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The aim of this paper is to give a complete classification of irreducible finite-dimensional
representations of the nonstandard q-deformation U ′

q(son) (which does not coincide
with the Drinfel’d-Jimbo quantum algebra Uq(son)) of the universal enveloping algebra
U(son(C)) of the Lie algebra son(C) when q is not a root of unity. These representations
are exhausted by irreducible representations of the classical type and of the nonclassi-
cal type. The theorem on complete reducibility of finite-dimensional representations of
U ′

q(son) is proved.

1. Introduction

Quantum orthogonal groups, quantum Lorentz groups, and the corresponding quantum
algebras are of special interest for modern mathematical physics. Jimbo [19] and Drinfel’d
[3] defined q-deformations (quantum algebras) Uq(g) for all simple complex Lie algebras
g by means of Cartan subalgebras and root subspaces (see also [18, 20]). Reshetikhin et
al. [32] defined quantum algebras Uq(g) in terms of the quantum R-matrix satisfying the
quantum Yang-Baxter equation. However, these approaches do not give a satisfactory pre-
sentation of the quantum algebra Uq(son) from a viewpoint of some problems in quan-
tum physics and representation theory. When considering representations of the quan-
tum algebras Uq(son+1) and Uq(son,1), we are interested in reducing them onto the quan-
tum subalgebra Uq(son). This reduction would give an analogue of the Gel’fand-Tsetlin
basis for these representations. However, the definitions of quantum algebras mentioned
above do not allow the inclusions Uq(son+1) ⊃ Uq(son) and Uq(son,1) ⊃ Uq(son). To be
able to exploit such reductions, we have to consider q-deformations of the Lie algebra
son+1(C) defined in terms of the generators Ik,k−1 = Ek,k−1−Ek−1,k (where Eis is the ma-
trix with entries (Eis)rt = δirδst) rather than by means of Cartan subalgebras and root ele-
ments. To construct such deformations, we have to deform trilinear relations for elements
Ik,k−1 instead of Serre’s relations (used in the case of the standard quantized universal en-
veloping algebras). As a result, we obtain the associative algebra, which will be denoted as
U ′

q(son).
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This q-deformation was first constructed in [8]. It permits one to construct the re-
ductions of U ′

q(son,1) and U ′
q(son+1) onto U ′

q(son). The q-deformed algebra U ′
q(son) leads

for n = 3 to the q-deformed algebra U ′
q(so3) defined by Fairlie [4]. The cyclically sym-

metric algebra, similar to Fairlie’s one, was also considered somewhat earlier by Odesskiı̆
[31].

In the classical case, the imbedding SO(n) ⊂ SU(n) (and its infinitesimal analogue)
is of great importance for nuclear physics and in the theory of Riemannian symmet-
ric spaces. It is well known that in the framework of quantum groups and Drinfel’d-
Jimbo quantum algebras one cannot construct the corresponding embedding. The al-
gebra U ′

q(son) allows to define such an embedding [29], that is, it is possible to define
the embedding U ′

q(son) ⊂ Uq(sln), where Uq(sln) is the Drinfel’d-Jimbo quantum alge-
bra.

As a disadvantage of the algebra U ′
q(son), we have to mention the difficulties with

Hopf algebra structure. Nevertheless, U ′
q(son) turns out to be a coideal in Uq(sln) (see

[29]) and this fact allows us to consider tensor products of finite-dimensional irreducible
representations of U ′

q(son) for many interesting cases (see [13]).
The algebra U ′

q(son) and its representations are interesting in many cases. Main direc-
tions of interest are the following:

(1) the theory of orthogonal polynomials and special functions (especially, the theory
of q-orthogonal polynomials and basic hypergeometric functions); this direction
is not well worked out; some ideas of such applications can be found in [23];

(2) the algebra U ′
q(son) (especially its particular case U ′

q(so3)) is related to the algebra
of observables in 2 + 1 quantum gravity on the Riemmanian surfaces (see papers
[2, 5, 28]);

(3) a quantum analogue of the Riemannian symmetric space SU(n)/SO(n) is con-
structed by means of the algebra U ′

q(son); this construction is fulfilled in the pa-
per [29] (see also [24]);

(4) a q-analogue of the theory of harmonic polynomials (q-harmonic polynomials
on quantum vector space Rn

q) is constructed by using the algebra U ′
q(son); in par-

ticular, a q-analogue of different separations of variables for the q-Laplace oper-
ator on Rn

q is given by means of this algebra and its subalgebras; this theory is
contained in the papers [17, 30];

(5) the algebra U ′
q(son) also appears in the theory of links in the algebraic topology

(see [1]);
(6) the algebra U ′

q(son) is connected with Yangians (see [27] and references therein);
(7) a new quantum analogue of the Brauer algebra is connected with the algebra

U ′
q(son) (see [26]).

