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Kolmogorov (1949) determined the best possible constant Kn,m for the inequality

Mm( f )≤ Kn,mM
(n−m)/n
0 ( f )Mm/n

n ( f ), 0 <m < n, where f is any function with n bounded,
piecewise continuous derivative on R and Mk( f ) = supx∈R | f (k)(x)|. In this paper, we
provide a relatively simple proof for the case of equality.

1. Introduction

While investigating summability methods for infinite series [5], Hardy and Littlewood
posed an interesting problem which Kolmogorov solved 28 years later and that is the
topic for this paper.

Write f = O(g) if and only if limx→∞ f (x)/g(x) <∞. Hardy and Littlewood showed
that if f is twice continuously differentiable for x > xo and if f = O(1) and f ′′ = O(1),
then f ′ =O(1).

More generally, they proved that if φ, ψ are increasing and f (n) is continuous, then for
0 <m < n, if f =O(φ) and f (n) =O(ψ), then f (m) =O(φ(n−m)/nψm/n).

These theorems were important due to their applications to Dirichlet’s series—series
of the type

∑∞
k=1 akk

−m. In their proof, Hardy and Littlewood show that the quantities

χm(x)=max
y≤x

∣∣ f (m)(y)
∣∣∣∣φ(n−m)/n(y)ψm/n(y)

∣∣ , (1.1)

are bounded independently of x.
By letting φ = f and ψ = f (n) in (1.1) and letting x →∞, one observes that χm is

bounded if and only if the inequality

Mm( f )≤ Kn,mM
(n−m)/n
0 ( f )Mm/n

n ( f ), 0 <m < n, (1.2)

Mk( f )= sup
x∈R

∣∣ f (k)(x)
∣∣, (1.3)
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holds for some constant Kn,m. Hardy and Littlewood conjectured that a constant Kn,m

existed for which the inequality would hold for all functions with n bounded derivatives,
and the race was on to find the best constant.

The first breakthrough came in [7]. Motivated partly by the above theorems and partly
by his own previous work, Landau was able to show that the value K2,1 =

√
2 for func-

tions which are twice differentiable. He also considered the related problem on a finite
interval, and showed that if f is defined on an interval of sufficient length and if the def-
inition Mk( f ) is modified appropriately, then K2,1 = 2. Landau considers the case where
the second derivative is continuous separately from the case where it is only assumed to
be bounded.

Within the following year, Hadamard [4] extended Landau’s result by proving that
Kn,1 ≤ 2(n−1)/n.

The best value for Kn,m for n < 5 and n= 5, m= 2 was discovered in [1]. Kolmogorov
[6] attributes these values to Silov. Silov’s result can be found in a paper written by Bosse
[1].

In [3], Gorney obtained an upper bound of Kn,m ≤ 16(2e)m. While Gorney’s value for
Kn,1 was much larger than the value obtained by Hadamard, Gorney successfully bounded
Kn,m for all values of m and n, 1 <m < n.

Finally, in [6], Kolmogorov observed that the functions used by Bosse could be used
to maximize the quantity

γn,m = Mm( f )

M(n−m)/n
0 ( f )Mm/n

n ( f )
, (1.4)

where n∈N , 0 <m < n. Specifically, Kolmogorov showed that

Kn,m =max
f
γn,m( f )= γn,m

(
gn
)
, (1.5)

where

gn(x)= 4
π

∞∑
k=0

sin
(
(2k+ 1)x−nπ/2)

(2k+ 1)n+1
(1.6)

is the nth integral of the square function (see Figure 1.1).

Remark 1.1. In any quarter period where both gn(x), g′n(x) > 0, we have g′′n (x) < 0.

The first few values of Kn,m are [6]

K2,1 =
√

2, K3,1 =
3
√

9
2

, K3,2 = 3
√

3. (1.7)

Kolmogorov’s proof, although elementary, was very complicated. In this paper we
will give a modified proof of Kolmogorov’s theorem. Our techniques give us the insight
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Figure 1.1. Plot of comparison functions.

needed to characterize all functions for which equality holds in (1.2) withKn,m = γn,m(gn).
We note that for every n, gn has a discontinuous nth derivative, and in fact we will show
that all functions for which equality holds have discontinuous nth derivatives.

