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Let X be any partially ordered set, R any commutative ring, and T = I∗(X ,R) the weak
incidence algebra of X over R. Let Z be a finite nonempty subset of X , L(Z) = {x ∈ X :
x � z for some z ∈ Z}, and M = TeZ . Various chain conditions on M are investigated.
The results so proved are used to construct some classes of right perfect rings that are not
left perfect.

1. Introduction

Let R be a commutative ring and X a partially ordered set. Let T = I∗(X ,R) be the
set of all functions f : X ×X → R such that f (x, y) = 0, whenever x � y, and {(x, y) :
f (x, y) �= 0 and x < y} is finite. Then T is an R-algebra under the operations defined as
follows. For any f ,g ∈ T , x, y ∈ X , and r ∈ R, ( f + g)(x, y)= f (x, y) + g(x, y), f g(x, y)=
∑

x≤z≤y f (x,z)g(z, y), and r f (x, y)= r · f (x, y). The algebra T is called weak incidence al-
gebra of X over R. For a locally finite partially ordered set Y , the concept of incidence al-
gebra I(Y ,R) is well known [6]. It can be proved on similar lines as for incidence algebras
that for any two partially ordered sets X , Z and any two indecomposable commutative
rings R, S, I∗(X ,R) and I∗(Z,S) are isomorphic as rings if and only if X and Z are iso-
morphic and R and S are isomorphic [5]. It has been seen in [1, 5] that weak incidence
algebras can be used to construct rings whose left and right maximal rings of quotients
need not be isomorphic. Here we give some more such applications. If X is infinite, ob-
viously T is neither left nor right artinian or Noetherian. In the present paper we study
chain conditions on a specific one-sided ideal of T . Let Z be a finite nonempty subset of
X , L(Z) = {x ∈ X : x ≤ z for some z ∈ Z}, and M = TeZ , where for any subset Y of X ,
eY ∈ T is such that eY (x,x)= 1 for every x ∈ Y , and eY (x, y)= 0 otherwise. Theorem 3.5
shows that M is an artinian left T-module if and only if R is artinian and L(Z) satisfies
dcc and has no infinite antichain. Theorem 5.2 gives a similar result for M to be Noe-
therian. In Section 4, the construction of partially ordered sets satisfying dcc but having
no infinite antichains is studied. In Section 6, perfect rings are studied, as an application;
Theorem 3.5 is used to construct a class of right perfect rings that are not left perfect.
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2. Preliminaries

Throughout, all rings have identity element 1 �= 0. Let X be a partially ordered set and
R a commutative ring. A subset S of X is called an antichain in X if no two members of
S are comparable [6]. We will apply the terminology for incidence algebras given in [6]
for weak incidence algebras. As usual, for any x < y in X , exy denotes the corresponding
matrix unit in T = I∗(X ,R). Now K∗(X ,R)= { f ∈ I∗(X ,R) : f (x,x)= 0 for each x ∈ X}
is an ideal K∗(X ,R) contained in its lower nil radical, and T/K∗(X ,R) ∼= Πx∈XRx, with
each Rx = R. The following is immediate.

Lemma 2.1. Let M be an artinian (Noetherian) left module over T = I∗(X ,R) such that
K∗(X ,R)M = 0, then for some finite subset Z of X , (1− eZ)M = 0. In particular, if M is
artinian, then M has finite composition length as an R-module.

3. Artinian modules

A partially ordered set X is said to satisfy strong dcc if it does not contain an infinite
sequence x1,x2, . . . ,xn, . . . such that xj � xi whenever i < j. Let Z be a finite nonempty
subset of X and M = TeZ =

∑
x∈Z Texx. Now TM is artinian if and only if Texx is artinian

for every x ∈ Z. A finite union of subsets of X satisfies strong dcc if and only if each of the
subsets satisfies strong dcc. Suppose M is artinian. Then R is artinian. Suppose L(Z) does
not satisfy strong dcc. Then there exists an x0 ∈ Z such that L(x0) does not satisfy strong
dcc. Therefore there exists an infinite sequence in L(x0) : x1,x2, . . . ,xn, . . . such that xj � xi
whenever i < j. For any n≥ 1, let Nn =

∑
k≥n Texkx0 . Then Nn+1 ⊂Nn ⊆M, which contra-

dicts the assumption that M is artinian. Hence L(Z) satisfies strong dcc. We now discuss
the converse of this result. Henceforth we assume that R is artinian and L(Z) satisfies
strong dcc. Suppose M is not artinian. Without loss of generality we take Z = {x0} and
M = Tex0x0 . There exists an infinite properly descending chain of T-submodules of M :

N1 ⊃N2 ⊃ ··· ⊃Nn ⊃ ··· . For each i≥ 1 and x ∈ L(x0), let A(i)
x = {a∈ R : aexx0 ∈Ni}.