A large class of finite-dimensional irreducible representations of the algebra U ′
q(son)

was constructed in [8]. The formulas of action of the generators of U ′
q(son) upon the basis

(which is a q-analogue of the Gel’fand-Tsetlin basis) are given there. A proof of these for-
mulas and some of their corrections were given in [6]. However, the finite-dimensional
irreducible representations described in [6, 8] are representations of the classical type.
They are q-deformations of the corresponding irreducible representations of the Lie al-
gebra son, that is, at q→ 1 they turn into representations of son.
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The algebra U ′
q(son) has other classes of finite-dimensional irreducible representa-

tions, which have no classical analogue. These representations are singular at the limit
q→ 1. They are described in [15]. The description of these representations for the alge-
bra U ′

q(so3) is given in [9]. A classification of irreducible ∗-representations of real forms
of the algebra U ′

q(so3) is given in [33]. The representation theory of U ′
q(son) when q is a

root of unity is studied in [16].
In this paper, we deal with classification of finite-dimensional irreducible representa-

tions of the algebra U ′
q(son) when q is not a root of unity. As mentioned above, there were

constructed irreducible representations of the algebra U ′
q(son) belonging to the classical

and to the nonclassical types. However, it was not known that these representations ex-
haust all irreducible finite-dimensional representations. We started to study this problem
in [22]. We show there that these representations are determined by the so-called high-
est weights (which were defined in [22] and differ from highest weights in the theory of
quantized universal enveloping algebras). However, we do not know a correspondence be-
tween known representations of the classical and nonclassical types and highest weights.
In the present paper, we develop an approach to the problem of classification from other
points of view. Namely, we prove that each irreducible finite-dimensional representation
of U ′

q(son) belongs to the set of representations of the classical type or to the set of rep-
resentations of the nonclassical type constructed before. For proving this, we use our
previous results on structure of the algebra U ′

q(son) (tensor operators, Wigner-Eckart
theorem, etc.). We also need the theorem on complete reducibility of finite-dimensional
representations of U ′

q(son). This theorem is proved in this paper. Some ideas from the
theory of representations of the Lie algebra son(C) and its real forms are also used.

Note that the problem of classification of irreducible finite-dimensional representa-
tions of U ′

q(son) is much more complicated than in the case of Drinfel’d-Jimbo quantum
algebras since in U ′

q(son) we do not have an analogue of a Cartan subalgebra and root
elements. The set of all irreducible finite-dimensional representations of U ′

q(son) is wider
than in the case of Uq(son).

Everywhere below we assume that q is not a root of unity.

2. The q-deformed algebra U ′
q(son)

The universal enveloping algebra U(son(C)) is generated by the elements Ii j = Eij −Eji,
i > j. But in order to generate the algebraU(son(C)), it is enough to take only the elements
I21,I32, . . . ,In,n−1. It is a minimal set of elements necessary for generating U(son(C)). These
elements satisfy the relations

I2
i,i−1Ii+1,i− 2Ii,i−1Ii+1,iIi,i−1 + Ii+1,iI

2
i,i−1 =−Ii+1,i,

Ii,i−1I
2
i+1,i− 2Ii+1,iIi,i−1Ii+1,i + I2

i+1,iIi,i−1 =−Ii,i−1,

Ii,i−1I j, j−1− I j, j−1Ii,i−1 = 0 for |i− j| > 1.