Boor and Schoenberg [9] proved that the case of equality was true only for the com-
parison functions when n ≥ 3 and true for a class of functions which were a modifica-
tion of the comparison function for n = 2. The proof however is quite complicated and
technical. In [8] Schoenberg discusses the results for n = 2 and 3 using concepts from
elementary differential and integral calculus. However, in this article Schoenberg points
out that though the underlying ideas for proving the result for n ≥ 4 are simple as the
cases n = 2 or 3, the elementary approach does not work because the tools necessary
to establish them becomes quite involved and complicated. Finally, Cavaretta [2] proves
Kolmogorov’s theorem for all values of n using Rolle’s theorem and the Leibnitz formula
for differentiation of a product.

The modification that is made in this article significantly modifies the case of equality
for all values of n.

2. Comparison functions

For n ∈ N , let �n denote the class of all bounded (n− 1) times differentiable functions
whose nth derivative is continuous almost everywhere and bounded.
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Definition 2.1 below is a modification of a definition of Kolmogorov and is the key for
simplifying the proof in the case of equality.

Definition 2.1. Suppose n∈N , f ∈�n. We say that φn is a comparison function of order
n of f if and only if

φn(x)= agn(bx+ c), (2.1)

where gn are the functions defined in (1.6) and the constants a and b are chosen such that

M0( f )≤M0
(
φn
)
, Mn( f )=Mn

(
φn
)
. (2.2)

We say that φn is a comparison function of f at x0 if in addition we have

∣∣ f (x0
)∣∣ > ∣∣φn(x0

)∣∣. (2.3)

Note that for any f ∈�n a comparison function of order n can be constructed by
letting a =M0( f )/M0(gn) and abn =Mn( f ). Furthermore, since φn takes all values be-
tween ±M0(φn), we can choose c so that φn is a comparison function at x0, provided that
f (x0) �= 0.

Also, note that γn,m(φn)= γn,m(gn)= Kn,m for all choices of a, b and c.
One advantage of the new definition is that if φn is a comparison function of f at x0,

then it is also a comparison function at all points x in some interval containing x0.
Comparison functions possess the following remarkable property.

Theorem 2.2. Let n≥ 2, f ∈�n. If φn is a comparison function of f of order n at x0, then

∣∣ f ′(x0
)∣∣ < ∣∣φ′n(x0

)∣∣. (2.4)

The proof will be given later. For now, we will assume Theorem 2.2 to be true and prove some
important consequences.

Corollary 2.3. Suppose n ≥ 2, f ∈�n, and suppose φn is a comparison function of or-

der n. Then φ(m)
n (x) is a comparison function of f (m) of order (n−m) for 0 < m < n. In

particular, Mm( f )≤Mm(φn).

Proof. We prove m= 1 only, since the other cases follow inductively.
Notice that if φn(x) = agn(bx + c), then φ′n(x) = abgn−1(bx + c) and that Mn(φn) =

Mn−1(φ′n). Thus, since M0( f ′)=M1( f ), M0(φ′n)=M1(φn), to finish the proof it suffices
to prove that M1( f )≤M1(φn).

Choose x0 such that

∣∣ f ′(x0
)∣∣=M1( f ). (2.5)

If f (x0) �= 0, then we can translate φn to be a comparison function at x0. Consequently,
by Theorem 2.2 we have

M1( f )= ∣∣ f ′(x0
)∣∣ < ∣∣φ′n(x0

)∣∣≤M1
(
φn
)
. (2.6)
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If f (x0) = 0, then we may assume that there exist points x1 arbitrarily close to x0 such
that f (x1) �= 0. By Theorem 2.2, we have

∣∣ f ′(x1
)∣∣ < ∣∣φ′n(x1

)∣∣≤M1
(
φn
)
. (2.7)

By letting x1 → x0 and using continuity of f ′, we obtain the result. �

Kolmogorov’s inequality is an immediate consequence of Corollary 2.3.

Theorem 2.4 ([6]). Suppose n≥ 2, f ∈�n. Then

Mm( f )≤ Kn,mM
(n−m)/n
0 ( f )Mm/n

n ( f ), 0 <m < n, (2.8)

where Kn·m = γn,m(gn).

