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The main purpose of this paper is to introduce a concept of L-fuzzifying topological vec-
tor spaces (here L is a completely distributive lattice) and study some of their basic prop-
erties. Also, a characterization of such spaces in terms of the corresponding L-fuzzifying
neighborhood structure of the zero element is given. Finally, the conclusion that the cat-
egory of L-fuzzifying topological vector spaces is topological over the category of vector
spaces is proved.

1. Introduction and preliminaries

The theory of topological vector spaces is an important branch of modern analysis. There
are abroad applications in mathematics and other subjects. So it is natural to consider
the reasonable generalization of the topological vector spaces in the setting of many val-
ued sets. In 1977, Katsaras and Liu combined the structure of fuzzy topology with the
structure of vector spaces in [6] for the first time and introduced the concept of fuzzy
topological vector spaces. In 1997, Fang and Yan in [2] generalized it to the concept of
L-topological vector spaces (where L is a Hutton algebra). From then on, many proper-
ties of L-topological vector spaces were discussed by Yan and Fang. On the other hand,
Höhle [4] introduced in 1980 the concept of fuzzy measurable spaces with the idea of
giving degrees in [0,1] to some topological terms rather than 0 or 1. Sharing similar
ideas to those above, Ying in [9] gave a new approach for fuzzy topology from a logi-
cal point of view, that is, a concept of fuzzifying topology was given. Recently, the rela-
tions between fuzzifying topological spaces and L-topological spaces have received wide
attention [7, 12]. Specially Liu and Zhang proved the category of L-fuzzifying topo-
logical spaces is concretely isomorphic to the category of Lowen spaces in [7]. More-
over, Höhle [5] and Zhang and Xu [12, 13] introduced the concept of topological L-
fuzzifying neighborhood structures, respectively. The equivalences between L-fuzzifying
topologies and topological L-fuzzifying neighborhood structures have also been indepen-
dently established by them. In this paper, we will combine the structure of L-fuzzifying
topologies with the structure of vector spaces and introduce the concept of L-fuzzifying
topological vector spaces and some basic properties of these spaces are studied. Then
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we obtain a characterization of L-fuzzifying topological vector spaces in terms of the L-
fuzzifying neighborhood structure of the zero element. We will prove that the category of
L-fuzzifying topological vector spaces L-FYTVS is topological over the category of vector
spaces VEC.

First we fix some notations throughout this paper. L denotes a completely distributive
lattice if not otherwise stated. 0 and 1 are its top element and bottom element, respec-
tively. M(L) denotes the set of all nonbottom coprimes L.K is a nondiscrete-valued field.
For a,b ∈ L, we say a is wedge below b, in symbols, a� b, if for every arbitrary subset
D ⊆ L,∨D ≥ b implies that a≤ d for some d ∈D. For every x ∈ X , ẋ denotes the principal
filter generated by x, and for all x ∈U ⊂ X , ẋ |U denotes the collection {V ⊆U|x ∈V}.
Definition 1.1 (Höhle [5], Ying [9], Zhang [12]). An L-fuzzifying topology on the set X
is a function τ : 2X → L which fulfills, for all U ,V ,Uj ⊂ X( j ∈ J), the following:

(FY1) τ(∅)= τ(X)= 1;
(FY2) τ(U ∩V)≥ τ(U)∧ τ(V);
(FY3) τ(

⋃
j∈J Uj)≥∧ j∈J τ(Uj).

If τ is an L-fuzzifying topology on X , then (X ,τ) is an L-fuzzifying topological space.
The value τ(U) is interpreted as the degree of openness of U . A continuous func-

tion between L-fuzzifying topological spaces is a function f : (X ,τ) → (Y ,η) such that
τ( f −1(U))≥ η(U) for all U ∈ 2Y .

Definition 1.2 (Höhle [5], Liu and Zhang [7, 12]). An L-fuzzifying neighborhood struc-
ture on a set X is a family of functions P = {px : 2X → L|x ∈ X} with the following con-
ditions, for all x ∈ X , U ,V ⊂ X :
(LN1) px(X)= 1;
(LN2) px(U) > 0⇒ x ∈U ;
(LN3) px(U ∩V)= px(U)∧ px(V).

The pair (X ,P) is called an L-fuzzifying neighborhood space, and it will be called topo-
logical if it satisfies moreover the following condition, for all x ∈ X , U ⊂ X :

(LN4) px(U)=∨V∈ẋ|U
∧

y∈V py(V).
A continuous function between L-fuzzifying neighborhood spaces (X ,P) and (Y ,Q)

is a map f : X → Y such that for all x ∈ X , U ⊂ Y , px( f −1(U))≥ q f (x)(U).

