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We give a mapping theorem on sn-metrizable spaces, discuss relationships among spaces
with point-countable sn-networks, spaces with uniform sn-networks, spaces with locally
countable sn-networks, spaces with σ-locally countable sn-networks, and sn-metrizable
spaces, and obtain some related results.

1. Introduction and definitions

sn-networks were first introduced by Lin [12], which are the concept between weak bases
and cs-networks. sn-metrizable spaces [6] (i.e., spaces with σ-locally finite sn-networks)
are one class of generalized metric spaces, and they play an important role in metrization
theory, see [6, 13]. In this paper, we give a mapping theorem on sn-metrizable spaces, dis-
cuss relationships among spaces with point-countable sn-networks, spaces with uniform
sn-networks, spaces with locally countable sn-networks, spaces with σ-locally countable
sn-networks, and sn-metrizable spaces, and obtain some related results.

In this paper, all spaces are regular and T1, all mappings are continuous and surjective.
N denotes the set of all natural numbers. ω denotes N∪{0}. For a family � of subsets of
a space X and x ∈ X , denote (�)x = {P ∈� : x ∈ P}. For two families � and � of subsets
of X , denote �∧�= {A∩B : A∈� and B ∈�}.
Definition 1.1. Let f : X → Y be a mapping.

(1) f is called a σ-mapping [1] if there exists a base � for X such that f (�) is a σ-
locally finite family of subsets of Y .

(2) f is called a sequence-covering mapping [19] if each convergent sequence (includ-
ing its limit point) of Y is the image of some convergent sequence (including its limit
point) of X .

(3) f is called a 1-sequence-covering mapping [12] if for each y ∈ Y , there exists x ∈
f −1(y) satisfying the following condition. Whenever {yn} is a sequence of Y converging
to a point y in Y , there exists a sequence {xn} of X converging to a point x in X such that
each xn ∈ f −1(yn).

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:16 (2005) 2523–2531
DOI: 10.1155/IJMMS.2005.2523

http://dx.doi.org/10.1155/S016117120541203X


2524 sn-metrizable spaces and related matters

Definition 1.2. Let � be a cover of a space X .
(1) � is called a k-network [18] for X if for each compact subset K of X and its open

neighborhood V , there exists a finite subfamily �′ of � such that K ⊂∪�′ ⊂V .
(2) � is called a cs-network for X if for each x ∈ X , its open neighborhood V , and a

sequence {xn} converging to x, there exists P ∈� such that {xn : n≥m}∪ {x} ⊂ P ⊂ V
for some m∈N.

(3) � is called a cs∗-network for X if for each x ∈ X , its open neighborhood V , and a
sequence {xn} converging to x, there exist P ∈� and a subsequence {xnk} of {xn} such
that {xnk : k ∈N}∪{x} ⊂ P ⊂V .

(4) X is called an ℵ-space if X has a σ-locally finite k-network.

Definition 1.3 [5]. Let X be a space, and P ⊂ X . Then, the following hold.
(1) A sequence {xn} in X is called eventually in P, if {xn} converges to x, and there

exists m∈N such that {x}∪{xn : n≥m} ⊂ P.
(2) P is called a sequential neighborhood of x in X , if whenever a sequence {xn} in X

converges to x, then {xn} is eventually in P.
(3) P is called sequential open in X if P is a sequential neighborhood of each of its

points.
(4) X is called a sequential space if any sequential open subset of X is open in X .

Definition 1.4. Let �=∪{�x : x ∈ X} be a family of subsets of a space X satisfying that
for each x ∈ X , the following exist.

(a) �x is a network of x in X (i.e., x∈⋂�x and for each neighborhood U of x in X ,
P ⊂U for some P ∈�x).

(b) If U ,V ∈�x, then W ⊂U ∩V for some W ∈�x.
(1) � is called a weak base [3] for X if G ⊂ X such that for each x ∈ G, there exists

P ∈�x satisfying P ⊂ G, then G is open in X , here �x is called a weak base of x
in X .

