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We give a mapping theorem on sn-metrizable spaces, discuss relationships among spaces
with point-countable sn-networks, spaces with uniform sn-networks, spaces with locally
countable sn-networks, spaces with o-locally countable sn-networks, and sn-metrizable
spaces, and obtain some related results.

1. Introduction and definitions

sn-networks were first introduced by Lin [12], which are the concept between weak bases
and cs-networks. sn-metrizable spaces [6] (i.e., spaces with o-locally finite sn-networks)
are one class of generalized metric spaces, and they play an important role in metrization
theory, see [6, 13]. In this paper, we give a mapping theorem on sn-metrizable spaces, dis-
cuss relationships among spaces with point-countable sn-networks, spaces with uniform
sn-networks, spaces with locally countable sn-networks, spaces with ¢-locally countable
sn-networks, and sn-metrizable spaces, and obtain some related results.

In this paper, all spaces are regular and T, all mappings are continuous and surjective.
N denotes the set of all natural numbers. w denotes N U {0}. For a family % of subsets of
aspace X and x € X, denote (P), = {P € P : x € P}. For two families s{ and & of subsets
of X,denote A AB={ANB:Acand B c RB}.

Definition 1.1. Let f : X — Y be a mapping.

(1) f is called a o-mapping [1] if there exists a base % for X such that f(%) is a o-
locally finite family of subsets of Y.

(2) f is called a sequence-covering mapping [19] if each convergent sequence (includ-
ing its limit point) of Y is the image of some convergent sequence (including its limit
point) of X.

(3) f is called a 1-sequence-covering mapping [12] if for each y € Y, there exists x €
f~1(y) satisfying the following condition. Whenever {y,} is a sequence of Y converging
toa point y in Y, there exists a sequence {x,} of X converging to a point x in X such that
each x, € f~1(yn).
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Definition 1.2. Let % be a cover of a space X.

(1) P is called a k-network [18] for X if for each compact subset K of X and its open
neighborhood V, there exists a finite subfamily %" of % such that K c u®’ C V.

(2) P is called a cs-network for X if for each x € X, its open neighborhood V, and a
sequence {x,} converging to x, there exists P € % such that {x,:n>m}u{x} CPCV
for some m € N.

(3) P is called a cs*-network for X if for each x € X, its open neighborhood V, and a
sequence {x,} converging to x, there exist P € ? and a subsequence {x,,} of {x,} such
that {x,, :keN}ju{x} cPCV.

(4) X is called an X-space if X has a o-locally finite k-network.

Definition 1.3 [5]. Let X be a space, and P C X. Then, the following hold.

(1) A sequence {x,} in X is called eventually in P, if {x,} converges to x, and there
exists m € N such that {x} U {x,,: n > m} C P.

(2) P is called a sequential neighborhood of x in X, if whenever a sequence {x,} in X
converges to x, then {x,} is eventually in P.

(3) P is called sequential open in X if P is a sequential neighborhood of each of its
points.

(4) X is called a sequential space if any sequential open subset of X is open in X.

Definition 1.4. Let P = U{P, : x € X} be a family of subsets of a space X satisfying that
for each x € X, the following exist.
(a) P, is a network of x in X (i.e., x& [P and for each neighborhood U of x in X,
P c U for some P € P,).
b) IfU,VeP,,then WcCcUNYV forsome W € P,.
(1) 9 is called a weak base [3] for X if G C X such that for each x € G, there exists
P e P, satistying P C G, then G is open in X, here P, is called a weak base of x
in X.
(2) P is called an sn-network [12] for X if each element of P, is a sequential neigh-
borhood of x in X, here P, is called an sn-network of x in X.
(3) X is called sn-metrizable [6] (resp., g-metrizable [20]) if X has a o-locally finite
sn-network (resp., weak-base).
(4) X is called sn-first countable [13] (resp., g-first countable) if X has an sn-network
P (resp., weak-base) such that each P, is countable.

Definition 1.5. Let P be a cover of a space X.

(1) P is called a uniform cover for X [2], if for each x € X, whenever %’ is a count-
able infinite subset of (P),, then %’ is a network of x in X (i.e., x € (%’ and for each
neighborhood U of x in X, P € U for some P € %").