Suppose τ : 2X → L is an L-fuzzifying topology, for all x ∈ X , U ⊂ X and let pτx(U) =∨
V∈ẋ|U τ(V); then we have the following lemma.

Lemma 1.3 (Zhang [12]). (1) (X ,Pτ) is a topological L-fuzzifying neighborhood space,
where Pτ = {pτx|x ∈ X}.

(2) For all U ⊂ X , τ(U)=∧x∈U pτx(U).
(3) If f : (X ,τ)→ (Y ,η) is continuous, then f : (X ,Pτ)→ (Y ,Qη) is continuous.

Conversely, given a topological L-fuzzifying neighborhood space (X ,P), for all U ⊂ X ,
letting τP(U)=∧x∈U px(U), the following conclusions hold.

Lemma 1.4 (Zhang [12]). (1) τP is an L-fuzzifying topology on X .
(2) For all x ∈ X , U ⊂ X , px(U)=∨V∈ẋ|U τP(V).
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(3) If f : (X ,P)→ (Y ,Q) is a continuous function, then f : (X ,τP)→ (Y ,ηQ) is continu-
ous.

By [5, Proposition 3.13 and Proposition 3.14], the next lemma is easy to obtain.

Lemma 1.5 (Höhle [5]). Let X �= ∅ be a set, a family of functions P = {px : 2X → L | x ∈ X}
satisfying conditions (LN1), (LN2), and (LN3). Then the following conditions are equiva-
lent.

(LN4) px(U)=∨V∈ẋ|U
∧

y∈V py(V).
(u4) px(U)≤∨y �∈B[py(U)∨ px(B)], for all B ⊆ X .

From [10, Definition 3.1], if τ1 and τ2 are two L-fuzzifying topologies on X1 and X2,
respectively, then a subbase ϕ of the L-fuzzifying product topology τ1× τ2 may be defined
as follows: ϕ(p−1

i (Ui))= τi(Ui) for all Ui ∈ Xi, i= 1,2; otherwise its value is 0. At the same
time, we easily find that the L-fuzzifying neighborhood structure (px)x∈X corresponding
to the L-fuzzifying product topology may be described as follows:

p(x,y)(A)=
∨

U×V⊆A
px(U)

∧
py(V), A⊆ X1×X2. (1.1)

Lemma 1.6 (Gierz et al. [3]). Let L be a completely distributive lattice; then the following
relations hold:

(1) for each a∈ L, a=∨{b ∈M(L) | b� a};
(2) for a∈ L and D ⊂ L, if a�

∨
D, then there exists d ∈D such that a�d;

(3) for all a,b ∈ L, a� b implies (there exists c ∈M(L)) that a� c� b; furthermore,
a �= b and a� b together imply (there exists c ∈M(L),a �= c) that a� c� b.

In fact, Lemma 1.6(1) is exactly the one on [3, Section 2.29, Exercise (iii), page 204],
and Lemma 1.6(3) is the one on [3, Section 2.29, Exercise (iv), page 204]. In particular,
Lemma 1.6(2) is a corollary of Lemma 1.6(1), (3).

2. L-fuzzifying topological vector spaces

Definition 2.1. Let X be a vector space over K and τ an L-fuzzifying topology on X .
The pair (X ,τ) is said to be an L-fuzzifying topological vector space, if the following two
mappings are continuous:

(1) f : X ×X → X , (x, y) 
→ x+ y;
(2) g :K×X → X , (k,x) 
→ kx,

where X × X and K × X are equipped with the corresponding L-fuzzifying product
topologies τ × τ and �K× τ (here �K is an L-fuzzifying topology determined by the crisp
neighborhood structure on K), respectively.

Remark 2.2. A usual topological vector space can be regarded as an L-fuzzifying topolog-
ical vector space (with the L-fuzzifying topology determined by the crisp neighborhood
structure). When L = [0,1], our definition of L-fuzzifying topological vector spaces is
different from that in [11]. In [11], the author gave the definition with the fuzzifying
neighborhood structure directly. Our definition begins with the continuity of the opera-
tions on the vector structure. From [11, Definition 3] and Proposition 2.3 in our paper,
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it is easy to verify that the two definitions are equivalent with L= [0,1]. In other words,
our definition is a generalization of that in [11].