(2.1)

The following theorem is true for U(son(C)) (see [21]): the enveloping algebra U(son(C))
is isomorphic to the complex associative algebra (with a unit element) generated by the ele-
ments I21,I32, . . . ,In,n−1 satisfying the above relations.
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We make a q-deformation of these relations by fulfilling the deformation of the integer
2 as 2→ [2]q := (q2− q−2)/(q− q−1)= q+ q−1. As a result, we obtain the relations

I2
i,i−1Ii+1,i−

(
q+ q−1)Ii,i−1Ii+1,iIi,i−1 + Ii+1,iI

2
i,i−1 =−Ii+1,i, (2.2)

Ii,i−1I
2
i+1,i−

(
q+ q−1)Ii+1,iIi,i−1Ii+1,i + I2

i+1,iIi,i−1 =−Ii,i−1, (2.3)

Ii,i−1I j, j−1− I j, j−1Ii,i−1 = 0 for |i− j| > 1. (2.4)

The q-deformed algebra U ′
q(son) is defined as the complex unital (i.e., with a unit ele-

ment) associative algebra generated by elements I21,I32, . . . ,In,n−1 satisfying relations (2.2),
(2.3), and (2.4). It is a q-deformation of the universal enveloping algebra U(son(C)),
different from the Drinfel’d-Jimbo quantized universal enveloping algebra Uq(son). For
this algebra, the inclusions U ′

q(son) ⊃ U ′
q(son−1) and Uq(sln) ⊃ U ′

q(son) are constructed,
whereUq(sln) is the well-known Drinfel’d-Jimbo quantum algebra (see the introduction).

An analogue of the skew-symmetric matrices Ii j = Eij −Eji, i > j, constituting a basis
of the Lie algebra son(C), can be introduced into U ′

q(son) (see [7, 30]). For k > l+ 1, they
are defined recursively by the formulas

Ikl := [Il+1,l,Ik,l+1
]
q ≡ q1/2Il+1,lIk,l+1− q−1/2Ik,l+1Il+1,l . (2.5)

The elements Ikl, k > l, satisfy the commutation relations

[
Ilr ,Ikl

]
q = Ikr ,

[
Ikl,Ikr

]
q = Ilr ,

[
Ikr ,Ilr

]
q = Ikl for k > l > r, (2.6)[

Ikl,Isr
]= 0 for k > l > s > r, k > s > r > l, (2.7)[

Ikl,Isr
]
q =

(
q− q−1)(Ilr Iks− IkrIsl

)
for k > s > l > r. (2.8)

For q = 1, they coincide with the corresponding commutation relations for the Lie algebra
son(C).

The algebra U ′
q(son) can be also defined as a unital associative algebra generated by

Ikl, 1≤ l < k ≤ n, satisfying the relations (2.6), (2.7), and (2.8). In fact, the relations (2.6),
(2.7), and (2.8) can be reduced to the relations (2.2), (2.3), and (2.4) for I21,I32, . . . ,In,n−1.

The Poincaré-Birkhoff-Witt theorem for the algebra U ′
q(son) can be formulated as fol-

lows (a proof of this theorem is given in [16]): the elements

I21
m21I31

m31 ··· In1
mn1I32

m32I42
m42 ··· In2

mn2 ··· In,n−1
mn,n−1 , mij = 0,1,2, . . . , (2.9)

form a basis of the algebra U ′
q(son).

In U ′
q(son), the commutative subalgebra � generated by the elements I21,I43,I65, . . . ,

In−1,n−2 (or In,n−1) can be separated. So, this subalgebra is generated by �n/2	 elements,
where �n/2	 is an integral part of the number n/2. However, there exist no root elements
in the algebra U ′

q(son) with respect to this commutative subalgebra. This leads to the
fact that properties of U ′

q(son) are not similar to those of the Drinfel’d-Jimbo algebra
Uq(son).
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3. Irreducible representations of the classical and nonclassical types

In this section, we give known facts on irreducible representations of U ′
q(son), which will

be used below. The corresponding references are given in the introduction.
Two types of irreducible finite-dimensional representations are known for U ′

q(son):

(a) representations of the classical type;
(b) representations of the nonclassical type.

Known irreducible representations of the classical type are q-deformations of the ir-
reducible finite-dimensional representations of the Lie algebra son. There is a one-to-one
correspondence between these irreducible representations of the algebra U ′

q(son) and ir-
reducible finite-dimensional representations of the Lie algebra son. Moreover, formulas
for representations of the classical type of U ′

q(son) turn into the corresponding formulas
for the representations of Lie algebra son at q→ 1.