(2) P is called a uniform sn-network (resp., weak base, cs-network) for X if ? is both
a uniform cover and sn-network (resp., weak base, cs-network) for X.

Remark 1.6. (1) For a space, weak base = sn-network = cs-network = cs*-network. An
sn-network for a sequential space is a weak base [12].

(2) g-metrizable spaces = sn-metrizable spaces = K-spaces © spaces with o-locally
finite cs-networks & spaces with o-locally finite cs*-networks [4, 11].
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(3) g-first countable spaces & sequential, sn-first countable spaces.
(4) Spaces with uniform weak-bases ¢ sequential spaces with uniform sn-networks
[12].

2. The characterization of spaces with uniform sn-networks

LemMa 2.1 [15]. The following are equivalent for a space X.
(1) X is a 1-sequence-covering compact image of a metric space.
(2) X is a sequence-covering compact image of a metric space.
(3) X has a uniform sn-network.
(4) X has a uniform cs-network.

From Lemma 2.1 and [12, Proposition 2.3], we have the following theorem.

THEOREM 2.2. Let X be a space with a uniform sn-network. Then X has a point-countable
sn-network.

THEOREM 2.3. The following are equivalent for a space X.
(1) X has a uniform base.
(2) X is a Fréchet space with a uniform sn-network.
(3) X is a sequential space with a uniform sn-network and contains no closed copy of S,.

Proof. (1)=(2) is clear.

(2)=(3) holds by [14, Corollary 2.1.11] and the fact that a space with a uniform sn-
network has a point-countable sn-network.

(3)=(1). Suppose that X is a Fréchet space with a uniform sn-network. From Lemma
2.1, X is a sequence-covering compact image of a metric space. Let f be a sequence-
covering compact map from the metric space M onto X. Then, by [11, Proposition
2.1.16(2)], f is quotient. Since X is Fréchet, then f is pseudo-open (see [11, Proposi-
tion 2.1.16(3)]). Hence X has a uniform base (see [11, Theorem 2.9.18]). O

3. The characterization of sn-metrizable spaces

LemMa 3.1 [6]. The following are equivalent for a space X.
(1) X is sn-metrizable.
(2) X has a o-discrete sn-network.
(3) X is an sn-first countable and R-space.

TueoreM 3.2. The following are equivalent for a space X.
(1) X is sn-metrizable.
(2) X is a sequence-covering, compact, and o-image of a metric space.
(3) X is a 1-sequence-covering and o-image of a metric space.

Proof. (1)=(2). Suppose X is sn-metrizable. From Lemma 3.1, X has a o-discrete sn-
network Z. Since X is regular, we can assume that each element of & is closed in X.
Put F = U{B;:i e N} = U{F,:x € X}, where B; is a discrete family of closed sets of
X, and %, is a weak base of x in X. For each i e N, let Qi = {x € X : F, N B; = ¢},
Pi=B;U{Q; X}, P = U{P;:ie N}. Then P; is a locally finite cover of X, and P is
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a o-locally finite cs-network for X. Let P; = {P, : a € A;}, where P; is closed under finite
intersections and X € %; € P;,;. For each i € N, endow A; with discrete topology, then
A; is a metric space. Put

M= {oc = (a;) € [ JAi: {Py,:i €N} ¢ P forms a network at some point x(a) € X},
ieN
(3.1)

and endow M with the subspace topology induced from the usual product topology of
the family {A; : i € N} of metric spaces, then M is a metric space. Since X is Hausdorff,
x(a) is unique in X for each « € M. We define f : M — X by f(«a) = x(«a) for each a € M.
Because P is a o-locally finite cs-network for X, then f is surjective. For each a = (;) €
M, f(a) = x(«). Suppose that V is an open neighborhood of x(«) in X. Then there exists
n € N such that x(a) € P,, C V. Set W = {c € M : the nth coordinate of c is «, }. Then
W is an open neighborhood of « in M, and f(W) C P,, C V. Hence f is continuous. We
will show that f is a sequence-covering, compact, and o-mapping.

(i) f is sequence-covering.