Proposition 2.3. The mapping f in Definition 2.1 is continuous if and only if condition
(LFN1) holds, that is, for every x, y ∈ X ,W ⊆ X ,

∨
U+V⊆W px(U)

∧
py(V)≥ px+y(W) (here

P = {px | x ∈ X} is an L-fuzzifying neighborhood structure determined by τ).

Proof. Necessity. Since f : (X ,τ)× (X ,τ)→ (X ,τ) is continuous, it follows from Lemma
1.3 that the mapping f : (X ,P)× (X ,P) → (X ,P) is continuous. Thus for every x, y ∈
X ,W ⊆ X , we have p(x,y)( f −1(W))≥ px+y(W). On the other hand, f −1(W)=⋃ j∈J{Uj ×
Vj |Uj +Vj ⊆W}. So we have

∨
U+V⊆W

px(U)
∧

py(V)= p(x,y)
(
f −1(W)

)≥ px+y(W). (2.1)

This means that the necessity is proved.
Sufficiency. From the above proof, for each x, y ∈ X , W ⊆ X , we have

p(x,y)
(
f −1(W)

)= ∨
U+V⊆W

px(U)
∧

py(V)≥ px+y(W). (2.2)

So the mapping f : (X ,P)× (X ,P)→ (X ,P) is continuous; it follows from Lemma 1.4
that the mapping f : (X ,τ)× (X ,τ)→ (X ,τ) is continuous. This completes the proof. �

Proposition 2.4. The mapping g in Definition 2.1 is continuous if and only if condition
(LFN2) holds, that is, for every k0 ∈ K, x ∈ X , W ⊆ X ,

∨
MU⊆W
k0∈M

px(U) ≥ pk0x(W) (here

P = {px | x ∈ X} is an L-fuzzifying neighborhood structure determined by τ and M = {k |
∃ε > 0,|k− k0| < ε}).

The proof of Proposition 2.4 is similar to that of Proposition 2.3, so we leave it to
readers.

Propositions 2.3 and 2.4 give the conditions of the mappings f and g in Definition 2.1
with the help of the L-fuzzifying neighborhood structure. Moreover, we may obtain the
following equivalent conditions by L-fuzzifying topologies directly.

Proposition 2.5. (1) The mapping f in Definition 2.1 is continuous if and only if condition
(LFN1)

′
holds, that is, for every x, y ∈ X , A⊆ X with x+ y ∈A,

∨
B+C⊆A
B∈ẋ,C∈ ẏ

τ(B)
∧

τ(C)≥ τ(A). (2.3)

(2) The mapping g in Definition 2.1 is continuous if and only if condition (LFN2)
′

holds,
that is, for every k0 ∈K, x ∈ X , A ⊆ X with k0x ∈ A,

∨
MB⊆A

B∈ẋ,k0∈M
τ(B) ≥ τ(A). The meaning

of M is the same as in Proposition 2.4.

Proof. (1) It is sufficient to prove that condition (LFN1) is equivalent to condition
(LFN1)

′
.
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In fact, if (LFN1) is satisfied, then for every x, y ∈ X , A⊆ X with x+ y ∈ A, we have

τ(A)=
∧
x∈A

px(A)≤ px+y(A)≤
∨

B+C⊆A
px(B)

∧
py(C)

=
∨

B+C⊆A

( ∨
x∈B1⊆B

τ
(
B1
)∧ ∨

y∈C1⊆C
τ
(
C1
))

=
∨

B+C⊆A

∨
B1∈ẋ|B
C1∈ ẏ|C

τ
(
B1
)∧

τ
(
C1
)= ∨

B+C⊆A
x∈B,y∈C

τ(B)
∧

τ(C).

(2.4)

Conversely, suppose that (LFN1)
′

is satisfied. Then for all x, y ∈ X ,W ⊆ X , we have

px+y(W)=
∨

x+y∈W1⊆W
τ
(
W1

)≤ ∨
U+V⊆W1⊆W
x∈U ,y∈V

τ(U)
∧

τ(V)

≤
∨

U+V⊆W
px(U)

∧
py(V).