(2) � is called an sn-network [12] for X if each element of �x is a sequential neigh-
borhood of x in X , here �x is called an sn-network of x in X .

(3) X is called sn-metrizable [6] (resp., g-metrizable [20]) if X has a σ-locally finite
sn-network (resp., weak-base).

(4) X is called sn-first countable [13] (resp., g-first countable) if X has an sn-network
� (resp., weak-base) such that each �x is countable.

Definition 1.5. Let � be a cover of a space X .
(1) � is called a uniform cover for X [2], if for each x ∈ X , whenever �′ is a count-

able infinite subset of (�)x, then �′ is a network of x in X (i.e., x ∈⋂�′ and for each
neighborhood U of x in X , P ⊂U for some P ∈�′).

(2) � is called a uniform sn-network (resp., weak base, cs-network) for X if � is both
a uniform cover and sn-network (resp., weak base, cs-network) for X .

Remark 1.6. (1) For a space, weak base ⇒ sn-network ⇒ cs-network ⇒ cs∗-network. An
sn-network for a sequential space is a weak base [12].

(2) g-metrizable spaces ⇒ sn-metrizable spaces ⇒ ℵ-spaces ⇔ spaces with σ-locally
finite cs-networks⇔ spaces with σ-locally finite cs∗-networks [4, 11].
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(3) g-first countable spaces⇔ sequential, sn-first countable spaces.
(4) Spaces with uniform weak-bases ⇔ sequential spaces with uniform sn-networks

[12].

2. The characterization of spaces with uniform sn-networks

Lemma 2.1 [15]. The following are equivalent for a space X .
(1) X is a 1-sequence-covering compact image of a metric space.
(2) X is a sequence-covering compact image of a metric space.
(3) X has a uniform sn-network.
(4) X has a uniform cs-network.

From Lemma 2.1 and [12, Proposition 2.3], we have the following theorem.

Theorem 2.2. Let X be a space with a uniform sn-network. Then X has a point-countable
sn-network.

Theorem 2.3. The following are equivalent for a space X .
(1) X has a uniform base.
(2) X is a Fréchet space with a uniform sn-network.
(3) X is a sequential space with a uniform sn-network and contains no closed copy of S2.

Proof. (1)⇒(2) is clear.
(2)⇒(3) holds by [14, Corollary 2.1.11] and the fact that a space with a uniform sn-

network has a point-countable sn-network.
(3)⇒(1). Suppose that X is a Fréchet space with a uniform sn-network. From Lemma

2.1, X is a sequence-covering compact image of a metric space. Let f be a sequence-
covering compact map from the metric space M onto X . Then, by [11, Proposition
2.1.16(2)], f is quotient. Since X is Fréchet, then f is pseudo-open (see [11, Proposi-
tion 2.1.16(3)]). Hence X has a uniform base (see [11, Theorem 2.9.18]). �

3. The characterization of sn-metrizable spaces

Lemma 3.1 [6]. The following are equivalent for a space X .
(1) X is sn-metrizable.
(2) X has a σ-discrete sn-network.
(3) X is an sn-first countable and ℵ-space.

Theorem 3.2. The following are equivalent for a space X .
(1) X is sn-metrizable.
(2) X is a sequence-covering, compact, and σ-image of a metric space.
(3) X is a 1-sequence-covering and σ-image of a metric space.

Proof. (1)⇒(2). Suppose X is sn-metrizable. From Lemma 3.1, X has a σ-discrete sn-
network �. Since X is regular, we can assume that each element of � is closed in X .
Put � = ∪{�i : i ∈ N} = ∪{�x : x ∈ X}, where �i is a discrete family of closed sets of
X , and �x is a weak base of x in X . For each i ∈ N, let Qi = {x ∈ X : �x ∩�i = φ},
�i =�i ∪ {Qi,X}, � = ∪{�i : i ∈ N}. Then �i is a locally finite cover of X , and � is
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a σ-locally finite cs-network for X . Let �i = {Pα : α∈ Ai}, where �i is closed under finite
intersections and X ∈�i ⊂�i+1. For each i ∈N, endow Ai with discrete topology, then
Ai is a metric space. Put

