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This paper provides an asymptotic estimate for the expected number of real zeros of a
random algebraic polynomial a0+a1x+a2x2+···+an−1xn−1. The coefficients aj (j =
0,1,2, . . . ,n−1) are assumed to be independent normal random variables with nonidentical
means. Previous results are mainly for identically distributed coefficients. Our result remains
valid when the means of the coefficients are divided into many groups of equal sizes. We
show that the behaviour of the random polynomial is dictated by the mean of the first group
of the coefficients in the interval (−1,1) and the mean of the last group in (−∞,−1)∪(1,∞).
2000 Mathematics Subject Classification: 60H99, 42Bxx.

1. Introduction. There are many known asymptotic estimates for the expected num-

ber of real zeros of polynomials

Pn(x)=
n−1∑
j=0

ajxj, (1.1)

with random coefficients a0,a1, . . . ,an−1. These estimates, however, are mainly devoted

for the case of identically distributed coefficients, albeit for different classes of distri-

butions. From the pioneer work of Kac [9], it is known that in the normal standard

case the expected number of real zeros of Pn(x), denoted by ENn(−∞,∞), is asymp-

totic to (2/π) logn as n→∞. Later, the error term involved in this asymptotic formula

is significantly reduced by Wilkins [12], using a new approach. Also, various cases of

dependent coefficients are studied mainly by Sambandham, see, for example, [1, 11].

For a case when the coefficients have a nonzero mean, µ, it is shown that ENn(−∞,∞)
is reduced by half to (1/π) logn. In [4], a case when the coefficients are nonidentical

is considered. However, they are only permitted to belong to two groups of distribu-

tions. In an interesting work, Edelman and Kostlan [3] consider a case of nonidentically

distributed coefficients, each having different variances. It is important to note that

so far their coefficients are the only type of distribution which increases the order

of numbers of real zeros from O(logn) to O(
√
n). In [6], all the coefficients of (1.1)

have also different means, but they follow a geometric progression, that is, E(aj)= µj ,
j = 0,1,2, . . . ,n− 1 for a constant µ. Recent developments on the subject as well as

related works are reviewed in [5].

Here, we assume that the coefficients {aj}n−1
j=0 in (1.1) are independent and noniden-

tically distributed. They are normal random variables, all have variance one and their

http://dx.doi.org/10.1155/S0161171204407649
http://dx.doi.org/10.1155/S0161171204407649
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


3390 K. FARAHMAND AND P. FLOOD

means are divided into groups of equal size. Let E(aj)= µ1 for 0≤ j ≤n1−1, E(aj)= µ2

for n1 ≤ j ≤n2−1, . . . , E(aj)= µk for nk−1 ≤ j ≤n−1, where n1 = [n/k], n2 = [2n/k],
and so forth and k is any constant such that 1 < k ≤ γ/5, γ a constant to be defined

below. In this work, we impose the conditions that µ1 and µk are bounded away from

zero, that is, |µ1|
√

logn→∞ and |µk|
√

logn→∞ as n→∞. Also |µj−µj−1| ≤ c, where

c = O(nr−5 logn) = µ2
1 and r is defined below. Let Nn(α,β) represent the number of

real zero crossings of Pn(x) on the interval (α,β). In these circumstances, we have the

following theorem.

Theorem 1.1. If the coefficients of Pn(x) in (1.1) are as outlined above, then the

mathematical expectation of the number of zeros of Pn(x) on various intervals of the

real number line, denoted as ENn(α,β), satisfies

ENn(0,1)=O
(√

logn
)
, ENn(−1,0)∼

(
1

2π

)
logn, (1.2)

if |µ1|(logn)1/2 →∞ as n→∞ and µ2, . . . ,µk = o(nq); and

ENn(−∞,−1)∼
(

1
2π

)
logn, ENn(1,∞)=O

(√
logn

)
(1.3)

if |µk|(logn)1/2 →∞ as n→∞ and µ1, . . . ,µk−1 = o(nq), where q is any positive constant.

2. Proof of the theorem. We start our proof by noting that in the interval (0,1)
xn < xnk−1 < ··· < xn2 < xn1 ≤ exp(−n1ε) = n−r , where r = γ/k and ε = n−a, a =
1−log lognγ/ logn. First, for 0<x < 1−ε we define and expand the required variances

and covariances as follows:

A2 = var
{
Pn(x)

}= n−1∑
j=0

x2j =
(
1−x2n)
1−x2

= 1
1−x2

+O{n1−2r (γ logn)−1}, (2.1)

B2 = var
{
P ′n(x)

}= n−1∑
j=0

j2x2j−2 =
(
1+x2

)(
1−x2n)(

1−x2
)3 − 2nx2n(

1−x2
)2 −

n2x2n−2

1−x2

=
(
1+x2

)
(
1−x2

)3 +O
{
n5−2r (γ logn)−3},

(2.2)

C = cov
{
Pn(x),P ′n(x)

}= n−1∑
j=0

jx2j−1 = x
(
1−x2n)(

1−x2
)2 − nx

2n−1

1−x2

= x(
1−x2

)2 +O
{
n3−2r (γ logn)−2}.