(2.5)

(2) It suffices to prove that condition (LFN2) is equivalent to (LFN2)′.
If condition (LFN2) is satisfied, then for every k0 ∈K, x ∈ X , A⊆ X with k0x ∈A, we

have

τ(A)=
∧
y∈A

py(A)≤ pk0x(A)≤
∨

MU⊆A
k0∈M

px(U)

=
∨

MU⊆A
k0∈M

∨
B∈ẋ|U

τ(B)≤
∨
MB⊆A

x∈B,k0∈M

τ(B).
(2.6)

On the contrary, if condition (LFN2)
′

is satisfied, then for all k0 ∈K,x ∈ X ,W ⊆ X ,
we have

pk0x(W)=
∨

k0x∈A1⊆W
τ
(
A1
)≤ ∨

k0x∈A1⊆W

∨
MB⊆A1

x∈B,k0∈M

τ(B)

≤
∨

MB⊆W
k0∈M,x∈B

τ(B)≤
∨

MB⊆W
k0∈M

px(B).
(2.7)

This completes the proof. �

Definition 2.6. Let (X ,τ) and (Y ,η) be two L-fuzzifying topological spaces. A function
f : X → Y is called an L-fuzzifying homeomorphism, if f is a bijection and f , f −1 are
both continuous.

Proposition 2.7. Let (X ,τ) be an L-fuzzifying topological vector space, k0 �= 0, k0 ∈ K,
x0 ∈ X . Then the mappings

Tx0 : X −→ X , x 
−→ x+ x0;

Sk0 : X −→ X , x 
−→ k0x,
(2.8)

are both L-fuzzifying homeomorphisms.
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Proof. Since T−1
x0

: X → X , x 
→ x− x0, it is sufficient to prove that Tx0 is continuous. For
each x ∈ X ,W ⊆ X , from px(·) preserving order and (X ,τ) L-fuzzifying topological vec-
tor space, we have

px+x0 (W)≤
∨

B+C⊆W
px(B)

∧
px0 (C)≤

∨
B+C⊆W
x0∈C

px(B)

≤
∨

B+x0⊆W
px(B)=

∨
B⊆W−x0

px(B)= px
(
W − x0

)
.

(2.9)

Thus Tx0 is continuous.
In addition, for fixed k0 ∈ K, k0 �= 0, the inverse of mapping Sk0 is a function S−1

k0
:

X → X , x 
→ (1/k0)x. It suffices to prove that Sk0 : X → X , x 
→ k0x is continuous. For all
x ∈ X ,U ⊆ X , we have

pk0x(U)≤
∨

MV⊆U ,k0∈M
px(V)≤

∨
k0V⊆U

px(V)

=
∨

V⊆(1/k0)U

px(V)= px
((

1/k0
)
U
)
.

(2.10)

So the conclusion holds. �

Corollary 2.8. Let (X ,τ) be an L-fuzzifying topological vector space and θ the zero element
in X . Then for all x ∈ X , k �= 0, k ∈K, A⊆ X ,

pθ(A)= px(x+A), pθ(A)= pθ(kA). (2.11)

The proof of this corollary is easy.

Corollary 2.9. Let (X ,τ) be an L-fuzzifying topological vector space. Then for all x ∈
X , A⊆ X , k �= 0, k ∈K,

τ(x+A)= τ(A), τ(kA)= τ(A). (2.12)

Proof. For each x ∈ X , A⊆ X , by Corollary 2.8, we have

τ(x+A)=
∧

y∈x+A

py(x+A)=
∧

y−x∈A
p(y−x)+x(x+A)

=
∧

y−x∈A
py−x(A)=

∧
z∈A

pz(A)= τ(A).
(2.13)

The other relation may be obtained by the same method. �

Proposition 2.10. Let (X ,τ) be an L-fuzzifying topological vector space and pθ(U) > 0.
Then for each x ∈ X , there exists ε > 0 such that x ∈ (1/ε)U .

Proof. For each x ∈ X , since 0 · x = θ, it follows from Proposition 2.4 and U ⊆ X that
pθ(U)≤∨MV⊆U

0∈M
px(V). Owing to pθ(U) > 0, there exist 0∈M ⊆K,V ⊆ X with MV ⊆U

such that px(V) > 0. So we have x ∈V and ε > 0 such that M = {k | |k| ≤ ε} then εx ∈U .
Thus x ∈ (1/ε)U . �
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3. L-fuzzifying neighborhood structure of zero element
in L-fuzzifying topological vector spaces

Theorem 3.1. Let (X ,τ) be an L-fuzzifying topological vector space and pθ(·) its corre-
sponding L-fuzzifying neighborhood structure of the zero element. Then it has the following
properties:

(1) pθ(X)= 1;
(2) for all U ⊆ X , pθ(U) > 0⇒ θ ∈U ;
(3) for all U ,V ⊆ X , pθ(U ∩V)= pθ(U)∧ pθ(V);
(4) for all W ⊆ X , pθ(W)≤∨U+V⊆W pθ(U)∧ pθ(V);
(5) for all U ⊆ X , x ∈ X , pθ(U) > 0⇒ there exists ε > 0 such that kx ∈U for all |k| < ε;
(6) for all U ⊆ X , a� pθ(U) implies that there exists a balanced set V ⊆ U such that

a� pθ(V).
Conversely, let X be a vector space over K and let a set-valued function p(·) : 2X → L

satisfy conditions (1), (2), (3), (4), (5), and (6). Then there exists an L-fuzzifying topology τp
on X such that (X ,τp) is an L-fuzzifying topological vector space, and p(·) is an L-fuzzifying
neighborhood structure of the zero element.

Proof

Necessity. Conditions (1), (2), and (3) follow directly from the definition of the L-
fuzzifying neighborhood structure. Condition (5) is obvious by Proposition 2.10. It re-
mains to prove (4) and (6) only.

(4) For all W ⊆ X , since the mapping f in Definition 2.1 is continuous and θ + θ = θ,
we have pθ(W)≤∨U+V⊆W pθ(U)

∧
pθ(V).

(6) For each U ⊆ X and a� pθ(U), from Proposition 2.4, there exist V1 ⊆ X , M ⊆ K
with 0∈M such that MV1 ⊆U and a� pθ(V1). Then there is a ε > 0 such that kV1 ⊆U
for all |k| ≤ ε. Put V =⋃|k|≤ε kV1 clearly; V ⊆U and εV1 ⊆V . By Corollary 2.8 and pθ(·)
preserving order, we have

pθ(V)≥ pθ
(
εV1

)= pθ
(
V1
)
� a. (3.1)

Moreover, we easily find that V is balanced, that is, for each |k| ≤ 1, kV ⊆ V . This
means that the proof of necessity is obtained.

Sufficiency. Suppose that p(·) is a set-valued function from 2X → L which satisfies con-
ditions (1), (2), (3), (4), (5), and (6). Let px(U) = p(U − x), for all x ∈ X , U ⊆ X . First
we prove that P = {px | x ∈ X} satisfies conditions (LN1), (LN2), (LN3), and (LN4) in
Definition 1.2.

(LN1) For each x ∈ X , px(X)= p(X − x)= p(X)= 1.
(LN2) For each x ∈ X , if px(U) > 0, then p(U − x) > 0. Thus θ ∈U − x from condition

(2). So x ∈U .
(LN3) For all x ∈ X , U ,V ⊆ X , we have

px(U ∩V)= p(U ∩V − x)= p
(
(U − x)∩ (V − x)

)
= p(U − x)

∧
p(V − x)= px(U)

∧
px(V).

(3.2)

(LN4) It remains to prove that condition (u4) in Lemma 1.5 holds.
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First we notice that conditions (3) and (4) imply that

p(U)=
∨

V+V⊆U
p(V). (3.3)

Now we fix an element x ∈ X and a subset A of X . Further, we choose an arbitrary subset
B of X and a subset V of X with V +V ⊆U = A− x. Then we distinguish the following
cases.

Case 1. x+V ⊆ B. Then p(V)= px(x+V)≤ px(B).

Case 2. x+V �⊆ B. Then (x+V)∩Bc �= ∅.

Subcase 2.1. For all y ∈ (x+V)∩Bc : y +V ⊆A,

p(V)= py(y +V)≤ py(A), ∀y ∈ (x+V)∩Bc. (3.4)

Subcase 2.2. There exists y ∈ (x +V)∩Bc with (y +V)∩Ac �= ∅. Because of y ∈ x +V
we obtain x +V +V �⊆ A, which is a contradiction to the choice of V ! Hence Case 1 and
Case 2.1 only occur. Referring to (3.3) this leads to the estimation

px(A)= p(A− x)=
∨

V+V⊆A−x
p(V)≤

∨
y �∈B

[
py(A)∨ px(B)

]
. (3.5)

Hence (u4) holds. �

By Definition 1.2, there exists an L-fuzzifying topology τp on X and (px)x∈X with
px(A) = p(A− x) a topological L-fuzzifying neighborhood structure on X with respect
to τp. Specially, p(·) is an L-fuzzifying neighborhood structure of the zero element in X .

Then we will prove that the mappings f and g are continuous with respect to L-
fuzzifying topology τp.