There exists no classical analogue for representations of the nonclassical type: repre-
sentation operators T(a), a∈U ′

q(son), have singularities at q = 1.
We describe known irreducible finite-dimensional representations of the algebras

U ′
q(son), n≥ 3, which belong to the classical type. As in the classical case, they are given

by sets mn of �n/2	 numbers m1,n,m2,n, . . . ,m�n/2	,n (here �n/2	 denotes the integral part
of n/2), which are all integral or all half-integral and satisfy the dominance conditions

m1,2k+1 ≥m2,2k+1 ≥ ··· ≥mk,2k+1 ≥ 0,

m1,2k ≥m2,2k ≥ ··· ≥mk−1,2k ≥ |mk,2k| (3.1)

for n= 2k+ 1 and n= 2k, respectively. These representations are denoted by Tmn . We take
a q-analogue of the Gel’fand-Tsetlin basis in the representation space, which is obtained
by successive reduction of the representationTmn to the subalgebrasU ′

q(son−1),U ′
q(son−2),

. . . ,U ′
q(so3), U ′

q(so2) := U(so2). As in the classical case, its elements are labelled by the
Gel’fand-Tsetlin tableaux

{
αn
}≡


mn

mn−1
...

m2


≡ {mn,αn−1

}≡ {mn,mn−1,αn−2
}

, (3.2)

where, as in the nondeformed case, the components of ms and ms−1 satisfy the “between-
ness” conditions

m1,2p+1 ≥m1,2p ≥m2,2p+1 ≥m2,2p ≥ ··· ≥mp,2p+1 ≥mp,2p ≥−mp,2p+1,

m1,2p ≥m1,2p−1 ≥m2,2p ≥m2,2p−1 ≥ ··· ≥mp−1,2p−1 ≥
∣∣mp,2p

∣∣. (3.3)

Sometimes, the basis elements, defined by a tableau {αn}, are denoted as |αn−1〉 or as
|mn−1,αn−2〉, that is, we will omit the first row mn in a tableau.

It is convenient to introduce the so-called l-coordinates

l j,2p+1 =mj,2p+1 + p− j + 1, l j,2p =mj,2p + p− j, (3.4)
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for the numbers mi,k. The operator Tmn(I2p+1,2p) of the representation Tmn of U ′
q(son) acts

upon Gel’fand-Tsetlin basis elements, labelled by (3.2), as

Tmn

(
I2p+1,2p

)∣∣αn〉= p∑
j=1

A
j
2p

(
αn
)

a
(
l j,2p

) ∣∣∣(αn)+ j
2p

〉
−

p∑
j=1

A
j
2p

((
αn
)− j

2p

)
a
(
l j,2p− 1

) ∣∣∣(αn)− j
2p

〉
(3.5)

and the operator Tmn(I2p,2p−1) acts as

Tmn

(
I2p,2p−1

)∣∣αn〉= p−1∑
j=1

B
j
2p−1

(
αn
)

b
(
l j,2p−1

)[
l j,2p−1

]∣∣∣(αn)+ j
2p−1

〉

−
p−1∑
j=1

B
j
2p−1

((
αn
)− j

2p−1

)
b
(
l j,2p−1− 1

)[
l j,2p−1− 1

]∣∣∣(αn)− j
2p−1

〉
+ iC2p−1

(
αn
)∣∣αn〉.

(3.6)

In these formulas, (αn)
± j
s means the tableau (3.2) in which jth component mj,s in ms is

replaced by mj,s± 1, respectively. The coefficients A
j
2p, B

j
2p−1, C2p−1, a and b in (3.5) and

(3.6) are given by the expressions

A
j
2p

(
αn
)

=
(∏p

i=1

[
li,2p+1 + l j,2p

][
li,2p+1− l j,2p− 1

]∏p−1
i=1

[
li,2p−1 + l j,2p

][
li,2p−1− l j,2p− 1

]∏p
i 
= j

[
li,2p + l j,2p

][
li,2p− l j,2p

][
li,2p + l j,2p + 1

][
li,2p− l j,2p− 1

] )1/2

,

(3.7)

B
j
2p−1

(
αn
)

=
( ∏p

i=1

[
li,2p + l j,2p−1

][
li,2p− l j,2p−1

]∏p−1
i=1

[
li,2p−2 + l j,2p−1

][
li,2p−2− l j,2p−1

]∏p−1
i 
= j

[
li,2p−1+l j,2p−1

][
li,2p−1−l j,2p−1

][
li,2p−1+l j,2p−1−1

][
li,2p−1−l j,2p−1−1

])1/2

,

(3.8)