For each sequence {x,} converging to xo, we can assume that all x,s are distinct, and
that x,, # xo for each n € N. Set K = {x,, : m € w}. Suppose that V is an open neighbor-
hood of K in X. A subfamily s of %; is called to hold the following property, which is
denoted by F(K,V):

(a) A is finite;

(b) foreachPesd, ¢ #PNKCPCV;

(c) for each z € K, exists unique P, € A such that z € P ;
(d) if xo € P € A, then K \ P is finite.

Since P is a g-locally finite cs-network for X, then the above construction can be real-
ized, and we can assume that {4 C P;: o holds the property F(K,X)} = {odij: j €NJL

For each n € N, put

P, = N\ i, (3.2)

i,j<n

then &P, € P, and P}, also holds the property F(K,X).

For each i € N, m € w, and x,, € K, there is a;, € A; such that x,,, € Py, € P;. Let
Bm = (&tim) € [];en Ai. It is easy to prove that {P,,, : i € N} is a network of x,, in X. Then
there is a 8,, € M such that f(,,) = x,, for each m € w. For each i € N, there is n(i) € N
such that &, = a;, when n > n(i). Hence the sequence {a;,} converges to «;, in A;. Thus
the sequence {f,} converges to 8y in M. This implies that f is sequence-covering.

(ii) f is a compact mapping.

For any x € X, since {a € A; : x € P,} is finite, put

Lz(ﬂ{aeAi:xePa})mX. (3.3)

neN

Then L is a compact subspace of X. In view of f~!(x) = L, then f is a compact mapping.
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(iii) f is a o-mapping.
For eachn € Nand o, € A,,, put

V(a,...,an) = {f € M : for each i < n, the ith coordinate of 8 is a;}. (3.4)

Let B = {V(ar,...,a,) :a; € A; (i <n)and n € N}. Then % is a base for M.

To prove that f is a c-mapping, we only need to check that foreachn € Nand o, € A4,
f(V(ar,...,04)) = i<y Po, because f(%B) is o-locally finite in X by this result.

For eachne N, a, € Ay, and i < n, f(V(ay,...,an)) C Py, then f(V(ay,...,a,)) C
Ni<n Pa;- On the other hand, for each x € ., Py, there is f = (B;) € M such that f(f) =
x. For each j € N, Pg € P; C Pjin, then there is aji, € Ajyy such that Py,., = Pp,. Set
« = (a;). Then a € V(ay,...,a,) and f(a) = x. Thus ;< Po; C f(V(as,...,a,)). Hence
f(V(ar,...,04)) = i<y Pa;- Therefore, f is a o-mapping.

(2)=(3). It is clear that every sequence-covering and compact mapping on a metric
space is 1-sequence-covering (see [16, Theorem 4.4]).

(3)=(1). Suppose that f : M — X is a 1-sequence-covering o-mapping, where M is a
metric space. Since f is a 0-mapping, then f (%) is o-locally finite in X for some base %B
for X. For each x € X, there exists x € f!(x) satisfying Definition 1.1(3). Put

Py ={f(B):B. € BB}, P=uU{P,:xeX], (3.5)

it is easy to prove that P is a sn-network for X. Thus P is a o-locally finite sn-network.
This implies that X is sn-metrizable. O

From Lemma 2.1 and Theorem 3.2, we have the following corollary.

COROLLARY 3.3. Let X be sn-metrizable, then X has a uniform sn-network.

4. The characterization of spaces with locally countable sn-networks

LemMA 4.1 [9]. The following are equivalent for a space X.
(1) X has a locally countable k-network.
(2) X has a locally countable cs-network.
(3) X has a locally countable cs* -network.

TaeOREM 4.2. The following are equivalent for a space X.

(1) X has a locally countable sn-network.

(2) X is an sn-first countable space with a locally countable cs-network (k-network, cs*-
network).