For each x, y ∈ X ,W ∈ 2X , by condition (4) and p(·) preserving order, we have

px+y(W)= p(W − x− y)≤
∨

U+V⊆W−x−y
p(U)

∧
p(V)

=
∨

U+V⊆W−x−y

( ∨
x+B−x⊆U

p(B)

)∧( ∨
y+C−y⊆V

p(C)

)

=
∨

U+V⊆W−x−y

∨
x+B−x⊆U

∨
y+C−y⊆V

[
p(B)

∧
p(C)

]
≤

∨
(x+B)+(y+C)⊆W

p(B)
∧

p(C)=
∨

B+C⊆W

[
p(B− x)

∧
p(C− y)

]
=

∨
B+C⊆W

px(B)
∧

py(C).

(3.6)

So the mapping f in Definition 2.1 is continuous with respect to τp.
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Finally we prove that the mapping g in Definition 2.1 is continuous with respect to τp.
For each k0 ∈K, x ∈ X , U ⊆ X , suppose that pk0x(U) �= 0. Then for each a� pk0x(U) =
p(U − k0x), it follows from conditions (4) and (6) that there exists a balanced set V0 ⊆
X with V0 +V0 ⊆ U − k0x such that a� p(V0). By condition (5), we have a 0 < t0 ∈ K
such that x ∈ tV0, so (k− k0)x ∈ (k− k0)t0V0. Denote s0 = (1/t0); then (k− k0)t0V0 ⊆V0,
for all |k − k0| ≤ s0. Thus (k − k0)x ∈ V0, for all |k − k0| ≤ s0. For V0 ⊆ X , a� p(V0),
it follows from (4) that there exists V1 ⊆ X with V1 +V1 ⊆ V0 such that a� p(V1). By
condition (5) again, we have an s1 ∈K, s1 ≤ s0 such that (k− k0)x ∈V1, for all |k− k0| ≤
s1. Hence (k− k0)x+V1 ⊆V1 +V1 ⊆V0. Put N = (|k0|+ 1); from conditions (4) and (6),
there exists a balanced set V2 ⊆ X with a� p(V2) such that

V2 +V2 + ···+V2︸ ︷︷ ︸
N

⊆V0. (3.7)

Let s2 = N − |k0|; then |k|/(|k0|+ s2) ≤ |k|/(|k0|+ |k− k0|) ≤ 1, for all |k− k0| ≤ s2.
Thus

kV2 ⊆
(∣∣k0

∣∣+ s2
)
V2 =

(∣∣k0
∣∣+ 1

)
V2 =NV2 ⊆V0, ∀∣∣k− k0

∣∣≤ s2. (3.8)

We denote s3 =min{s1,s2}; then for each k with |k− k0| ≤ s3, we have (k− k0)x+V1 +
kV2 ⊆V0 +V0 ⊆U . Let V3 =V1∩V2; then a� p(V1)

∧
p(V2)≤ p(V3). Hence

(
k− k0

)
x+ kV3 ⊆

(
k− k0

)
x+V3 + kV3 ⊆

(
k− k0

)
x+V1 + kV3

⊆U − k0x, ∀∣∣k− k0
∣∣≤ s3.

(3.9)

So for each k with |k− k0| ≤ s3, we have k(x+V3)= kx+ kV3 ⊆U . Denoting M = {k |
|k− k0| < s3}, we have M(x+V3)⊆U and

a� p
(
V3
)= px

(
x+V3

)≤ ∨
MB⊆U
k0∈M

px(B). (3.10)

By the arbitrariness of a, we have pk0x(U)≤∨MB⊆U
k0∈M

px(B). This means that the mapping

g in Definition 2.1 is continuous with respect to τp.
Therefore (X ,τp) is an L-fuzzifying topological vector space, and p(·) is an L-fuzzifying

neighborhood structure of the zero element.
At the end of this section, we will give a natural class of examples of L-fuzzifying topo-

logical vector spaces.

Example 3.2. Let (X ,�,T) be a Menger probabilistic normed space [8] with T =min.
For each ε > 0 and λ∈ (0,1], N(ε,0) and N(ε,λ) are defined as follows:

N(ε,0)= {x ∈ X | fx(ε)= 1
}

,

N(ε,λ)= {x ∈ X | fx(ε) > 1− λ
}
.

(3.11)
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A mapping p(·) : 2X → [0,1] is defined as follows:

p(A)=
∨{

λ | ∃ε > 0 s.t. N(ε,λ)⊆A
}

, ∀A⊆ X. (3.12)

In what follows we show that the mapping p(·) satisfies conditions (1), (2), (3), (4),
(5), and (6) in Theorem 3.1.

