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Chan (2004) considered a certain continued fraction expansion and the corresponding
Gauss-Kuzmin-Lévy problem. A Wirsing-type approach to the Perron-Frobenius oper-
ator of the associated transformation under its invariant measure allows us to obtain a
near-optimal solution to this problem.

1. Introduction

The Gauss 1812 problem gave rise to an extended literature. In modern times, the so-
called Gauss-Kuzmin-Lévy theorem is still one of the most important results in the met-
rical theory of regular continued fractions (RCFs). A recent survey of this topic is to be
found in [10]. From the time of Gauss, a great number of such theorems followed. See,
for example, [2, 6, 7, 8, 18].

Apart from the RCF expansion there are many other continued fraction expansions:
the continued fraction expansion to the nearest integer, grotesque expansion, Nakada’s
a-expansions, Rosen expansions; in fact, there are too many to mention (see [4, 5, 11,
12,13, 16, 17] for some background information). The Gauss-Kuzmin-Lévy problem has
been generalized to the above continued fraction expansions (see 3, 14, 15, 19, 20, 21]).

Taking up a problem raised in [1], we consider another expansion of reals in the unit
interval, different from the RCF expansion. In fact, in [1] Chan has studied the transfor-
mation related to this new continued fraction expansion and the asymptotic behaviour
of its distribution function. Giving a solution to the Gauss-Kuzmin-Lévy problem, he
showed in [1, Theorem 1] that the convergence rate involved is O(q") as n — oo with
0 < g < 1. This unsurprising result can be easily obtained from well-known general re-
sults (see [9, pages 202 and 262-266] and [10, Section 2.1.2]) concerning the Perron-
Frobenius operator of the transformation under the invariant measure induced by the
limit distribution function.

Our aim here is to give a better estimation of the convergence rate discussed. First, in
Section 2 we introduce equivalent, but much more concise and rigorous expressions than
in [1] of the transformation involved and of the related incomplete quotients. Next, in
Section 3, our strategy is to derive the Perron-Frobenius operator of this transformation
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under its invariant measure. In Section 4, we use a Wirsing-type approach (see [22]) to
study the optimality of the convergence rate. Actually, in Theorem 4.3 of Section 4 we
obtain upper and lower bounds of the convergence rate which provide a near-optimal
solution to the Gauss-Kuzmin-Lévy problem.

2. Another expansion of reals in the unit interval

In this section we describe another continued fraction expansion different from the regu-
lar continued fraction expansion for a number x in the unit interval I = [0, 1], which has
been actually considered in [1].

Define for any x € I the transformation

7(x) = 21ogx V/log2} 1 5 £ 05 7(0) = 0, (2.1)

where {u} denotes the fractionary part of a real u while log stands for natural loga-
rithm. (Nevertheless, the definition of 7 is independent of the base of the logarithm used.)
Putting

a,(x) =a, (1" 1 (x)), neN;={1,2..1}, (2.2)

with 7°(x) = x the identity map and

-1
ai(x) = [%], (2.3)

where [u] denotes the integer part of a real u, one easily sees that every irrational x € (0,1)
has a unique infinite expansion

2o
x=——p =laa..] (2.4)

1+---

1+

Here, the incomplete quotients or digits a,(x), n € N, of x € (0,1) are natural numbers.
Let %, be the o-algebra of Borel subsets of I. There is a probability measure v on %;
defined by

1 dx
v(A) = log(4/3) L (x+1)(x+2)’ A €D, (2.5)

such that »(r7!(A)) = »(A) for any A € By, that is, v is T-invariant.

3. An operator treatment

In the sequel we will derive the Perron-Frobenius operator of 7 under the invariant mea-
sure 7.

