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1. Introduction. Let W (0, o) be the class of functions f which are locally integrable
on (0,0) and are of polynomial growth as t — oo, that is, for some positive 7, there
holds f(t) = O(t") as t — oo. The Durrmeyer variant \N/n of the Baskakov operators
associates to each function f € W(0, «) the series

ValFix) = =10 Y. pus) | pas(Df (01, x €0,0), (1.1)
k=0
where
Prk(x) = ("Jr,]z_l)x"(l +x) 7k (1.2)

is the Baskakov basis function. Note that (1.1) is well defined, for n > » + 2, provided
that f(t) = O(t") as t — oo. The operators (1.1) were first introduced by Sahai and
Prasad [9]. They termed these operators as modified Lupas operators. In 1991, Sinha et
al. [10] improved and corrected the results of [9] and denoted \N/n as modified Baskakov
operators. The rate of convergence of the operators (1.1) on functions of bounded
variation was studied in [8, 11].

We mention that Agrawal and Thamer [2] considered the variant

Malfix) = (=1 Y puk(X) | pract @ Ddt+ A0 FO) 1)
k=1

of the operators (1.1) and studied its properties in subsequent papers [3, 4, 5]. See also
[1]. The rate of convergence of the operators discussed by Agrawal and Thamer was
studied by the first author in [7].
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For each function f € W(0,o) and « > 1, we consider the Bézier-type Baskakov-
Durrmeyer operators \N/n_a as

Vo f3) = (n 1>ZQ (x)f P (t) f(D)aL, (1.4)

where

Q) = T2 (X) = TS 1 (X,

i 1.5
Tk (x) =D pnj(x). (1-5)

j=k

It is obvious that \N/n,,X are positive linear operators and XN/n,a(l;x) = 1. In the special
case & = 1, the operators \N/n,a reduce to the operators \N/n = \N/n,l. Some basic properties
of Jnx are as follows:
@) Jnk(X) =Jnkr1(x) = pui(x) (k=0,1,2,...);

(i) Jpx(X) =npniik-1(x) (k=1,2,3,...);

(iii) Jnx(x) =1 J3 Prarp-r(B)dt (k=1,2,3,..);

(1iv) 0 <+ < Jukr1(x) <Jni(x) <+ < Jp1(x) <Jpo(x) =1 (x> 0);

(V) Jnk is strictly increasing on [0, c0).

In this paper, we study the rate of convergence for the new sequence of operators
(1.4), for functions f of bounded variation. Our result essentially generalizes and im-
proves the results of [8, 11]. Furthermore, we find the limit of the sequence \N/n,,x( fix)
for bounded locally integrable functions f having a discontinuity of the first kind at
x € (0,).

2. The main results. As a main result, we derive the following estimate on the rate
of convergence.

THEOREM 2.1. Assume that f € W (0, ) is a function of bounded variation on every
finite subinterval of (0, c). Furthermore, let x > 1, A > 2, and x € (0, o) be given. Then,
for each v € N, there exists a constant M (f, x,v,x) such that for sufficiently large n, the
Bézier-type Baskakov-Durrmeyer operators \N/n,a satisfy the estimate

Vi (f5%) = [ﬁf(wr) + ﬁf(X—)] ‘

x(10+11x)
< @i XD - fx)] @.1)
200 (1+x) +x & X”/f M(f,tX,T,X)
2V (g
k=1x— x/f

where

S —f(x-) (0=st<x),
gx(t) =40 (t =x), (2.2)
Ft)—f(x+) (x<t<o),

and \/Z(gx) is the total variation of gx on [a,b].
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REMARK 2.2. The exponent 7 in the O-term of (2.1) can be chosen arbitrary large.

As an immediate consequence of Theorem 2.1, we obtain in the special case & =1
the following estimate which improves the results of [8, 11].