Proof. (1)=(2) is clear. We show that (2)=(1). Suppose that X is an sn-first countable
space with a locally countable cs-network. Let P be a locally countable cs-network for
X which is closed under finite intersections. For each x € X, let {B(n,x) : n € N} be a
decrease sn-network at x in X. Put

F, = {P € P:B(n,x) CP for some n € N},

F=U{F,:x X} 1)



2528  sn-metrizable spaces and related matters

Obviously, x € N%F, and F, is closed under finite intersections. Then ¥ satisfies
Definition 1.4(a), (b). We claim that each element of F, is a sequential neighborhood
at x in X. Otherwise, there exists P € &, such that P is not a sequential neighborhood
at x in X. Then there exists a sequence {x,} converging to x such that for each k € N,
{xy:n >k} ¢ P. Take x,,, € {x,,: n > 1} \ P, then there exists a subsequence {x,, } of {x,}
such that each x,,,, € {x,:n>mn} \ P. Obviously, x,, converges to x. Since P € F,, then
B(m,x) C P for some m € N. Because B(m,x) is a sequential neighborhood at x in X,
then {x} U {x,, : k = j} € B(m,x) for some j € N, and so {x,, : k= j} C P, a contra-
diction. Hence % is an sn-network for X. Obviously, & C P. Therefore F is a locally
countable sn-network for X. O

THEOREM 4.3. A space with a locally countable sn-network is sn-metrizable.

Proof. Suppose that a space X has a locally countable sn-network. Then X is an sn-first
countable space with a locally countable k-network by Theorem 4.2, and so X is a k-
space with a locally countable k-network. By [10, Theorem 1], X is an X-space. Thus X is
sn-metrizable by Lemma 3.1. O

5. The characterization of spaces with o-locally countable sn-networks

TaEOREM 5.1. For a space X, (1)< (2) = (3) below hold.
(1) X has a o-locally countable sn-network.
(2) X is an sn-first countable space with a o-locally countable cs-network.
(3) X is an sn-first countable space with a o-locally countable k-network.

Proof. (1)=(2) is obvious.

(2)=(3). Suppose that X is an sn-first countable space with a ¢-locally countable cs-
network. Let % = U{%P, : n € N} be a o-locally countable cs-network for X, where each
P, is locally countable in X. We will show that P is a k-network for X. Suppose that
K c V with K nonempty compact and V open in X. For each n € N, put

Ay={P€P,:PNK#+DandP C V}, (5.1)

then o, is countable, and so o = U{d, : n € N} is countable. Denoting o = {P;:i €
N}, then K C U;<, P; for some n € N. Otherwise, K ¢ U;., P; for each n € N, so choose
Xn € K\ U<, Pi. Because {P N K : P € P} is a countable cs-network for a subspace K and
a compact space with a countable network is metrizable, then K is a compact metrizable
space. Thus {x,} has a convergent subsequence {x,, }, where x,, — x. Obviously x € K.
Since P is a cs-network for X, then there exist m € N and P € P such that {x,, : k > m} U
{x} C P CV.Now, P = P; for some j € N. Take [ > m such that n; > j, then x,,, € P;. This
is a contradiction. Therefore, (2)=(3) holds.

(2)=(1). Suppose that X is an sn-first countable space with o-locally countable cs-
network. Let = U{P,, : m € N} be a o-locally countable cs-network for X, where each
P is locally countable in X which is closed under finite intersections and X € P, C P 1,



Zhiming Luo 2529

and for each x € X, let {B(n,x) : n € N} be a decreasing sn-network of x in X. Put

Fmx=1{P € P, : B(n,x) C P for some n € N},

Fy = U{Fux:meN},

5.2
Fm=U{Fnux:x€X}, (52)

Similar to the proof of Theorem 4.2, we can show that & is an sn-network for X.
For each m € N, %&,,, C P,,, then F,, is locally countable in X. Thus F = U{F,,:m €
N} is o-locally countable in X. Therefore, (2)=(1) holds. O

LEMMA 5.2. A paracompact space with a o-locally countable k-network is an R-space.

Proof. Suppose that X is a paracompact space with a og-locally countable k-network %.
Let ® = U{P;:i € N}, where each P; is locally countable in X. Since locally countable
families are closed under finite unions, we can assume that each P; ¢ P;;,. Foreachi € N,
since P; is locally countable in X, then there exists an open cover U; of X such that any
element of U; only intersects many countable elements of %;. Because X is paracompact,
then AU; has a locally finite open refinement ¥';. We will show that U;en(Pi AY5) s a
o-locally finite k-network for X. For each V. €V, let {P e P;: VNP # ¢} = {P(V,n):
ne N} Put #;, = {P(V,n) nV:V € V;}. Since V; is locally finite in X, then 7, also
is. Now, P; AV = Upen i, thus Ujen (P A V) is o-locally finite in X. Suppose that
K ¢ W with K nonempty compact and W open in X. Then, there are i € N and finite
P¥ c P;such that Kc UPF € W.So K c UV for some finite V' C V. As P AV is
a finite family of ®; A V', and K C U(PF AVF) C W, then U;en(P; A V) is a k-network
for X. This implies that X is an X-space. O

From Theorem 5.1 and Lemmas 5.2 and 3.1, we have the following theorem.