(2.3)

The expected values that give this problem its special properties are defined as

m= E{Pn(x)}, m′ = E{P ′n(x)}. (2.4)
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These definitions can easily be expanded to show that

m= µ1

n1−1∑
j=0

xj+µ2

n2−1∑
j=n1

xj+···+µk
n−1∑

j=nk−1

xj,

m′ = µ1

n1−1∑
j=0

jxj−1+µ2

n2−1∑
j=n1

jxj−1+···+µk
n−1∑

j=nk−1

jxj−1.

(2.5)

These in turn give

∣∣∣∣m− µ1
(
1−xn)
1−x

∣∣∣∣≤ cxn1

(1−x)(1−xn1
) ,

∣∣∣∣m′ −
[
µ1
(
1−xn)

(1−x)2 − µ1x2n1

x(1−x)
]∣∣∣∣

≤ cxn1

{
1−(xn1

)k1−1−(1−xn1
)(
k1−1

)(
xn1

)k1−1

+(1−x)
(
xn1

[
1−(xn1

)k1−1
]
−(1−xn1

)(
k1−1

)
xn
)

x
(
1−xn1

)2

+
(1−x)

[
n1−

(
k1−1

)
n1
(
xn1

)k1−2
]

x

}
× 1
(1−x)2(1−xn1

) .

(2.6)

To highlight the dominant terms on 0<x < 1−ε, we can write m and m′ as

m= µ1

1−x +O
{(∣∣µ1

∣∣+c)n1−rγ logn
}
, (2.7)

m′ = µ1

(1−x)2 +O
{(∣∣µ1

∣∣+c)n2−rγ logn
}
. (2.8)

Kac [9] obtained a formula for the average number of real zeros of a polynomial of the

form (1.1), where the coefficients are independent standard normal random variables.

Hammersley [8] in his work on the zeros of polynomials with generally distributed

coefficients, and Cramér and Leadbetter [2] in their study of nonstationary random

processes, developed the findings of Kac [9] and Rice [10] for more general situations.

From these, Farahmand and Hannigan [7] obtained an expression of the Kac-Rice for-

mula for independent identically distributed normal coefficients having nonzero mean.

Although in this case we study a polynomial that has nonidentically distributed coeffi-

cients, we can utilise the same Kac-Rice formula. Hence, from [7],

ENn(α,β)=
∫ β
α

(
∆
πA2

)
exp

{−(A2m′2+B2m2−2Cmm′)
2∆2

}
dx

+
∫ β
α

(√
2
π

)(
A2m′ −Cm)A−3 exp−

(
m2

2A2

)
×erf

([
A2m′ −Cm]
A∆
√

2

)
dx

= I1(α,β)+I2(α,β),

(2.9)
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where ∆2 =A2B2−C2. By (2.1) to (2.8), we can establish that

∆
A2

= 1
1−x2

+O{n4−2r (γ logn)−4},(
A2m′2+B2m2−2Cmm′)

2∆2
= µ

2
1(1+x)
1−x +O

{
µ1
(∣∣µ1

∣∣+c)
nr−1

}
.

(2.10)

These, in turn, give the value of I1(0,1−ε) in (2.9) as

I1(0,1−ε)=
∫ 1−ε

0

(
∆
πA2

)
exp

{
−
(
A2m′2+B2m2−2Cmm′)

2∆2

}
dx

=π−1
∫ 1−ε

0

(
1−x2)−1

[
exp

{
− µ

2
1(1+x)
1−x

}
+O

{
µ1
(∣∣µ1

∣∣+c)
nr−1

}]
dx

×
{
1+O

{
n4−2r (γ logn)−4

}}

≤π−1
∫ 1−ε

0

(
1−x2)−1

exp
{
− µ2

1

1−x
}
dx.

(2.11)

Putting t = 1/(1−x) gives

I1(0,1−ε)≤π−1
∫ 1/ε

1
exp

(−µ2
1t
)
dt =

[
exp

(−µ2
1

)−exp
(−µ2

1/ε
)]

πµ2
1

≤ exp
(−µ2

1

)
πµ2

1

.