Proof. Choose a comparison function φn such that M0( f )=M0(φn). Then by Corollary
2.3 and (1.4) and (1.5), we have

Mm( f )≤Mm
(
φn
)= Kn,mM

(n−m)/n
0

(
φn
)
Mm/n

n

(
φn
)
. (2.9)

Therefore, we obtain

Mm( f )≤ Kn,mM
(n−m)/n
0 ( f )Mm/n

n ( f ), (2.10)

where Kn·m = γn,m(φn). �

It is also interesting to note that Theorem 2.4 implies Corollary 2.3.

Theorem 2.5. If Theorem 2.4 is true, then Corollary 2.3 is true.

Proof. Suppose n≥ 2, f ∈�n and that φn is a comparison function of order n of f . Then
since M0( f )≤M0(φn) and Mn( f )=Mn(φn), we have by Theorem 2.4,

Mm( f )≤ Kn,mM
(n−m)/n
0 ( f )Mm/n

n ( f )

≤ Kn,mM
(n−m)/n
0

(
φn
)
Mm/n

n

(
φn
)=Mm

(
φn
)
.

(2.11)

Therefore, M0( f m)≤M0(φ(m)
n ). Since Mn−m( f m)=Mn−m(φ(m)

n ) we conclude that φ(m)
n is

a comparison function f (m) of order (n−m). �

3. Proof of Theorem 2.2

We will prove Theorem 2.2 by an inductive process involving both Theorem 2.2 and
Theorem 2.4. The proof follows the same strategy that Kolmogorov used, but with sim-
plification afforded by our modified definition of comparison functions. We will prove
the Theorem by proving the following lemmas.

Lemma 3.1. Theorem 2.2 is true for n= 2.

Lemma 3.2. If Theorem 2.2 is true for n= k ≥ 2, then Theorem 2.4 is true for n= k+ 1 and
m= 1.
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Lemma 3.3. If Theorem 2.2 is true for n= k ≥ 2, and Theorem 2.4 is true for n= k+ 1 and
m= 1, then Theorem 2.2 is true for n= k+ 1.

Proof of Lemma 3.1. Suppose Theorem 2.2 is not true for n= 2. Then there exists a func-
tion f ∈�2, a point x0, and a comparison function φ2 of f at x0 such that

∣∣ f (x0
)∣∣ > ∣∣φ2

(
x0
)∣∣,

∣∣ f ′(x0
)∣∣≥ ∣∣φ′2(x0

)∣∣. (3.1)

Without loss of generality, we may assume that f (x0) > 0 and f ′(x0) ≥ 0. If not, we can
replace f with ± f (±x). We can also assume that φ2(x0), φ′2(x0)≥ 0 by changing the sign
of a and shifting if necessary.

Since M0( f ) ≤M0(φ2), it follows that φ2(x0) �=M0(φ2). Let x1 be the first point to
the right such that φ2(x1)=M0(φ2). Note that we will have φ′′2 (x) < 0 for all x ∈ (x0,x1).
Furthermore, since f (x0) > φ2(x0), f ′(x0)≥ φ′2(x0), and f (x1)≤ φ2(x1), we have

∫ x1

x0

f ′′(x)
(
x1− x

)
dx = f

(
x1
)− f

(
x0
)− f ′

(
x0
)(
x1− x0

)

< φ2
(
x1
)−φ2

(
x0
)−φ′2(x1− x0

)=
∫ x1

x0

φ′′2
(
x1− x

)
dx.

(3.2)

Therefore there exists x2 ∈ (x0,x1) such that

f
(
x2
)
< φ′′

(
x2
)
. (3.3)

Since φ′′2 (x2) < 0 and φ′′2 is the square wave function, we obtain

∣∣ f ′′(x2
)∣∣ > ∣∣φ′′2 (x2

)∣∣=M2
(
φ2
)
, (3.4)

contradicting M2( f )=M2(φ2). This completes the proof of Lemma 3.1. �

Proof of Lemma 3.2. Choose x0 such that | f ′(x0)| =M1( f ). Without loss of generality, we
may assume that f ′(x0) > 0. Let φk be a comparison function of f ′ of order k such that
φk(x0)=M0(φk)=M0( f ′). Let x1 be the first point to the left of x0 such that φk(x1)= 0.