Lemma 3.1. (i) A(i)
x ⊆A(i)

y whenever y ≤ x in L(x0).

(ii) For any x ∈ L(x0), A(i)
x ⊆ A

( j)
x whenever j ≤ i.

(iii) If A(i)
x ⊂A

( j)
y , then either j ≤ i or x � y.

(iv) If A(i)
x � A

( j)
y , then either y � x or i < j.

Proof. (i) and (ii) are obvious.

(iii) Suppose j � i. Then i < j, and A
( j)
x ⊆ A(i)

x ⊂ A
( j)
y . If x ≤ y, then A

( j)
y ⊆ A

( j)
x ⊆ A(i)

x ,
which is a contradiction.

(iv) Suppose y ≤ x. Then A
( j)
x ⊆ A

( j)
y . If j ≤ i, then A(i)

x ⊆ A
( j)
x , therefore A(i)

x ⊆ A
( j)
y ,

which is a contradiction. �

Let S be the set of all A(i)
x with x ∈ L(x0) and i ≥ 1. Let A ∈ S. For some x ∈ L(x0)

and an i, A = A(i)
x . As L(x0) satisfies dcc, by keeping i fixed we can find x minimal with

respect to the pair (A, i). If for some j > i, A= A
( j)
x , then we can find minimal x′ ≤ x for

which A= A
( j)
x′ . Hence we can find an x ∈ L(x0) and a positive integer t such that A=A(t)

x

such that if for some u≥ t and y ≤ x, A= A(u)
y , then x = y. Keeping this in mind, a triple
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(A, t,x) is called a critical triple if A∈ S, A= A(t)
x , and if for some u≥ t, y ≤ x, A= A(u)

y ,
then y = x. For any subset V of S, the set of those x ∈ L(x0) such that (A, t,x) is a critical
triple for some A∈V and t � 1 is called the L(x0)-co-support of V .

Lemma 3.2. (a) Let A,B ∈ S. If for some positive integer i, (A, i,x) and (B, i, y) are critical
triples and x �= y, then one of the following holds: (i) x < y and B ⊂ A, (ii) y < x and A⊂ B,
and (iii) x and y are noncomparable.

(b) If (A, i,x) and (B, j, y) are two critical triples with A and B noncomparable or equal,
and x < y, then j < i.

Proof. (a) is immediate. (b) Now B = A
( j)
y ⊆ A

( j)
x . If i≤ j, then A

( j)
x ⊆ A(i)

x = A, therefore

A = B = A
( j)
x and (A, j, y) is a critical pair. But also A = A

( j)
x , hence x = y, which is a

contradiction. Hence j < i. �

Lemma 3.3. Let Y ⊆ S be an antichain. Then Y is finite.

Proof. Let Z be the co-support of Y . For any i, let Y(i) = {A ∈ Y : (A, i,x) is a critical
triple for some x ∈ Z}. Let Zi be the set of those x ∈ L(x0) such that (A, i,x) is a critical
triple for some A ∈ Y(i). It follows from Lemma 3.2(a) that Zi is an antichain, so Zi is
finite. If for some A,B ∈ Y(i), (A, i,x) and (B, i, y) are critical triples and A �= B, clearly
x �= y. Hence Y(i) is finite. Let Z1 be the set of minimal members of Z. Fix an x ∈ Z1

and a critical triple (A,k,x). Consider any critical triple (B, i, y) with x < y and B ∈ Y . By
Lemma 3.2(b), i < k. Let Yx = {B ∈ Y : there exists a critical triple (B, i, y) with x ≤ y}. It

follows that Yx =
⋃k

i=1(Yx ∩Y(i)) is finite. As Z1 is finite and Y =⋃x∈Z Yx, we get Y is
finite. �

Lemma 3.4. S is finite.