COROLLARY 2.3. Under the assumptions of Theorem 2.1, there holds, for sufficiently
large n,

T30 = 3 [F0e4) + £ (x-)])

(10+11x) o
N T Al 2.3)
NATES RS N (g ML)
k=1x-x/Vk nr ’

where gy is defined as in Theorem 2.1.

THEOREM 2.4. Let x € (0,00). If f € L(0, ) has a discontinuity of the first kind at x,
then

hm Vi (f3x) = —f(x )+—f(x ) (2.4)
3. Auxiliary results. In order to prove our main result, we will need the following

lemmas. Throughout the paper, for each real x, let @ (t) =t — x.

LEMMA 3.1 (see [6]). Let {&;}, be a sequence of independent and identically dis-
tributed random variables with finite variance such that the expectation E(&;) = a, €
R = (—o00, ), and the variance V(&;) = bf > 0. Assume that E|E; — a1 |? < co. Then there
exists a constant ¢ with 1//21 < ¢ < 0.82 such that, for alln =1,2,3,... and all t € R,

n 1 t _u?
' (bl\/_g _t) NI 24y

LEMMA 3.2 (see [10]). For each fixed x € [0,o) and m € Ny, the central moments
\N/n(w,’?;x) of the Baskakov-Durrmeyer operators (1.1) satisfy

E|&-ai|’
Jnb}

<c 3.1)

Vo (px) =0 (ntm+D2l) - (n — o), (3.2)
In particular,

7 (1-2) = & oy 2m=1D)x(1+x) 2(1+2x)2
Vax) =1, Va(Wix) = =0 =5 0 =5 o n=3)" (3.3)

REMARK 3.3. Note that, given any A > 2 and any x > 0, for all n sufficiently large,
we have the estimate

Vo (2ix) < X2 (3.4)

n



462 V. GUPTA AND U. ABEL

LEMMA 3.4 (see [13]). For all x > 0 and n,k € N, there holds

a 1
JE () Prge(x) < QLX) < appi(X) < ‘XT:L;C (3.5)
Throughout, let
Kna(x,t) = (n=1) > Q0 (xX)pui (), (3.6)
k=0
Y
Mnax,7) = | Knalx, 00, (3.7)
0

With this definition, for each function f € W(0,~), there holds, for all sufficiently
large n,

‘N/n,a(f;x) = JO Kn,(x(x,t)f(t)dt- (3.8)
Note that, in particular,
An,a(Xx,00) = J Kno(x,u)du = 1. (3.9)
0

LEMMA 3.5. For each A > 2 and, for all sufficiently large n, there exist, for all x €
(0, 00),

Y Aox(1+x
Analx,y) = L Knolx,t)dt < n(x(fy)z) 0<y<x), (3.10)

« Aax(1l+x)
1-Apu(x,z) = J Knua(x,t)dt < —————=~ (X <z < 00). (3.11)

z n(z-x)?2

PROOF. First we prove (3.10). There holds
Y Y (x—t)?
JO Kn,a(x,t)dt < JO Kn'u(x,t)mdt

(3.12)

=< (X*y)izvn,a(w}zc;x)
< alx—y) V1 (w3;x),
where we applied Lemma 3.4. Now (3.10) is a consequence of Remark 3.3. The proof of

(3.11) is similar. O

LEMMA 3.6 (see [13]). Let{&;};>, be a sequence of independent random variables with
the same geometric distribution

P@E =K) = (5 )k

1+x

Tox (ke N), (3.13)

where x > 0 is a parameter. Then,

E(§)=x, E(E-E&) =x(1+x), E|&-E&|> <3x(1+x)% (3.14)
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LEMMA 3.7. Forall x € (0,0) and k =0,1,2,..., there hold

x(10+11x)

2ynx(1+x)’
x(10+11x)

2ynx(1+x)°

PROOF. First we prove (3.15). Proceeding along the lines of [8, Lemma 2.8] and [12],
it is easily checked that

|Jﬁ,k(x)_fﬁ(71,k+1(x)| = (3.15)

TR0 =T, (0| < (3.16)