We claim that

f ′(x)≥ φk(x), ∀x ∈ [x1,x0
]
. (3.5)

If not, then choose x2 ∈ (x1,x0) such that 0 < f ′(x2) < φk(x2). Let φkc(x) = φk(x + c)
where c < 0 is chosen such that φkc is increasing on [x2,x0],

φkc
(
x2
)= f ′

(
x2
)
, φkc

(
x0
)
< f ′

(
x0
)
. (3.6)

Let x3 be the first point to the left of x0 (see Figure 3.1) such that φkc(x3)= f ′(x3). Then
0 < φkc(x) < f ′(x), for all x ∈ (x3,x0) and

∫ x0

x3

φ′kc(x)dx = φkc
(
x0
)−φkc(x3

)
< f ′

(
x0
)− f ′

(
x3
)=

∫ x0

x3

f ′′(x)dx. (3.7)
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Figure 3.1. Construction for the proof of Lemma 3.2.

Therefore, there exists x4 ∈ (x3,x0) such that

0 < φkc
(
x4
)
< f ′

(
x4
)
, 0 < φ′kc

(
x4
)
< f ′′

(
x4
)
. (3.8)

This contradicts Theorem 2.2 and proves the claim.
Similarly, choose x′1 the first point to the right of x0 such that φk(x′1)= 0. By the same

argument as above, we obtain

f ′(x)≥ φk(x)≥ 0, ∀x ∈ [x0,x′1
]
. (3.9)

Combining (3.5) and (3.9), we obtain

2M0( f )≥ f
(
x′1
)− f

(
x1
)=

∫ x′1
x1

f ′(x)dx ≥
∫ x′1
x1

φk(x)dx. (3.10)

Now note that φk(x) = agk(bx + c) is the derivative of φk+1(x) = ab−1gk+1(bx + c). Since
the points x1 and x′1 are zeros of φk(x), then we have

∫ x′1
x1

φk(x)dx = 2M0
(
φk+1

)
. (3.11)

Therefore we have

M0( f )≥M0
(
φk+1

)
. (3.12)

Finally, since M0(φk)=M1(φk+1), we obtain

M1( f )= Kk+1,1M
k/(k+1)
0

(
φk+1

)
M1/(k+1)

k+1

(
φk+1

)

≤ Kk+1,1M
k/(k+1)
0 ( f )M1/(k+1)k+1 ( f ).

(3.13)

This completes the proof of Lemma 3.2. �
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Figure 3.2. Construction for the proof of Lemma 3.3.

Proof of Lemma 3.3. Suppose Theorem 2.2 is not true for n= k+ 1. Then, for an arbitrary
function f ∈�k+1 and a point x0, there exists a comparison function φk+1 of f at x0 such
that

∣∣ f (x0
)∣∣ > ∣∣φk+1

(
x0
)∣∣,

∣∣ f ′(x0
)∣∣≥ ∣∣φ′k+1

(
x0
)∣∣. (3.14)

Since M0( f ) ≤M0(φk+1), the point x0 cannot be a maximum for φk+1. Consequently,
φ′k+1(x0) �= 0, which implies f ′(x0) �= 0.

Without loss of generality, we may assume that f (x0) > 0, f ′(x0) > 0, φk+1(x0)≥ 0, and
φ′k+1(x0) > 0. Furthermore, by shifting φk+1 slightly to the left if necessary, we can replace
≥ in the inequality (3.14) with > (see Figure 3.2).

We now have

f
(
x0
)
> φk+1

(
x0
)
> 0, f ′

(
x0
)
> φ′k+1

(
x0
)
> 0. (3.15)

Now let x1 be the maximum of φk+1 which is closest to x0 on the right, such that

f
(
x1
)≤M0( f )≤M0

(
φk+1

)= φk+1
(
x1
)
. (3.16)

We have

∫ x1

x0

f ′(x)dx = f
(
x1
)− f

(
x0
)
< φk+1

(
x1
)−φk+1

(
x0
)=

∫ x1

x0

φ′k+1(x)dx. (3.17)

Consequently, there exists x2 ∈ (x0,x1) such that

f ′
(
x2
)
< φ′k+1

(
x2
)
. (3.18)
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Since we also have f ′(x0) > φ′k+1(x0), there exists an x3 to the left of x2 such that

f ′
(
x3
)= φ′k+1

(
x3
)
,

f ′(x) > φ′k+1(x) > 0, ∀ x ∈ (x0,x3
)
.