Proof. For any A ∈ S, the set SA of all those B ∈ S which are minimal with respect to
A < B is finite by Lemma 3.3. Also the set Y1 of minimal members of S is finite. After this
by using the fact that R has finite composition length, we get S is finite. �

Theorem 3.5. LetT = I∗(X ,R), whereX is any partially ordered set andR is a commutative
ring. Let Z be a finite nonempty subset of X and M = TeZ . Then M is an artinian left T-
module if and only if R is artinian and L(Z) satisfies strong dcc.

Proof. As remarked earlier it is enough to take M = Tex0x0 . Suppose that L(x0) satisfies
strong dcc and R is artinian. Suppose M is not artinian. So M has an infinite properly
descending chain of T-submodules: N1 ⊃ N2 ⊃ ··· ⊃ Nn ⊃ ··· . We use the notations

given above this result. Let A ∈ S. Fix an x ∈ L(x0). Suppose A = A(i)
x for some i. Then

either there exists a smallest positive integer s(x,A) such that A= A
( j)
x for every j ≥ s(x,A) or

there exists a largest positive integer k(x,A) such that A=A
(k(x,A))
x . Let ZA be the set of those

x ∈ X for which A admits the positive integer k(x,A). Suppose there is no upper bound on
k(x,A) as x ranges over ZA. So there exists an infinite sequence: x1,x2, . . . ,xn, . . . in ZA such
that k(xi,A) > k(xj ,A) whenever i > j. Then xi � xj whenever i < j. This contradicts the as-
sumption that L(x0) satisfies strong dcc. Hence there exists a positive integer kA such that
k(x,A) < kA for every x ∈ ZA. As S is finite, we can find a positive integer u such that for
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any A ∈ S, x ∈ L(x0), s(x,A) < u and k(x,A) < u, whenever s(x,A) or k(x,A) is defined. Con-

sider Nu. If for some A(u)
x , A(u)

x ⊃A(u+1)
x , then for A=A(u+1)

x we have k(x,A) > k or s(x,A) > u,

which is a contradiction. Hence A(u)
x = A(u+1)

x . This proves that Nk =Nk+1, which is also a
contradiction. Hence M is artinian. �

Remark 3.6. Let X be a partially ordered set satisfying strong dcc, and R an artinian com-
mutative ring. It follows from the above theorem that for T = I∗(X ,R), any finitely gen-
erated left ideal contained in A =∑x∈X Texx satisfies dcc. As the ideal K∗(X ,R) = { f ∈
T : f (x,x)= 0 for every x ∈ X} ⊆A, and it is nil, K∗(X ,R) is right T-nilpotent. However
this ideal need not be left T-nilpotent. For example, let N be the set of natural numbers
with usual ordering. Then for any field F, K∗(N,F) is not left T-nilpotent.

4. Partially ordered sets

We now prove some results that can help in constructing partially ordered sets satisfying
strong dcc.

Proposition 4.1. A partially ordered set X satisfies strong dcc if and only if it satisfies dcc
and it has no infinite antichain.

Proof. If X satisfies strong dcc, obviously it cannot have an infinite antichain. Conversely,
let X satisfy strong dcc and have no infinite antichain. Suppose there exists an infinite
sequence {xi} in X such that xj � xi whenever i < j. These xi are distinct. Let A be the set
of these xi and S the set of minimal members of A. Then S is a finite nonempty set. So
there exists an xi ∈ S such that xi < xj for infinitely many values of j. As a consequence,
we can find a k > i such that xi < xk, which is a contradiction. Hence X satisfies strong
dcc. �

Theorem 4.2. Let X and Y be two partially ordered sets satisfying strong dcc, then the
partially ordered set Z = X ×Y with the ordering given by (a,b)≤ (c,d) if and only if a≤ c
and b ≤ d satisfies strong dcc.