) 2(0.82)E| & —E& | x
| Tk () = Jno1 g1 ()| < Jax(1+x))7  R2mnx(tx)
B 2(0.82)-3x(1+x)2+ x (3.17)
VA(x(1+x))* T 2¢nx(T+x)
10+11x

< e —
T 2dnx(1+x)’
where we used Lemmas 3.1 and 3.6. Application of the inequality |a® - b%| < x|a—Db|,
forO<a, b <1,and « > 1 yields (3.15). The proof of (3.16) is similar. d
4. Proofs of the main results

PROOF OF THEOREM 2.1. Our starting point is the identity

1 .
O = = e+ =S foe) + (s1gn(t—x> +2

+1
S(x+) +f(x—))
2 b

*l)f(x+) - f(x-)
+1 2 “.1)

+gx<t>+6x<t>(f<x>—

where 6, (t) =1(t = x)and 6, (t) = 0 (t + x) (see [12, Equation (28)]). Since \N/n,lx(éx;x) =
0, we conclude that

~ ] 1 _& _
V”'“(f’x)f[a+1f(x+)+tx+1f(x )]‘ (4.2)

1
< —
2

~ ) -1 ~
Vi (sign(t —x);x) + %’ | f(x+)=fx=) |+ | Via(gx:x) |

First, we obtain
~ . _ . _ _ = (o() * ) _ x )
¥ (sign(t - x);x) = (n 1>J§)Qm<x>(L pri(t)dt= | pus(t)dt)
S @ Y o,
~(n 1)}%Qn,,(X)(L pri®dt=2 [ pusndt) @3

_1-2-1) S QW () L P (D)L,

Jj=0
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Using
k o
> a1y = (=D [ pasior, (4.4)
J=0 x
we conclude that

- i
Vi (sign(t—x);x) =1-2 > QM (x) (1 - vn_l,k(x))

j=0 k=0
=142 3 puork(x) D QY (x) (4.5)
k=0 j=k

= =142 pu1k (GO (X)
k=0

since Y% i=0Q (@) (%) =1. Therefore, we obtain

Vo (sign(t - x);x) + 51 =2 S Pk (TS ()~ Z QXN (46
k=0

since >, Q(”‘+1 (x) = 1. By the mean value theorem, it follows that

QU (x) = T8 () = T 1 () = (@ + D) Pk (X) Y S (%), 4.7)

where Jy-1k+1(X) < yni(x) < Jn-1,k(x). Hence,
Vi (sign(t —x);x) Z D1k () (JE R (X) =y (x)), (4.8)

where
T () =T 100 < T (0 =i () < Jg () =T 1 g1 (). (4.9

Lemma 3.7 implies that

"“1‘ L QAN v (0, o). (4.10)

x+1] " Jnx(1l+x)

In order to complete the proof of the theorem, we need an estimate of \N/n,a(gx;x). We
use the integral representation (3.8) and decompose [0, ) into three parts as follows:

o x-x/Jn xX+x/Jn S
V(g x) = (L +f +L+x/ﬁ)1<n,a(x,t>gx<t>dt

‘\N/n,a(sign(tfx);x) +

x-x/yn (4.11)
=1, +I>+13, say.
We start with I>. For t € [x —x//n,x +x//n], we have
X+x/J/n
lgx®) <\ (g, (4.12)

x-x/yn



A BEZIER-DURRMEYER VARIANT OF THE BASKAKOV OPERATORS 465

and therefore

x+x/yn 1 n x+x/vVk
[l = V (g0)= p Z Vo (gx)- (4.13)
x-x/Jn k=1x-x/Vk

Next we estimate I;. Let vy = x — x//n. Using integration by parts with (3.7), we have
Y k%
I = JO Ix (O diAna (X, 1) = gx (V) An,a(X,Y) —JO Anoa(x,t)drgx (). (4.14)
Since |gx ()] = 1gx () = gx (x)| < \/3,(gx), we conclude that
X v x
|Il | = \/ (gx)An,a(X,y) +JO /\n,a(X,t)dt(—\/(gX)>_ (4.15)
Y t