Let y be a probability measure on % such that u(77!(A)) = 0 whenever u(A) =0, A €
R, where 7 is the continued fraction transformation defined in Section 2. In particular,
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this condition is satisfied if 7 is y-preserving, that is, y7~! = p. It is known from [10,

Section 2.1] that the Perron-Frobenius operator P, of T under y is defined as the bounded
linear operator on L, = {f : I — C| [;| f|du < o} which takes f € L, into P, f € L}, with

J P, fdu = J fdu, Ac®,. (3.1)
A 1(4)

In particular the Perron-Frobenius operator Py of 7 under the Lebesgue measure A is

d

P(x) = ax J oo

fdA ae.inl (3.2)

ProrosriTioN 3.1. The Perron-Frobenius operator P, = U of T under v is given a.e. in I by
the equation

= Z Pk(x)f(”k(x))) f GL}/) (33)
keN
where
P+ D(x+2)
pk(x)—( ktx+1)(po 1l +x+1)° xel (3.4)
Lik(x) = xy?) xe I)
withy = 1/2.

The proof is entirely similar to that of [10, Proposition 2.1.2].
An analogous result to [10, Proposition 2.1.5] is shown as follows.

ProprosSITION 3.2. Let y be a probability measure on By. Assume that y < A and let h =
du/dA. Then

u(r"(A)) = J U/ (x) (3.5)

A+ Dx+2) ™

foranyn € N and A € By, where f(x) = (x+1)(x+2)h(x), x € 1.

4. A Wirsing-type approach

Let p be a probability measure on %B; such that 4 < A. For any n € N, put
Fu(x)=u(t"<x), x€l, (4.1)

where 7 is the identity map. As (7" < x) = 77"((0,x)), by Proposition 3.2 we have

(F U'fow)
Fﬂ(x) = Jo mdu, neN,xel, (42)

with fo(x) = (x+1)(x+2)F;(x), x € I, where Fy = du/dA.
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In this section we will assume that Fy € C'(I). So, we study the behaviour of U" as
n — oo, assuming that the domain of U is C!(I), the collection of all functions f :I — C
which have a continuous derivative.

Let f € C!(I). Then the series (3.3) can be differentiated term-by-term, since the series
of derivatives is uniformly convergent. Putting Ay = y* — %%, k € N we get

k+1 + Ak Aria

yk+x+1 IRGET T

wpr- 3o (2) - (1)
:,EN [((yk+1A+k;1+l)2 - (yk+ik+1)2)f(xy+k1> " Pix) (xi)rkl)zf,<x)ji—kl)]
3 | et () (7)) e (xﬁ)zf'(!le

x € I. Thus, we can write

pr(x) =y

(Uf) =-Vf, fecC), (4.4)
where V : C(I) — C(I) is defined by

K+1/(x4+1) k k
Vg(x) = Z (%J’y gu)du+ pr(x )(x+1)2g< )), (4.5)

ken V(PR x4+ 1) b/
g€ C(I), x €I Clearly,
(U f) = (=1)"V"f', neN,, feC). (4.6)
We are going to show that V" takes certain functions into functions with very small

values when n € N, is large.

ProrosITION 4.1. There are positive constants v > 0.206968896 and w < 0.209364308, and
a real-valued function ¢ € C(I) such that ve < Vo < we.

Proof. Let h: Ry — R be a continuous bounded function such that lim,_.. h(x) < co. We
look for a function g : (0,1] — R such that Ug = h, assuming that the equation

k
Ugt) = S pilx (x+l) h(x) (4.7)

keN

holds for x € R,. Then (4.7) yields

h(x) hQx+1) x+1 1
>g(

_ = , eR,. 4.8
x+2  2x+3  (x+2)(2x+3 x+1) e R (48)
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Hence
g(u):(u+2)h($—l)—(u+1)h(%—1), we (0,1, (4.9)

and we indeed have Ug = h since

o= S (2 () (2 ()

keN yk
_.x+2 Z y2k
2 o (PR x 1) (P 4 x4+ 1) (4.10)
x+1 x+1 x+1 x+1
X[(yk“ +1)h( yk _1>_( yk +1)h(yk“ _1)]
=h(x), xeR,.