Proof. That Z satisfies dcc is obvious. Suppose Z has an infinite antichain S. Let A1 and
A2 be sets of X-components and Y-components respectively of the members of S. As Y
does not contain an infinite antichain, for any fixed x ∈ A1, there are only finitely many
y ∈ A2 such that (x, y) ∈ S. Also, the number of minimal members of A1 is finite. So
there exists a minimal member x1 ∈ A1 such that T1 = {(x, y)∈ S : x1 < x} is infinite. Fix
an (x1, y1)∈ S. If (x, y)∈ T1, then either y < y1 or y and y1 are noncomparable. Thus T1

satisfies one of the following conditions.
(i) There are infinitely many (x, y)∈ T1 such that y < y1.

(ii) There are infinitely many (x, y)∈ T1 such that y and y1 are noncomparable.
Suppose (i) is satisfied. Then S1 = {(x, y) ∈ T1 : y < y1} is infinite. As for S, we can

find an (x2, y2)∈ S1 such that T2 = {(x, y)∈ S1 : x2 < x} is infinite. Now y2 < y1. Suppose
T2 also satisfies (i), that gives rise to a subset S2 analogous to S1. Continue the process,
and this gives a descending chain in Y . As Y satisfies dcc, this process must end after
a finite number of steps. Thus we get a subset V1 of S1 and an element (u1,v1) ∈ V1

such that V2 = {(x, y) ∈ V : u1 < x, y and v1 are not comparable} is infinite. Thus for
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any infinite antichain S in Z, there exists a (u,v) ∈ S, such that T = {(x, y) ∈ S : u <
x, y is not comparable with v} is infinite, so T satisfies (ii). Suppose for some n ≥ 2, we
have constructed infinite sets Vi in S, for 1 ≤ i ≤ n, (ui,vi) ∈ Vi, for 1 ≤ i ≤ n− 1 with
Vi+1 = {(x, y)∈Vi : ui < x, vi and y are noncomparable}. Now Vn has an element (un,vn)
such that Vn+1 = {(x, y) ∈ Vn : un < x, vn and y are noncomparable} is infinite. This in-
ductive process gives an infinite set L = {(ui,vi) : i ≥ 1} ⊆ S such that ui < ui+1 for any
i ≥ 1, but B = {vi : i ≥ 1} is an infinite antichain in Y . This is a contradiction. Hence Z
satisfies strong dcc. �

Example 4.3. For any finite collection of well-ordered sets, their direct product as defined
in the above theorem satisfies strong dcc.

Definition 4.4. Let X be a partially ordered set satisfying dcc. For any nonnegative integer,
define si(X) as follows. Firstly, s0(X) is the set of all minimal elements in X . For any i≥ 0,
an x ∈ si+1(X), if it is minimal with respect to the property that for some y ∈ si(X), y < x.
Define B1(X)=⋃i≥0 si(X).

Lemma 4.5. Let X be any partially ordered set satisfying dcc.
(i) Every si(X) is an antichain. In addition if X satisfies strong dcc, then every si(X) is

finite.
(ii) If for some i > 0, an x ∈ si(X), then there exists a sequence x0 < x1 < ··· < xi = x such

that xj ∈ s j(X) for 0≤ j ≤ i.
(iii) Let x ∈ si(X) for some i, y ∈ s j(X) for some j > i. Then y � x.

Proof. (i) is immediate from the definition and Proposition 4.1.
(ii) follows by using induction on i.

(iii) Suppose y ≤ x. By using (ii) we have yi−1 < y ≤ x. By Definition 4.4, y = x. At the
same time, as j > i, by (ii), there exists z ∈ si(X) such that z < y. This contradicts
(i). Hence the result follows. �

Definition 4.6. Let X be a partially ordered set satisfying dcc. For any ordinal α, de-
fine Bα(X) as follows. B0(X) = ∅, the empty set, if α = β + 1, then Bα(X) = Bβ(X)∪
B1(X\Bβ(X)). If α is a limit ordinal, then Bα(X)=⋃β<α Bβ(X).

Lemma 4.7. Let X be any partially ordered set satisfying strong dcc.
(i) B1(X) is countable.

(ii) For any two ordinals β < α, if α= β+ γ, then Bα(X)= Bβ(X)∪Bγ(X\Bβ(X)).
(iii) X = Bα(X) for some ordinal α.
(iv) Suppose X = Bα(X) for some smallest ordinal α. If for every β < α, B1(X\Bβ(X)) is

linearly ordered, then X is linearly ordered.