M =
{
α= (αi)∈∏

i∈N
Ai :

{
Pαi : i∈N}⊂� forms a network at some point x(α)∈ X

}
,

(3.1)

and endow M with the subspace topology induced from the usual product topology of
the family {Ai : i ∈N} of metric spaces, then M is a metric space. Since X is Hausdorff,
x(α) is unique in X for each α∈M. We define f : M→ X by f (α)= x(α) for each α∈M.
Because � is a σ-locally finite cs-network for X , then f is surjective. For each α= (αi)∈
M, f (α)= x(α). Suppose that V is an open neighborhood of x(α) in X . Then there exists
n ∈ N such that x(α) ∈ Pαn ⊂ V . Set W = {c ∈M : the nth coordinate of c is αn}. Then
W is an open neighborhood of α in M, and f (W)⊂ Pαn ⊂V . Hence f is continuous. We
will show that f is a sequence-covering, compact, and σ-mapping.

(i) f is sequence-covering.
For each sequence {xn} converging to x0, we can assume that all x′ns are distinct, and

that xn 
= x0 for each n∈N. Set K = {xm : m∈ ω}. Suppose that V is an open neighbor-
hood of K in X . A subfamily � of �i is called to hold the following property, which is
denoted by F(K ,V):

(a) � is finite;
(b) for each P ∈�, φ 
= P∩K ⊂ P ⊂V ;
(c) for each z ∈ K , exists unique Pz ∈� such that z ∈�z;
(d) if x0 ∈ P ∈�, then K \P is finite.

Since � is a σ-locally finite cs-network for X , then the above construction can be real-
ized, and we can assume that {�⊂�i : � holds the property F(K ,X)} = {�i j : j ∈N}.

For each n∈N, put

�′
n =

∧
i, j≤n

�i j , (3.2)

then �′
n ⊂�n and �′

n also holds the property F(K ,X).
For each i ∈ N, m ∈ ω, and xm ∈ K , there is αim ∈ Ai such that xm ∈ Pαim ∈�′

i . Let
βm = (αim)∈∏i∈NAi. It is easy to prove that {Pαim : i∈N} is a network of xm in X . Then
there is a βm ∈M such that f (βm)= xm for each m∈ ω. For each i∈N, there is n(i)∈N
such that αin = αio when n≥ n(i). Hence the sequence {αin} converges to αio in Ai. Thus
the sequence {βn} converges to β0 in M. This implies that f is sequence-covering.

(ii) f is a compact mapping.
For any x ∈ X , since {α∈Ai : x ∈ Pα} is finite, put

L=
(∏

n∈N

{
α∈ Ai : x ∈ Pα

})∩X. (3.3)

Then L is a compact subspace of X . In view of f −1(x)= L, then f is a compact mapping.
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(iii) f is a σ-mapping.
For each n∈N and αn ∈An, put

V
(
α1, . . . ,αn

)= {β ∈M : for each i≤ n, the ith coordinate of β is αi
}
. (3.4)

Let �= {V(α1, . . . ,αn) : αi ∈Ai (i≤ n) and n∈N}. Then � is a base for M.
To prove that f is a σ-mapping, we only need to check that for each n∈N and αn ∈An,

f (V(α1, . . . ,αn))=⋂i≤n Pαi because f (�) is σ-locally finite in X by this result.
For each n ∈ N, αn ∈ An, and i ≤ n, f (V(α1, . . . ,αn)) ⊂ Pαi , then f (V(α1, . . . ,αn)) ⊂⋂

i≤n Pαi . On the other hand, for each x ∈⋂i≤n Pαi , there is β = (βj)∈M such that f (β)=
x. For each j ∈ N, Pβj ∈� j ⊂� j+n, then there is αj+n ∈ Aj+n such that Pαj+n = Pβj . Set
α = (αj). Then α ∈ V(α1, . . . ,αn) and f (α) = x. Thus