It is easy to find that conditions (1), (2), and (6) hold.
(3) By the definition of p(·), it is clear that p(U ∩V) ≤ p(U)

∧
p(V), for all U ,V ⊆

X . Conversely, for each a ∈ (0, p(U)
∧
p(V)), a < p(V) and a < p(V). Thus there exist

λ1,λ2 ∈ (0,1], ε1,ε2 > 0 with a < λ1 and a < λ2 such that N(ε1,λ1)⊆U , N(ε2,λ2)⊆V . Let
ε = ε1

∧
ε2, λ= λ1

∧
λ2; then N(ε,λ)= N(ε1,λ1)∩N(ε2,λ2)⊆ U ∩V . So p(U ∩V)≥ λ >

a. By the arbitrariness of a, we obtain p(U)
∧
p(V) ≤ p(U ∩V). Hence condition (3)

holds.
(4) For each W ⊆ X , condition (4) holds trivially for the case p(W)= 0. If p(W) > 0,

then for each a∈ (0, p(W)), there exist ε > 0, λ∈ (0,1] with a < λ such that N(ε,λ)⊆W .
Taking µ∈ (a,λ), we may prove the following relation: N(ε/2,µ) +N(ε/2,µ)⊆N(ε,λ).

In fact, since (X ,�,T) is a Menger probabilistic normed space, then for all x, y ∈
N(ε/2,µ), we have

fx+y(ε)≥ T
(
fx

(
ε

2

)
, fx

(
ε

2

))
≥ T(1−µ,1−µ)= 1−µ > 1− λ. (3.13)

Hence x+ y ∈N(ε,λ). It follows that N(ε/2,µ) +N(ε/2,µ)⊆N(ε,λ).
Let U = V = N(ε/2,µ); then U +V ⊆W , and p(U)

∧
p(V) ≥ µ > a. Hence p(W) ≤∨

U+V⊆W p(U)
∧
p(V).

(5) For each U ⊆ X with p(U) > 0, there exist λ > 0 and ε > 0 such that N(ε,λ) ⊆ U .
For each x ∈ X , since

∨
t≥0 fx(t) = 1 > 1− λ, there exists t0 > 0 with fx(t0) > 1− λ. Put

t1 = ε/t0. Then for all k ∈K with |k| < t1, we obtain fkx(ε) > 1− λ. It follows immediately
that kx ∈N(ε,λ)⊆U . Hence condition (5) holds.

By Theorem 3.1, there exists a natural example of L-fuzzifying topological vector
spaces created by probabilistic normed spaces with respect to T =min.

Remark 3.3. This example was first introduced by Höhle in [4, 5]. Here we give a direct
proof and the definition of p(·) is different from that in [4, 5].

4. Category of L-fuzzifying topological vector spaces and category of vector spaces

In this section, we will use L-FYTVS to denote the category of L-fuzzifying topological
vector spaces, where morphisms are linear continuous mappings.

Theorem 4.1. Let L be a locally multiplicative [12] (this implies that for each λ ∈M(L),
λ� b, and λ� c, λ� b

∧
c) completely distributive lattice and let U : L-FYTVS→ VEC be a

forgetful functor. Then U is topological.
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Proof. Let X be an object in VEC, (Xi,τi) an object in L-FYTVS, and fi : X → U(Xi) a
morphism in VEC for all i ∈ I . By [1, Definition 21.1 and Definition 21.9], it follows
to prove that there exists an L-fuzzifying topology τ on X with (X ,τ) ∈ L-FYTVS such
that τ is the weakest topology with respect to which each mapping f i : (X ,τ)→ (Xi,τi) is
continuous. Suppose that pi(·) : 2Xi → L is an L-fuzzifying neighborhood structure of the
zero element in (Xi,τi) and� I� denotes the set of all finite subsets of I . Put

p(A)=
∨

V∈θ̇|A

∧{
pi
(
Vi
) |⋂

i∈J0
f −1
i

(
Vi
)=V , J0 ∈� I�

}
, ∀A⊆ X. (4.1)

First we prove that the mapping p(·) : 2X → L satisfies conditions (1), (2), (3), (4), (5),
and (6) in Theorem 3.1.