C2p−1
(
αn
)= ∏p

s=1

[
ls,2p

]∏p−1
s=1

[
ls,2p−2

]∏p−1
s=1

[
ls,2p−1

][
ls,2p−1− 1

] , (3.9)

a
(
l j,2p

)= {(qlj,2p+1 + q−l j,2p−1)(qlj,2p + q−l j,2p
)}1/2

,

b
(
l j,2p−1

)= ([2l j,2p−1 + 1
][

2l j,2p−1− 1
])1/2

.
(3.10)

The numbers in square brackets in formulas (3.6), (3.7), (3.8), and (3.9) mean q-numbers
defined by

[a]≡ [a]q := qa− q−a

q− q−1
. (3.11)

It is seen from formula (3.9) that the coefficient C2p−1 vanishes if mp,2p ≡ lp,2p = 0.
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The following assertion is well known [8]: the representations Tmn are irreducible. The
representations Tmn and Tm′

n
are pairwise nonequivalent for mn 
=m′

n.
Irreducible finite-dimensional representations of the nonclassical type are given by

sets ε := (ε2,ε3, . . . ,εn), εi =±1, and by sets mn consisting of �n/2	 half-integral (but not
integral) numbers m1,n,m2,n, . . . ,m�n/2	,n that satisfy the dominance conditions

m1,n ≥m2,n ≥ ··· ≥m�n/2	,n ≥ 1
2
. (3.12)

These representations are denoted by Tε,mn .
For a basis in the representation space, we use an analogue of the basis of the previous

case. Its elements are labelled by tableaux (3.2), where the components of ms and ms−1

satisfy the “betweenness” conditions

m1,2p+1 ≥m1,2p ≥m2,2p+1 ≥m2,2p ≥ ··· ≥mp,2p+1 ≥mp,2p ≥ 1
2

,

m1,2p ≥m1,2p−1 ≥m2,2p ≥m2,2p−1 ≥ ··· ≥mp−1,2p−1 ≥mp,2p.
(3.13)

The corresponding basis elements are denoted by the same symbols as in the previous
case. The l-coordinates for mj,s are introduced by the same formulas as before.

The operator Tε,mn(I2p+1,2p) of the representation Tε,mn of U ′
q(son) acts upon the basis

elements |αn〉 by the formulas

Tε,mn

(
I2p+1,2p

)∣∣αn〉= δmp,2p ,1/2
ε2p+1

q1/2− q−1/2
D2p

(
αn
)∣∣αn〉

+
p∑
j=1

A
j
2p

(
αn
)

a′
(
l j,2p

) ∣∣∣(αn)+ j
2p

〉
−

p∑
j=1

A
j
2p

((
αn
)− j

2p

)
a′
(
l j,2p− 1

) ∣∣∣(αn)− j
2p

〉
,

(3.14)

where the summation in the last sum must be from 1 to p− 1 if mp,2p = 1/2, and the
operator Tmn(I2p,2p−1) acts as

Tε,mn

(
I2p,2p−1

)∣∣αn〉= p−1∑
j=1

B
j
2p−1

(
αn
)

b
(
l j,2p−1

)[
l j,2p−1

]
+

∣∣∣(αn)+ j
2p−1

〉

−
p−1∑
j=1

B
j
2p−1

((
αn
)− j

2p−1

)
b
(
l j,2p−1− 1

)[
l j,2p−1− 1

]
+

∣∣∣(αn)− j
2p−1

〉
+ ε2pĈ2p−1

(
αn
)∣∣αn〉,

(3.15)

where

[a]+ = qa + q−a

q− q−1
. (3.16)
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As before, (αn)
± j
s means the tableau (3.2) in which jth component mj,s in ms is replaced

by mj,s ± 1, respectively. The expressions for A
j
2p, B

j
2p−1, and b are given by the same

formulas as in (3.5) and (3.6),

a′
(
l j,2p

)= {(qlj,2p+1− q−l j,2p−1)(qlj,2p − q−l j,2p
)}1/2

,

Ĉ2p−1
(
αn
)= ∏p

s=1

[
ls,2p

]
+

∏p−1
s=1

[
ls,2p−2

]
+∏p−1

s=1

[
ls,2p−1

]
+

[
ls,2p−1− 1

]
+

,

D2p
(
αn
)= ∏p

i=1

[
li,2p+1− 1/2

]∏p−1
i=1

[
li,2p−1− 1/2

]∏p−1
i=1

[
li,2p + 1/2

][
li,2p− 1/2

] .