Since vy = x —x/y/m < x, (3.10) implies that

Aox (1+x) " )\(xx(1+x) *
In|<=————\/(9x > (o t)2 ( \/ ) (4.16)

n(x-— y)2 n

Integrating the last term by parts, we get

| SWG{Q\/ (g +2J vt_t)3dt) (4.17)
0

Replacing the variable 7y in the last integral by x — x/./n, we obtain

x=x/yn X x/Vk X
JO \/(gx)(x t)3dt = ZJ \/ (gx)t73dt

IVEFT
e (4.18)
1
<TZ Vo (gx).
k=1x-x/Vk
Hence,
2Ax(1+x) = "
|1 | Si?ix )Z \V  (9x)- (4.19)
k=1x-x/Vk
Finally, we estimate I3. We let
~ gx(t) (0=t <2x),
Fet)y=1"" (4.20)
Ix(2x) (2x <t < )
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and divide I3 = I3; + I3, where

I =j Ko, )G (DL,
xX+x/yn

N (4.21)
I3y = L Ko (x,0)[gx () —gx (2x)]dt
X
With y = x + x/+/n, the first integral can be written in the form
1= Jim {00 (1= A, )]+ G (R) A a6, R) - 1]
R (4.22)
+j [1-An,a<x,t>]dt§x<t>}.
b
By (3.11), we conclude that
Aax(1+x) (V2 (gx) | 1Gx(R)| J t
Il === Rllrfw{(y 2 T R-x2 )y - x>2 V@
, (4.23)

CAax(I+x) (VX (gx) 2x
oo {(yx)erL (tx)zdf(\/(gx)>}-

X

In a similar way as above we obtain

2x t 2x n-1x+x/vk
J 1dt(\/wx))“2\/<gx>—vy’¥_(g")+xZz Vo o(g) @429

y (t—x)2

which implies the estimate

20a(1 + ”“"/f
|31 | < (X( X)Z \/ (4.25)

We proceed with I3». By assumption, there exists an integer » such that f(t) = O(t%")
as t — 0. Thus, for a certain constant M > 0, depending only on f, x, and 7, we have

Is2| < M(n— I)ZQ(“)(X)L Pk (O dt
. (4.26)
<aM(n-1) Z pn,k(x)J P (D)t dt,
k=0 2x

where we used Lemma 3.4. Obviously, t > 2x implies t < 2(t —x) and it follows that

Iz | <27 aM(n-1) > pn,k<x>j0 Puk(B) (=202 dt = 227 aMVy (W¥5x).  (4.27)
k=0
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By Lemma 3.2, the central moments of the Baskakov-Durrmeyer operators (1.1) satisfy
Vo (W2;x) = O(n™") (n — ), and we obtain

I;=0(n") (n— ). (4.28)
Collecting the estimates (4.13), (4.19), (4.25), and (4.28) yields with regard to (4.11)

N 2AQ(1 +x) +x & XFEIVE
|Vn,o((gx;x)’ = # Z \/ (gx)+0(n") (n— o). (4.29)
k=1x-x/Vk

Finally, combining (4.2), (4.10), and (4.29), we obtain (2.1). This completes the proof
of Theorem 2.1. |

PROOF OF THEOREM 2.4. Since the function 2 given by w2(t) = (t — x)? is of
bounded variation on every finite subinterval of [0, ), we deduce from Theorem 2.1
that, for all x € (0,0),

lim Vi (W2;x) = 0. (4.30)

If f € Ls(0,00), then g, defined as in (2.2) is also bounded and is continuous at the
point x. By the Korovkin theorem, we conclude that

}L%Vna(gx; Xx) =gx(x) =0. (4.31)
Therefore, the right-hand side of inequality (4.2) tends to zero as n — . This completes
the proof of Theorem 2.4. |
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