In particular, for any fixed a € I we consider the function h, : Ry — R defined by
ha(x) = 1/(x+a+1), x € R,. By the above, the function g, : (0,1] — R defined as

galx) = (x+z)ha(;lc _ 1) ~(x+ 1)ha(§ _ 1)

4.11
_x(x+2)_x(x+1) xe(0,1] ( )
T oax+1 ax+2"° Y
satisfies Ug,(x) = ha(x), x € I. Setting
.y Bax?+4(a+1)x+6
Pa(x) = g,(x) = (@12 (axt 12’ (4.12)
we have
, 1
Voa(x) = = (Uga) (x) = Grar)? xel (4.13)

We choose a by asking that (¢./V ¢,)(0) = (¢a/V ¢,)(1). This amounts to 3a* + 12a° +
18a% — 2a — 17 = 0 which yields as unique acceptable solution a = 0.794741181.... For
this value of a, the function ¢,/V¢, attains its maximum equal to (3/2)(a +1)? =
4.83164386... at x = 0 and x = 1, and has a minimum m(a) = (¢./V¢,)(0.39) =
4.776363306.... It follows that for ¢ = ¢, with a = 0.794741181..., we have

29 ¢
3a+ 1) <Ve¢=< (@)’ (4.14)

that is, vo < Vg < we, where v = 2/3(a + 1)? > 0.206968896, and w = 1/m(a) <
0.209364308. O

CoroLLARY 4.2. Let fo € C'(I) such that fy >0. Put a = minge; @(x)/ fy (x) and =
maXxyer ¢(x)/ fy (x). Then

%v“fo' <V < gw”fo', ne N;. (4.15)
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Proof. Since V is a positive operator, we have
Vi < V"o <w"p, neN,. (4.16)

Noting that afy < ¢ < 5f,, we can write

@ 4 1 n 1 n n gr 1 n 1 n n g’
ﬁv"fosﬁvq)sﬂVgoszos‘XV(ps(qu)sgwfo, (4.17)
n € N,, which shows that (4.15) holds. O

THEOREM 4.3 (near-optimal solution to Gauss-Kuzmin-Lévy problem). Let fy € C'(I)
such that f; >0. Foranyn € N, and x € I,

2 N 7
(10g(4/3)) (XmlanIfO (x) VnF(X) (1 _ F(X))

2p (4.18)

2 4
log(4/3)) ﬁamaXxef Jo O k) (1 - F(x),

< |u(r"<x) - F(x)| < (

where o, B, v and w are defined in Proposition 4.1 and Corollary 4.2 and F(x) = (1/log(4/
3))log(2(x+1))/x + 2. In particular, for any n € N, and x € I,

0.01023923v"F(x)(1 — F(x)) < |A(t" < x) — F(x) |

(4.19)
<0.334467468w"F(x) (1 — F(x)).

Proof. Foranyn e Nand x € I, set d,(F(x)) = u(7" < x) — F(x). Then by (4.2) we have

x U”fo(u)

o mdu—F(x). (420)

d,(F(x)) =

Differentiating twice with respect to x yields

, 1 U folx) 1
d (F(x)) (log(4/3)) (x + 1)(x+2)  (x+1)(x+2) (log(4/3))(x+1)(x+2)’
. r 1 d, (F(x))
(U'fo(x)) = (log(/3))” G+ D(x+2)" neN,xel
(4.21)
Hence by (4.6) we have
2

&7 (F(x)) = (—1)”(10g (%)) e Dx+ 2V fI(x), neN, xel. (4.22)

Since d,,(0) = d,(1) = 0, it follows from a well-known interpolation formula that
d,(x) = 7Md;'(9), neN,xel (4.23)

2



Gabriela Ileana Sebe 1949

for a suitable 6 = 8(n,x) € I. Therefore

2
;Arﬂ<x)—}«x)=(—1y”1(bg(§)> QgivMﬁxeﬂ«xxl—qu» (4.24)

for any n € N and x € I, and another suitable 8 = 8(n,x) € I. The result stated follows
now from Corollary 4.2. In the special case y = A, we have fo(x) = (x+1)(x+2),x € I.
Then with a = 0.794741181..., we have

e(x) 7a+10 B
oc—l}clel}lﬁ),(x) = 5at22(at 1) =0.123720515...,
(4.25)
3 o(x)

max ) O

so that (log(4/3))*a/2B = 0.01023923... and (log4/3)?B/a = 0.334467468.... The proof
is complete. U
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