(3.19)

Thus,

∫ x3

x0

f ′′(x)dx = f ′
(
x3
)− f ′

(
x0
)
< φ′k+1

(
x3
)−φ′k+1

(
x0
)=

∫ x3

x0

φ′′k+1(x)dx. (3.20)

Therefore, there exists a point x4 ∈ (x0,x3) such that

f ′
(
x4
)
> φ′k+1

(
x4
)
> 0, f ′′

(
x4
)
< φ′′

(
x4
)
< 0. (3.21)

On the other hand, by Theorem 2.5, when n = k + 1, φ′k+1 is a comparison function of
order k for the function f ′. This concludes the proof of Lemma 3.3. �

The inductive process proves that Theorem 2.2 holds for n≥ 2, and that Theorem 2.4
holds for n≥ 3. It was proved earlier that Theorem 2.4 in the case n= 2 follows directly
from Corollary 2.3.

4. The case of equality

Theorem 4.1. Suppose n≥ 2, f ∈�n, and suppose that for some m, 0 <m < n,

Mm( f )= Kn,mM
(n−m)/n
0 ( f )Mm/n

n ( f ). (4.1)

Then there exists constant a, b, and c such that
(a) for n= 2, f (x)= φ2(x)= ag2(bx+ c) for x ∈ [x0,x1] is a half period of φ2 for which

|φ2(x0)| = |φ2(x1)| =M0(φ2)=M0( f );
(b) for n≥ 3, f (x)= φn(x)= agn(bx+ c) for all x ∈R.

Proof. We will do the proof in three steps.

Step 1. If (4.1) is true for n ≥ 2 and m = 1, then there exists φn(x) = agn(bx + c) such
that f (x) = φn(x) for x ∈ [x0,x1] is a half-period of φn for which |φn(x0)| = |φn(x1)| =
M0(φn)=M0( f ).

To prove this, suppose that (4.1) holds for f . Choose a comparison function of f such
that M0( f )=M0(φn) and Mn( f )=Mn(φn). By (4.1) we have M1( f )=M1(φn).

Let x2 be a point such that | f ′(x2)| =M1( f ).
If f (x2) �= 0, then there exists c such that φn is a comparison function of f at x2;

by Theorem 2.2, | f ′(x2)| < |φ′n(x2)|. But this contradicts M1( f ) =M1(φn). Therefore
f (x2)= 0.

Without loss of generality, we may assume f and φn are increasing at x2 and φn(x2)= 0.
Choose [x0,x1] centered at x2, a half period of φn.



1790 Landau’s inequality

−1

−0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

φn

f

x2 x4 x3 x1

Figure 4.1. Construction for the proof of Theorem 4.1.

We now claim that

f (x)= φn(x) ∀x ∈ [x2,x1
]
. (4.2)

Assume otherwise and suppose that there exists x3 ∈ (x2,x1) such that f (x3) > φn(x3). Let
x4 be the first point to the left of x3 such that f (x4)= φn(x4) (see Figure 4.1).

Then x4 ∈ [x2,x3) and

f (x) > φn(x) > 0 ∀x ∈ (x4,x3
]
. (4.3)

Furthermore,
∫ x3

x4

f ′(x)dx = f
(
x3
)− f

(
x4
)
> φn

(
x3
)−φn(x4

)=
∫ x3

x4

φ′n(x)dx. (4.4)

Hence there exists x5 ∈ (x4,x3) such that f ′(x5) > φ′n(x5) > 0, which along with (4.3) con-
tradicts Theorem 2.2. Thus

f (x)≤ φn(x), x ∈ [x2,x1
]
. (4.5)

To prove the inequality in the other direction, assume that there exists an x3 ∈ (x2,x1)
such that f (x3) < φn(x3). Then, since f (x2)= φn(x2)= 0, we have

∫ x3

x2

f ′(x)dx = f
(
x3
)
< φn

(
x3
)=

∫ x3

x2

φ′n(x)dx. (4.6)

Then there exists x4 ∈ (x2,x3) such that φ′n(x4) > f ′(x4).
We can assume that f ′(x4)≥ 0; if it were negative, then (since by assumption f ′(x2) >

0) we can choose a new point x4 where f ′(x4)= 0, in which case φ′n(x4) > f ′(x4) would
hold trivially.
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Let φnc(x)= φn(x+ c) where c < 0 is chosen such that

φ′nc
(
x4
)= f ′

(
x4
)
. (4.7)