(2.12)

Therefore, for µ1 ≠ 0 and bounded such that |µ1|(logn)1/2 →∞ as n→∞, we have

I1(0,1−ε)=O
(√

logn
)
. (2.13)

In the following, we show that for all values of µ under consideration, the expected

number of real zeros in the interval (1−ε,1) is negligible for large n. Since, from (2.1)–

(2.3),

∆2 = (1−x2n)2(
1−x2)−4

{
1− n

2x2n−2
(
1−x2

)2

(
1−x2n

)2

}
, (2.14)

we have

∆
A2

=
{

1− n
2x2n−2

(
1−x2

)2

(
1−x2n

)2

}1/2

× 1
1−x2

. (2.15)

This enables us to establish the inequality

∆
A2

<

√
(2n−1)

1−x (2.16)
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on the interval (1−ε,1) for all sufficiently large n. Therefore, we find

I1(1−ε,1) <
∫ 1

1−ε

(
∆
πA2

)
dx = o

(√
logn

)
. (2.17)

To evaluate I2(0,1)we note that since (d/dx)(m/A)=A−3(A2m′−Cm) and erf(x)≤√
π/2, we have

I2(0,1)≤
(

1√
2π

)∫ ζ
µ1

exp
(
− u

2

2

)
du=O(1), (2.18)

where u=m/A and ζ = (√n/k)∑k
j=1µj . Thus, by (2.13), (2.17), and (2.18), we have

ENn(0,1)=O
(√

logn
)
. (2.19)

Given that Pn(x) = xn−1
∑n−1
j=0 an−j−1x−j = xn−1P∗n (y), y = 1/x, we can state that

for each zero of Pn(x) in (0,1) [or (−1,0)] there is a corresponding zero of P∗n (x) in

(1,∞) [or (−∞,−1)]. We interchange µ1 and µk, µ2, and µk−1, and so forth, and replace k
with k/(k−1) in P∗n (x). The distribution of P∗n (x) is therefore identical to that of Pn(x).
Let N∗n(α,β) denote the number of zeros of P∗n (x) in the interval (α,β). Therefore, we

have ENn(0,1)= EN∗n(1,∞), and ENn(−1,0)= EN∗n(−∞,−1).
To find ENn(−1,0), we let y =−x. This gives

I1(−1+ε,0)

=π−1
∫ 1−ε

0

(
1−y2)−1

[
exp

{
− µ

2
1(1−y)
1+y

}
+O

{
µ1
(∣∣µ1

∣∣+c)
nr−1

}]
dy

×{1+O{n4−2r (γ logn)−4}}.
(2.20)

We can say that

I1(−1+ε,0)≤π−1
∫ 1−ε

0

(
1−y2)−1dy ≤

(
1

2π

)
logn. (2.21)

It is also true to say that

I1(−1+ε,0) > π−1
∫ 1−ε

0

[
2(1−y)]−1

exp
{
2µ2

1(1−y)
}
dy. (2.22)

Putting t = 2µ2
1(1−y) gives

I1(−1+ε,0) >
(

1
2π

)∫ 2µ2
1ε

2µ2
1

−
(

1
t

)
exp(−t)dt

=
(

1
2π

)∫ 2µ2
1

2µ2
1ε

e−t

t
dt

=
(

1
2π

)∫ 2µ2
1

2µ2
1ε

dt
t
−
(

1
2π

)∫ 2µ2
1

2µ2
1ε

(
1−e−t)
t

dt.

(2.23)
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Upon integration, we obtain

I1(−1+ε,0) >
(

1
2π

)
logn+O(log logn). (2.24)

Thus, by (2.21) and (2.24), we find

I1(−1+ε,0)∼
(

1
2π

)
logn. (2.25)

By letting y =−x, we can establish, in a manner similar to (2.17), that

I1(−1,−1+ε)= o
(√

logn
)
. (2.26)

As regards I2(−1,0), we find that

I2(−1,0)≤
(

1√
2π

)∫ µ1

0
exp

(
− µ

2

2

)
du, (2.27)

when n1 is even, or for τ =∑k
j=1(−1)j+1µj ,

I2(−1,0)≤
(

1√
2π

)∫ µ1

τ/
√
n

exp
(
− u

2

2

)
du (2.28)

when n1 is odd. Thus,

I2(−1,0)≤ 1
2
. (2.29)

We can conclude from (2.25), (2.26), and (2.29) that

ENn(−1,0)∼
(

1
2π

)
logn. (2.30)

This completes the proof of the theorem. The result of this paper is similar to the

findings of [4] and establishes the predominant influence of the means of the first and

last groups of random coefficients on the average number of zeros of the polynomial. An

area of future interest regarding random algebraic polynomials would be to ascertain

how small the first and last groups of coefficients can be before the means of other

groups become significant.
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