Proof. (i) is immediate from Lemma 4.5.
(ii) follows from Definition 4.4 by using transfinite induction on γ.

(iii) If X = B1(X), there is nothing to prove. Suppose X �= B1(X). Then B1(X) is
countably infinite. It follows from the definition of a Bβ(X) that if X �= Bβ(X),
then |Bβ(X)| ≥ |β|. Now there exists a smallest ordinal β such that |β| > |X|.
Then X = Bβ(X). Finally (iv) is obvious. �
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Remark 4.8. Let X be a partially ordered set satisfying strong dcc. If X is infinite, then
each si(X) is nonempty and B1(X) is countably infinite. So, the given ordering on B1(X)
can be extended to a linear ordering such that B1(X) becomes isomorphic to the set of
natural numbers. Now extend the ordering on X as follows. Let x, y ∈ X . If x ∈ Bα(X)
and y ∈ Bβ(X) such that α < β and y /∈ Bα(X), then set x < y. For any ordinal α, extend
the ordering on B1(X)\Bα(X), such that it embeds in the set of natural numbers. This
makes X a linearly ordered set satisfying dcc. The order on any partially ordered set can
be extended to a linear order, [3, Chapter 1]. Here, we see that X can be made into a well-
ordered set. Let (Y ,�) be any linearly ordered set with the following properties. (i) For
some ordinal α, Y is a union of an ascending chain of subsets {Yβ}β≤α, with each Yβ+1\Yβ

embeddable in the set of natural numbers. (ii) For any limit ordinal β ≤ α, Yβ =
⋃

γ<β Yγ.
(iii) For any y ∈ Y\Yβ and x ∈ Yβ, x < y. ThenY satisfies dcc. For each β < α, consider any
ordering �β on Yβ+1\Yβ under which Yβ+1\Yβ satisfies strong dcc and the given ordering
on Yβ+1\Yβ extends �β. This defines an ordering �′ on Y that for each β < α coincides
with �β on Yβ+1\Yβ and equals � otherwise. Then (Y ,�′) satisfies strong dcc.

5. Noetherian modules

Let X be a partially ordered set. X is said to satisfy strong acc if it does not contain an
infinite sequence x1,x2, . . . ,xn, . . . such that xj � xi whenever j > i.

As in Section 3, we consider M = TeZ , where Z is a finite nonempty subset of X . If TM
is Noetherian, it follows on similar lines as in Section 3 that R is Noetherian and L(Z)
satisfies strong acc.

To prove the converse of the above remark, throughout we take R to be Noether-
ian, Z = {x0}, and x0 ∈ X such that L(x0) satisfies strong acc. Let N be a submodule
of M. For each x ∈ L(x0), set Ax = {a ∈ R : aexx0 ∈ N}. Each Ax is an ideal of R and
N =∑x∈L(x0)Axexx0 . For x ≤ y in L(x0), Ay ⊆ Ax. Let S be the set of all Ax, x ∈ L(x0).
Consider any subset K of S. For any A ∈ K , as L(x0) satisfies acc, we can find x ∈ L(x0)
maximal with respect to the property that A= Ax. Let Z(K) be the set of all such maximal
elements of L(x0).

Lemma 5.1. Let Y ⊆ S be an antichain. Then Z(Y) is an antichain and Y is finite.

Proof. Let x, y ∈ Z(Y) such that x ≤ y. For some A,B ∈ Y , A= Ax and B = Ay . However
Ay ⊆ Ax, so A = B. As x is maximal with respect to A, we get x = y. Hence Z(Y) is an
antichain, so Z(Y) is finite. For each A ∈ Y , there exists an x ∈ Z(Y) such that A = Ax.
Thus there exists a mapping of Z(Y) onto Y . Hence Y is finite. �
Theorem 5.2. Let T = I∗(X ,R) whereX is a partially ordered set and Z is a finite nonempty
subset of X . Then M = TeZ is a Noetherian T-module if and only if R is Noetherian and
L(x0) satisfies strong acc.