⋂
i≤n Pαi ⊂ f (V(α1, . . . ,αn)). Hence

f (V(α1, . . . ,αn))=⋂i≤n Pαi . Therefore, f is a σ-mapping.
(2)⇒(3). It is clear that every sequence-covering and compact mapping on a metric

space is 1-sequence-covering (see [16, Theorem 4.4]).
(3)⇒(1). Suppose that f : M → X is a 1-sequence-covering σ-mapping, where M is a

metric space. Since f is a σ-mapping, then f (�) is σ-locally finite in X for some base �
for X . For each x ∈ X , there exists βx ∈ f −1(x) satisfying Definition 1.1(3). Put

�x =
{
f (B) : βx ∈ B ∈�

}
, �=∪{�x : x ∈ X

}
, (3.5)

it is easy to prove that � is a sn-network for X . Thus � is a σ-locally finite sn-network.
This implies that X is sn-metrizable. �

From Lemma 2.1 and Theorem 3.2, we have the following corollary.

Corollary 3.3. Let X be sn-metrizable, then X has a uniform sn-network.

4. The characterization of spaces with locally countable sn-networks

Lemma 4.1 [9]. The following are equivalent for a space X .
(1) X has a locally countable k-network.
(2) X has a locally countable cs-network.
(3) X has a locally countable cs∗-network.

Theorem 4.2. The following are equivalent for a space X .
(1) X has a locally countable sn-network.
(2) X is an sn-first countable space with a locally countable cs-network (k-network, cs∗-

network).

Proof. (1)⇒(2) is clear. We show that (2)⇒(1). Suppose that X is an sn-first countable
space with a locally countable cs-network. Let � be a locally countable cs-network for
X which is closed under finite intersections. For each x ∈ X , let {B(n,x) : n ∈ N} be a
decrease sn-network at x in X . Put

�x =
{
P ∈� : B(n,x)⊂ P for some n∈N},

�=∪{�x : x ∈ X
}
.

(4.1)
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Obviously, x ∈ ∩�x and �x is closed under finite intersections. Then � satisfies
Definition 1.4(a), (b). We claim that each element of �x is a sequential neighborhood
at x in X . Otherwise, there exists P ∈�x such that P is not a sequential neighborhood
at x in X . Then there exists a sequence {xn} converging to x such that for each k ∈ N,
{xn : n > k} 
⊂ P. Take xn1 ∈ {xn : n > 1} \P, then there exists a subsequence {xnk} of {xn}
such that each xnk+1 ∈ {xn : n > nk} \P. Obviously, xnk converges to x. Since P ∈�x, then
B(m,x) ⊂ P for some m ∈ N. Because B(m,x) is a sequential neighborhood at x in X ,
then {x} ∪ {xnk : k ≥ j} ⊂ B(m,x) for some j ∈ N, and so {xnk : k ≥ j} ⊂ P, a contra-
diction. Hence � is an sn-network for X . Obviously, � ⊂ �. Therefore � is a locally
countable sn-network for X . �

Theorem 4.3. A space with a locally countable sn-network is sn-metrizable.

Proof. Suppose that a space X has a locally countable sn-network. Then X is an sn-first
countable space with a locally countable k-network by Theorem 4.2, and so X is a k-
space with a locally countable k-network. By [10, Theorem 1], X is an ℵ-space. Thus X is
sn-metrizable by Lemma 3.1. �

5. The characterization of spaces with σ-locally countable sn-networks

Theorem 5.1. For a space X , (1)⇔(2)⇒ (3) below hold.
(1) X has a σ-locally countable sn-network.
(2) X is an sn-first countable space with a σ-locally countable cs-network.
(3) X is an sn-first countable space with a σ-locally countable k-network.