It is easy to find that conditions (1) and (2) hold.
(3) By the definition of p(·), the mapping p(·) preserves order. Then for all A,B ∈ 2X ,

p(A
⋂
B) ≤ p(A)

∧
p(B). Conversely, for all a� p(A)

∧
p(B), we have a� p(A) and a�

p(B). By Lemma 1.6, there exist V1 ∈ θ̇|A, V2 ∈ θ̇|B such that a�
∧{pi(Ai) |

⋂
i∈J0 f

−1
i

(Ai) = V1, J0 ∈� I �} and a�
∧{pj(Bj) |

⋂
j∈J1 f

−1
j (Bj) = V2, J1 ∈� I �}. Let V =

V1∩V2; it is clear that V ∈ θ̇ | (A∩B) and (
⋂

i∈J0 f
−1
i (Ai))∩ (

⋂
j∈J1 f

−1
j (Bj))=V . Hence

a≤ p(A∩B). This means that (3) holds.
(4) For each W ⊆ X and every a� p(W), there exists V ∈ θ̇|W such that a�

∧
{pi(Vi) |

⋂
i∈J0 f

−1
i (Vi)=V , J0 ∈� I�}. Then a� pi(Vi) for all i∈ J0. Since (Xi,τi)∈ L-

FYTVS, there exist Ai,Bi ∈ 2Xi with Ai + Bi ⊆ Vi such that a� pi(Ai)
∧
p(Bi). Put A =⋂

i∈J0 f
−1
i (Ai), B = ⋂i∈J0 f

−1
i (Bi); then A + B ⊆ V and a ≤ p(A)

∧
p(B). Hence p(W) ≤

∨A+B⊆W p(A)
∧
p(B).

(5) For all A ⊆ X , x ∈ X , if p(A) > 0, then there exists V ∈ θ̇ | A such that 0 �= ∧{pi
(Vi)|

⋂
i∈J0 f

−1
i (Vi) = V , J0 ∈� I �}. For each i ∈ J0, fi(x) ∈ Xi, pi(Vi) > 0, there is an

εi > 0 such that k fi(x)∈Vi for all |k| < εi. Let ε=∧i∈J0 εi; clearly ε > 0 and kx ∈⋂i∈J0 f
−1
i

(Vi)=V ⊆U for all |k| < ε.
(6) For each A⊆ X and every a� p(A), there exists V ∈ θ̇ |A such that a�

∧{pi(Vi) |⋂
i∈J0 f

−1
i (Vi) = V , J0 ∈� I �}. For all i ∈ J0, from a� pi(Vi), we have a balanced set

Wi ⊆ Vi such that a� pi(Wi). Put W = ⋂i∈J0 f
−1
i (Wi); it is trivial W ⊆ U and W is a

balanced set. Since L is locally multiplicative, we obtain a�
∧

i∈J0 pi(Wi). So a� p(W).
Hence there exists an L-fuzzifying topology τ on X such that (X ,τ)∈ L-FYTVS.
Second we prove that τ is the weakest L-fuzzifying topology such that f i is continuous

for all i∈ I .
For each Vi ⊆ Xi and each x ∈ X ,

px
(
f −1
i

(
Vi
))= p

(
f −1
i

(
Vi
)− x

)
=

∨
A∈θ̇|( f −1

i (Vi)−x)

∧{
pj
(
Wj

) | ⋂
j∈J0

f −1
j

(
Wj

)= A, J0 ∈� I�
}

≥ pi
(
Vi− fi(x)

)= pi, fi(x)
(
Vi
)
.

(4.2)

This means that f i : (X ,τ)→ (Xi,τi) is continuous.
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In the following we will prove that τ is coarser than each L-fuzzifying topology τ̃
which makes f i continuous for all i∈ I . In fact, suppose that p̃ is an L-fuzzifying neigh-
borhood structure of the zero element with respect to τ̃. By Lemma 1.3, we prove the
next relation p(A) ≤ p̃(A) for all A ⊆ X . For each a� p(A), there exists V ∈ θ̇ | A such
that a�

∧{pi(Vi) |
⋂

i∈J0 f
−1
i (Vi) = V , J0 ∈� I �}. Then a� pi(Vi) for all i ∈ J0 with⋂

i∈J0 f
−1
i (Vi) = V . By the continuous mapping f i : (X , τ̃)→ (Xi,τi), we obtain pi(Vi) ≤

p̃( f −1
i (Vi)) for each i∈ J0. So

a�
∧
i∈J0

p̃
(
f −1
i

(
Vi
))= p̃

(⋂
i∈J0

f −1
i

(
Vi
))= p̃(V)≤ p̃(A). (4.3)

Hence τ ⊆ τ̃. This means that each U-structured source (X →U(Xi))i∈I has a unique
U-initial lift (X → Xi)i∈I . This completes the proof. �
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