Proof. Without loss of generality we take Z = {x0}. We use notations given above Lemma
5.1. Let R be Noetherian and L(x0) satisfy strong acc. Let N be a T-submodule of M. As R
is Noetherian, Y1={A∈S : A is maximal in S} is nonempty and no two members of Y1

are comparable. Set Z1=Z(Y1). Consider N1=
∑

x∈Z1
TAxexx0 . Let y≤x with x∈Z1, then

Ax ⊆ Ay , therefore Ay = Ax and Ayeyx0 = eyx(Axexx0 ) ⊆ N1. Hence N1 =
∑

x∈L(Z1)Axexx0 .
Suppose, for some n≥ 1, we have already defined subsets Z1,Z2, . . . ,Zn, Vn =

⋃n
i=1Zi, and
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Nn =
∑

x∈Vn
TAxexx0 such that the following hold. (i) Nn =

∑
x∈L(Vn)Axexx0 , (ii) for any

y ∈ L(Vn), there exists an x in Vn such that y ≤ x and Ay = Axi , and (iii) for any y ∈
L(x0)\L(Vn), there exists x ∈ Zn such that Ay < Ax. Set Sn+1 = {A ∈ S : A = Ax for some
x ∈ L(x0)\L(Vn)} and Yn+1 the set of all maximal members of Sn+1. Set Zn+1 = Z(Yn+1),
Vn+1 = Vn ∪Zn+1, and Nn+1 =

∑
x∈Vn

TAxexx0 . The above three conditions are obviously
satisfied by N1. Suppose they are satisfied by Nn for some n. Suppose y ∈ Zn+1 and x ∈ X
such that x < y. Then Ay ⊆ Ax. If x /∈ L(Vn), Ax = Ay . If y ∈ L(Vn), by (ii) there ex-
ists z ∈ Vn ⊆ Vn+1 such that y ≤ z and Ay = Az. Hence Nn+1 =

∑
x∈L(Vn+1)Axexx0 . Thus

Nn+1 satisfies (i), (ii), and (iii). For each i for which Zi is non-empty, fix an xi ∈ Zi. If
an L(Zi) �= S, obviously Zi+1 �= ∅. For i < j, as L(Vi)∩Zj =∅, xj � xi. As L(x0) satisfies
strong acc, it follows that there exists an n such that Zn �= ∅ but Zn+1 =∅. Consequently,
L(x0)= L(Vn), Nn =N . As Vn is finite, each Ax is finitely generated as an R-module, and
N =∑x∈Vn

TAxexx0 , it follows that N is a finitely generated T-module. Hence M is Noe-
therian. �

Remark 5.3. Let X ′ be the dual of a partially ordered set X . For any commutative ring
R, set T′ = I∗(X ′,R) and T = I∗(X ,R). These two algebras are naturally anti-isomorphic.
Let Z be a finite nonempty subset ofX , M = eZT , andU(Z)= {x ∈ X : x ≥ z for some z ∈
Z}. By using the anti-isomorphism between T and T′ and Theorems 3.5 and 5.2, we get
the following results:

(i) MT is artinian if and only if R is artinian and U(Z) satisfies strong acc;
(ii) MT is Noetherian if and only if R is Noetherian and U(Z) satisfies strong dcc.

Remark 5.4. Let X be a locally finite partially ordered set, and T = I(X ,R) the incidence
algebra of X over a commutative ring R. Suppose R is artinian and for some x0 ∈ X ,
L(x0) satisfies strong dcc. As L(x0) has finitely many minimal elements, L(x0) is a finite
set, so M = Tex0x0 , being a finite direct sum of copies of R, is trivially an artininian left
T-module. Hence M is an artinian left T-module if and only if R is artinian and L(x0)
satisfies strong dcc.