Proof. (1)⇒(2) is obvious.
(2)⇒(3). Suppose that X is an sn-first countable space with a σ-locally countable cs-

network. Let � = ∪{�n : n ∈N} be a σ-locally countable cs-network for X , where each
�n is locally countable in X . We will show that � is a k-network for X . Suppose that
K ⊂V with K nonempty compact and V open in X . For each n∈N, put

�n =
{
P ∈�n : P∩K 
=Φ and P ⊂V

}
, (5.1)

then �n is countable, and so � = ∪{�n : n ∈ N} is countable. Denoting � = {Pi : i ∈
N}, then K ⊂⋃i≤n Pi for some n∈N. Otherwise, K 
⊂⋃i≤n Pi for each n∈N, so choose
xn ∈ K \⋃i≤n Pi. Because {P∩K : P ∈�} is a countable cs-network for a subspace K and
a compact space with a countable network is metrizable, then K is a compact metrizable
space. Thus {xn} has a convergent subsequence {xnk}, where xnk → x. Obviously x ∈ K .
Since � is a cs-network for X , then there exist m∈N and P ∈� such that {xnk : k ≥m}∪
{x} ⊂ P ⊂V . Now, P = Pj for some j ∈N. Take l ≥m such that nl ≥ j, then xnl ∈ Pj . This
is a contradiction. Therefore, (2)⇒(3) holds.

(2)⇒(1). Suppose that X is an sn-first countable space with σ-locally countable cs-
network. Let �=∪{�m : m∈N} be a σ-locally countable cs-network for X , where each
�m is locally countable inX which is closed under finite intersections andX∈�m⊂�m+1,
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and for each x ∈ X , let {B(n,x) : n∈N} be a decreasing sn-network of x in X . Put

�m,x =
{
P ∈�m : B(n,x)⊂ P for some n∈N},

�x =∪
{
�m,x : m∈N},

�m =∪
{
�m,x : x ∈ X

}
,

�=∪{�x : x ∈ X
}
.

(5.2)

Similar to the proof of Theorem 4.2, we can show that � is an sn-network for X .
For each m∈N, �m ⊂�m, then �m is locally countable in X . Thus �=∪{�m : m∈

N} is σ-locally countable in X . Therefore, (2)⇒(1) holds. �

Lemma 5.2. A paracompact space with a σ-locally countable k-network is an ℵ-space.

Proof. Suppose that X is a paracompact space with a σ-locally countable k-network �.
Let � = ∪{�i : i ∈ N}, where each �i is locally countable in X . Since locally countable
families are closed under finite unions, we can assume that each �i ⊂�i+1. For each i∈N,
since �i is locally countable in X , then there exists an open cover �i of X such that any
element of �i only intersects many countable elements of �i. Because X is paracompact,
then �i has a locally finite open refinement �i. We will show that

⋃
i∈N(�i ∧�i) is a

σ-locally finite k-network for X . For each V ∈�i, let {P ∈�i : V ∩P 
= φ} = {P(V ,n) :
n ∈N}. Put �i,n = {P(V ,n)∩V : V ∈�i}. Since �i is locally finite in X , then �i,n also
is. Now, �i ∧�i =

⋃
n∈N�i,n, thus

⋃
i∈N(�i ∧�i) is σ-locally finite in X . Suppose that

K ⊂W with K nonempty compact and W open in X . Then, there are i ∈ N and finite
�∗

i ⊂�i such that K⊂⋃�∗
i ⊂W . So K ⊂⋃�∗

i for some finite �∗
i ⊂�i. As �∗

i ∧�∗
i is

a finite family of �i∧�i, and K ⊂⋃(�∗
i ∧�∗

i )⊂W , then
⋃

i∈N(�i∧�i) is a k-network
for X . This implies that X is an ℵ-space. �

From Theorem 5.1 and Lemmas 5.2 and 3.1, we have the following theorem.

Theorem 5.3. A paracompact space with a σ-locally countable sn-network is sn-metrizable.