THEOREM 5.3. A paracompact space with a o-locally countable sn-network is sn-metrizable.

6. Examples

Example 6.1. A space X has a point-countable sn-network # X has a uniform sn-network.

For each n € N, let C, be a convergent sequence which includes a limit point p,,, and
CinCu=¢ifn# m. And let S = P,y Cy, and M = SGR. Then M is a separable,
locally compact metric space. Put Q = {g,, : n € N}, and let X be the quotient space ob-
tained from M by identifying p, in S with g, in R for each n € N. Then X is a regular,
non-Cauchy space, which has a point-countable weak base (see [21, Example 2.14(3)] or
[14, Example 3.1.13(2)]). Obviously, X has a point-countable sn-network. By [17, Corol-
lary 2], X is not a sequence-covering, quotient, and 7-image of a metric space. Note that
X is sequential, X is not a sequence-covering 7-image of a metric space (see [11, Proposi-
tion 2.1.16(2)]). Thus X is not a sequence-covering compact image of a metric space. By
Lemma 2.1, X has not any uniform sn-network.
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Example 6.2. A space X has a uniform sn-network # X is sn-metrizable.
Let

S={%:neN}U{O}, X =[0,1] xS, 6.1)
And let
Y=[0,1]x{%:neN} (6.2)

have the usual Euclidean topology as a subspace of [0,1] X S. Define a typical neighbor-
hood of (£,0) in X to be of the form

1
((0)} U (kgV<tE>> nen, 6.3)

where V(¢,1/k) is a neighborhood of (¢,1/k) in [0,1] X {1/k}. Put

M:(E}N[o,ux{i})@( D {t}xS), (6.4)

te[0,1]

and define f from M onto X such that f is an obvious mapping.

Then f is a compact-covering, quotient, two-to-one mapping from the locally com-
pact metric space M onto separable, regular, non-meta-Lindel6f space X (see [11, Ex-
ample 2.8.16] or [8, Example 9.3]). It is easy to check that f is a 1-sequence-covering
mapping. From Lemma 2.1, X has a uniform sn-network.

Because X is a sequential space, and a regular sequential space with a o-locally count-
able k-network is meta-Lindelof (see [10, Proposition 1]), then X has not any o-locally
countable k-network. So X is not an X-space. By Lemma 3.1, X is not sn-metrizable.

Example 6.3. Let Y be a subset of R such that Q C Y C R and |Y]| > w. Let X =
Y U (U,en Q X {1/n}), and define a base B for the desired topology on X as follows:

(1) ifxeX-Y,let {x} € B,

(2) ifx €Y, then {{x} U (U,sm([axmx) UQ) X {I/m}):me N, x>a,, € R} CR.
Then X is a separable, sn-metrizable space, which has not any countable sn-network (see
[7, Example 2.3]). Thus the following holds:

X is sn-metrizable # X has a countable sn-network.

Example 6.4. Let S={1/n:n e N} U {0}. Let X = w; X S and define a base & for the
desired topology on X as follows:

(D) {ix}:xeX\w x{0}} CB,

(2) if a < wy, {({(0,0)} U (Upam(V(a,n) X {1/n})) : m € N, V(a,n) is an open neigh-

borhood « in w;which has the order topology} C %.

Then X has a locally countable k-network, which is not an X-space (see [11, Exam-
ple 2.8.17]). From Lemma 4.1, X has a locally countable cs-network. Since X is not sn-
metrizable, then X has not any locally countable sn-network by Theorem 4.3. Thus the
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following holds.
(1) X has a locally countable cs-network # X has a o-locally finite cs-network.
(2) X has a locally countable cs-network # X has a locally countable sn-network.
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