and λ both in the forward flow, while

a reverse effect is observed in the backward flow. The values of pressure are reported

in Table 4.1. It is observed that it decreases with the increase of λ and increases with

the increase of M . Pressure is sufficiently large for small fluid injection/suction.

The values of skin-friction τx in the main flow direction are given in Figure 4.3. It is

observed that τx increases with the increase of M while it decreases with the increase

of λ. The values of skin-friction component τz in the transverse direction are presented

in Table 4.2. The table shows that τz decreases with the increase of both M and λ.

The values of Nusselt number (Nu) are shown in Figure 4.4. It is observed that Nu

remains almost the same with the increase of M , but it decreases with the increase of
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Figure 4.4. The values of Nusselt number for ε = 0.2 and z = 0.

λ in both situations (Pr = 0.71 (air) and Pr = 7 (water)). It is also clear from this figure

that Nu is much lower in the case of water (Pr= 7) than in the case of air (Pr= 0.71).
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