6. Examples

Example 6.1. A space X has a point-countable sn-network 
⇒X has a uniform sn-network.
For each n∈N, let Cn be a convergent sequence which includes a limit point pn, and

Cn ∩ Cm = φ if n 
= m. And let S =⊕n∈NCn, and M = S
⊕
R. Then M is a separable,

locally compact metric space. Put Q = {qn : n∈N}, and let X be the quotient space ob-
tained from M by identifying pn in S with qn in R for each n ∈ N. Then X is a regular,
non-Cauchy space, which has a point-countable weak base (see [21, Example 2.14(3)] or
[14, Example 3.1.13(2)]). Obviously, X has a point-countable sn-network. By [17, Corol-
lary 2], X is not a sequence-covering, quotient, and π-image of a metric space. Note that
X is sequential, X is not a sequence-covering π-image of a metric space (see [11, Proposi-
tion 2.1.16(2)]). Thus X is not a sequence-covering compact image of a metric space. By
Lemma 2.1, X has not any uniform sn-network.
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Example 6.2. A space X has a uniform sn-network 
⇒ X is sn-metrizable.
Let

S=
{

1
n

: n∈N
}
∪{0}, X = [0,1]× S. (6.1)

And let

Y = [0,1]×
{

1
n

: n∈N
}

(6.2)

have the usual Euclidean topology as a subspace of [0,1]× S. Define a typical neighbor-
hood of (t,0) in X to be of the form

{
(t,0)

}∪
(⋃

k≥n
V
(
t,

1
k

))
, n∈N, (6.3)

where V(t,1/k) is a neighborhood of (t,1/k) in [0,1]×{1/k}. Put

M =
(⊕

n∈N
[0,1]×

{
1
n

})
⊕
( ⊕

t∈[0,1]

{t}× S

)
, (6.4)

and define f from M onto X such that f is an obvious mapping.
Then f is a compact-covering, quotient, two-to-one mapping from the locally com-

pact metric space M onto separable, regular, non-meta-Lindelöf space X (see [11, Ex-
ample 2.8.16] or [8, Example 9.3]). It is easy to check that f is a 1-sequence-covering
mapping. From Lemma 2.1, X has a uniform sn-network.

Because X is a sequential space, and a regular sequential space with a σ-locally count-
able k-network is meta-Lindelöf (see [10, Proposition 1]), then X has not any σ-locally
countable k-network. So X is not an ℵ-space. By Lemma 3.1, X is not sn-metrizable.

Example 6.3. Let Y be a subset of R such that Q ⊂ Y ⊂ R and |Y | > ω. Let X =
Y ∪ (

⋃
n∈NQ×{1/n}), and define a base � for the desired topology on X as follows:

(1) if x ∈ X −Y , let {x} ∈�,
(2) if x ∈ Y , then {{x}∪ (

⋃
n≥m([ax,n,x)∪Q)×{1/m}) : m∈N, x > ax,n ∈R} ⊂�.

Then X is a separable, sn-metrizable space, which has not any countable sn-network (see
[7, Example 2.3]). Thus the following holds:

X is sn-metrizable 
⇒ X has a countable sn-network.

Example 6.4. Let S = {1/n : n ∈ N} ∪ {0}. Let X = ω1 × S and define a base � for the
desired topology on X as follows:

(1) {{x} : x ∈ X \ω1×{0}} ⊂�,
(2) if α < ω1, {{(α,0)} ∪ (

⋃
n≥m(V(α,n)× {1/n})) : m ∈ N,V(α,n) is an open neigh-

borhood α in ω1which has the order topology} ⊂�.
Then X has a locally countable k-network, which is not an ℵ-space (see [11, Exam-
ple 2.8.17]). From Lemma 4.1, X has a locally countable cs-network. Since X is not sn-
metrizable, then X has not any locally countable sn-network by Theorem 4.3. Thus the
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following holds.
(1) X has a locally countable cs-network 
⇒ X has a σ-locally finite cs-network.
(2) X has a locally countable cs-network 
⇒ X has a locally countable sn-network.
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