Note that since f ′(x2)=M1( f ), we will have φnc(x2) < f ′(x2). Let x5 be the first point to
the right of x2 such that φ′nc(x5)= f ′(x5). Hence

f ′(x) > φ′nc(x)≥ 0, x ∈ [x2,x5
)
,∫ x5

x2

f ′′(x)dx = f ′
(
x5
)− f ′

(
x2
)
< φ′nc

(
x5
)−φ′nc(x2

)=
∫ x5

x2

φ′′nc(x)dx.
(4.8)

This implies that there exists x6 ∈ (x2,x5) such that

f ′
(
x6
)
> φ′nc

(
x6
)≥ 0, f ′′

(
x6
)
< φ′′nc

(
x6
)
< 0. (4.9)

If n= 2, this contradicts M2( f )=M2(φnc).
If n≥ 3, then by Corollary 2.3, φ′n is a comparison function of f ′ of order ≥ 2, which

implies that φ′nc is also a comparison function of f ′ of order ≥ 2. In this case (4.9) con-
tradicts Theorem 2.2. Therefore f (x)= φn(x) for all x ∈ [x2,x1].

A similar argument shows that f (x) = φn(x) for all x ∈ [x0,x2]. This completes the
proof of Step 1.

Letting f be defined by

f (x)=




−M0
(
g2
)

if x ≤−π
2

,

g2(x) if − π

2
< x ≤ π

2
,

M0
(
g2
)

if x >
π

2
,

(4.10)

we see that this is the best possible result for n= 2.

Step 2. If the hypothesis in Step 1 is true for n≥ 3, then f (x)= φn(x) for all x ∈R.

To prove this, note that from Step 1 and Corollary 2.3, φ′n is a comparison function f ′,
φ′n(x)= f ′(x) for all x ∈ [x0,x1], and since f ′′ is continuous,

M2
(
φn
)= ∣∣φ′′n (x0

)∣∣= ∣∣ f ′′(x0
)∣∣. (4.11)

Using this last expression and the definition of a comparison function, we find

M2
(
φn
)=M2( f ). (4.12)

Therefore (4.1) is true for the function f ′.
Since φ′n(x0)= f ′(x0)= 0, then by Step 1, we can extend the equality φ′n(x)= f ′(x) to

the left of x0 by a quarter period to a point x′0. Similarly, we can extend the equality to the
right of x1 by a quarter period to a point x′1.
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We now have

φn
(
x′0
)= φn(x′1)= f

(
x′0
)= f

(
x′1
)= 0. (4.13)

Hence, we can extend the equality in both directions another quarter period.
By continuing this process of going back and forth between the original functions and

their first derivatives, we can extend the equality so that φn(x)= f (x) for all x ∈R. This
completes the proof of Step 2.

Step 3. If (4.1) is true for any n ≥ 2 and at least one m such that 2 ≤m < n, then there
exists a comparison function φn(x) such that f (x)= φn(x) for all x ∈R.

To prove this, choose φn a comparison function of f such that Mn( f ) =Mn(φn),
M0( f )
=M0(φn). We will show that M1( f )=M1(φn), such that the conclusion will follow from
Step 2.

Suppose that M1( f ) <M1(φn). Choose a comparison function ψn−1 of order n− 1 for
f ′ such that M1( f )=M0( f ′)=M0(ψn−1). Then we have

M0
(
ψn−1

)
<M0

(
φ′n
)
. (4.14)

Now, we can write

ψn−1(x)= a1gn−1
(
b1x+ c1

)
, φ′n(x)= a2gn−1

(
b2x+ c2

)
, (4.15)

where we assume a1, a2, b1, and b2 are nonnegative real numbers. From (4.14) we have
a1 < a2. FromMn−1(ψn−1)=Mn−1( f ′)=Mn( f )=Mn(φn)=Mn−1(φ′n), we have a1b

n−1
1 =

a2b
n−1
2 . It follows that

Mm−1
(
ψn−1

)= a1b
m−1
1 < a2b

m−1
2 =Mm−1

(
φ′n
)
, 2≤m< n. (4.16)

On the other hand, by Corollary 2.3,

Mm−1
(
f ′
)≤Mm−1

(
ψn−1

)
. (4.17)

Taken together, (4.16) and (4.17) contradict Mm( f )=Mm(φn).
This proves Step 3, which completes the proof of Theorem 4.1. �
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