Now suppose R is Noetherian, L(x0) satisfies strong acc, and N is a T-submodule of
M. As in the proof of Theorem 5.2, we have Y1 and Z1 = Z(Y1). Consider Nn as defined
in the proof of Theorem 5.2. Now N1 =

∑
x∈Z1

TAxexx0 . For any x ∈ Z1, let Gx = {bx j :
1 � j � nx} generate Ax as an R-module. Consider any f ∈ N1 with Df = {z ∈ L(x0) :
f (z,x0) �= 0} ⊆ L(Z1). Let z ∈ L(Z1). Then for any x ∈ Z1, Az = Ax whenever z � x. So
f (z,x0) =∑z�x

∑nx
j=1 rzx jbx j , where x ∈ Z1. Then the formal sum gx j =

∑
z�x rzx jezx ∈ T

and f =∑x∈Z1

∑nx
j=1 gx jbx jexx0 ∈N1. Hence N1 = { f ∈N1 : Df ⊆ L(Z1)}. Inductively, one

can prove that for any n � 1, Nn = { f ∈ N : Df ⊆ L(Vn)}. Each Nn is finitely generated.
Hence as in Theorem 5.2, we get that N = Nn for some n, hence N is finitely generated.
This proves that M is a Noetherian left T-module if and only if R is Noetherian and L(x0)
satisfies strong acc.

6. Perfect rings

A partially ordered set X is said to locally satisfy strong dcc, if for any finite subset
S of X , L(S) satisfies strong dcc. Throughout, R is an artinian, commutative local
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ring, X is a partially ordered set locally satisfying strong dcc, and T = I∗(X ,R). Let
T′ = R + K∗(X ,R). Then T′ is a local ring. We will prove that T′ is right perfect. We
will write K for K∗(X ,R).

Lemma 6.1. Any finitely generated left ideal of T′ contained in K∗ is artinian.

Proof. Let TC be any artinian module. By Lemma 2.1, C/K∗C is of finite composition
length over R. Let A = ∑n

i=1T
′bi be a finitely generated left ideal of T′ contained in

K∗. Then B =∑n
i=1Tbi is a finitely generated left ideal of T contained in K∗. Let A =

A1 ⊇ A2 ⊇ ··· ⊇ An ⊇ ··· be a descending chain of left ideals of T′. As TB is artinian,
there exists a positive integer m such that K∗Ai = K∗Am for any i ≥ m. Let Bi = TAi.
Then K∗Bi = K∗Ai. Now Bi is an artinian left T-module. It follows that for any i ≥m,
Bi/K∗Bi is of finite composition length over R. Therefore there exists an n≥m such that
Aj/K∗Aj = Aj/K∗An = An/K∗An for any j ≥ n. Hence Aj =An for any j ≥ n. �

Theorem 6.2. T′ is a local, right perfect ring.

Proof. It is enough to prove that T′ satisfies dcc on principal left ideals [2, Theorem 28.4].
Let A1 ⊇ A2 ⊇ ··· ⊇ An ⊇ ··· be a descending chain of principal left ideals of T′. In
view of Lemma 6.1, we take Ai = T′(αiI + bi) for some αi �= 0 in R and bi ∈ K∗. Then
αi+1I + bi+1 = (βiI + ci)(αiI + bi) for some βi ∈ R, and ci ∈ K∗. This gives αi+1 = βiαi and
annR(αi) ⊆ annR(αi+1). As R is Noetherian, there exists a positive integer m such that
annR(αi)= annR(αi+1) for any i≥m. Therefore βi is a unit for any i≥m and βiI + ci is a
unit. Hence Ai = Am for any i≥m. �

The dualization of the above result gives the following.

Theorem 6.3. Let X be a partially ordered set such that for any finite nonempty subset Z
of X , U(Z) satisfies strong acc, R is an artinian commutative ring, and T = I∗(X ,R). Then
T′ = R+K∗(X ,R) is left perfect.

Examples of rings that are right perfect but not left perfect are well known (one such
example is the dual of example given in [2, Exercise 2, page 322]). By using the above
theorem, we end this section by constructing a class of right perfect rings that are not left
perfect.

Example 6.4. Let X be any partially ordered set that locally satisfies strong dcc, but has
a finite, nonempty subset Z such that L(Z) is not finite. As L(Z) satisfies strong
dcc, L(Z) has a subset V isomorphic to the set of natural number. Any infinite well-
ordered set not embeddable in the set of natural numbers is such a set X . Thus V is
given by elements: x1 < x2 < ··· < xn < ··· . Let R be a local artinian ring, and T′ =
R + K∗(X ,R). By Theorem 6.2, T′ is right perfect, however {ex1xiT

′}i≥2 is an infinite,
nonterminating descending sequence of principal right ideals in T′. Hence T′ is not left
perfect.
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