(3.17)

The following assertion is true (see [15]): the representations Tε,mn are irreducible. The
representations Tε,mn and Tε′,m′

n
are pairwise nonequivalent for (ε,mn) 
= (ε′,m′

n). For any
admissible (ε,mn) and m′

n, the representations Tε,mn and Tm′
n

are pairwise nonequivalent.

Remark 3.1. As in the case of irreducible representations of the Lie algebra son, it follows
from the explicit description of irreducible representations Tmn and Tε,mn of U ′

q(son) that
the restriction of Tmn onto the subalgebra U ′

q(son−1) decomposes into a direct sum of
irreducible representations of this subalgebra belonging to the classical type, and the re-
striction of Tε,mn onto U ′

q(son−1) decomposes into a direct sum of irreducible represen-
tations belonging to the nonclassical type. Formulas for the representations determine
explicitly these decompositions.

4. Vector operators and Wigner-Eckart theorem

In this section, we define vector operators for irreducible representations of U ′
q(son) and

give the Wigner-Eckart theorem for them. This information will be used under proving
our main results.

The algebra U ′
q(son) is not a Hopf algebra. For this reason, we cannot define a tensor

product of its representations. However, U ′
q(son) can be embedded into the Hopf algebra

Uq(sln) (see [29, 30]). Using this embedding, a tensor product of the irreducible repre-
sentations T1 and T of U ′

q(son) is determined, where T1 is a vector representation (i.e., a
representation of the classical type characterized by the numbers (1,0, . . . ,0)) and T is an
arbitrary irreducible finite-dimensional representation [13]. The decomposition of this
tensor product into irreducible constituents is given by the formulas as in the classical case
if the representation T belongs to the classical type (i.e., the decomposition of T1⊗Tmn

contains the irreducible representations of the classical type characterized by m
+ j
n , m

− j
n ,

j = 1,2, . . . ,�n/2	, and also the representation Tmn if n= 2k + 1 and mk,2k+1 
= 0). For the
representations T = Tε,mn of the nonclassical type, we have

T1⊗Tε,mn =
⊕

m′
n∈Sε(mn)

Tε,m′
n
, (4.1)
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where

Sε
(

m2p+1
)= p⋃

j=1

{
Tε,m

+ j
2p+1

}
∪

p⋃
j=1

{
Tε,m

− j
2p+1

}
∪
{
Tε,m2p+1

}
,

Sε
(

m2p
)= p⋃

j=1

{
Tε,m

+ j
2p

}
∪

p⋃
j=1

{
Tε,m

− j
2p

}
.

(4.2)

As before, m
± j
n is the set of numbers mn with mjn replaced by mjn± 1, respectively. Note

that each representation Tm′
n

and each representation Tε,m′
n

for which m′
n does not satisfy

the dominance conditions must be omitted. Proofs of these decompositions can be found
in [14]. As in the case of quantized universal enveloping algebras (see [20, Chapter 7]),
decompositions of the above tensor products are fulfilled by means of matrices whose
entries are called Clebsch-Gordan coefficients.

We define a vector operator (it is a set of n operators), which transforms under the
vector representation of the algebra U ′

q(son). This operator acts on a linear space � on
which some representation T of U ′

q(son) acts. We will consider only the case when �
is a finite-dimensional space. We also suppose that � decomposes into a direct sum of
irreducible invariant (with respect to U ′

q(son)) subspaces, where only irreducible rep-
resentations of the classical type or only irreducible representations of the nonclassical
type are realized. This assumption is explained by the fact that a vector operator cannot
map a subspace on which an irreducible representation of the classical type is realized
into a subspace on which a representation of the nonclassical type is realized, or vise
versa.

The set Ar , r = 1,2, . . . ,n, of operators on � is called a vector operator for the algebra
U ′

q(son) if

[
Aj−1,T

(
I j, j−1

)]
q =Aj ,

[
T
(
I j, j−1

)
,Aj

]
q =Aj−1,[

T
(
I j, j−1

)
,Ak

]
q = 0, k 
= j, j− 1,

(4.3)

where [X ,Y]q ≡ q1/2XY − q−1/2YX and T is a fixed representation of U ′
q(son) acting on

�.
We represent the space � as a direct sum of irreducible invariant (with respect to

U ′
q(son)) subspaces

�=
⊕
ε,mn,i

�ε,mn,i, (4.4)

where �ε,mn,i is a subspace, on which an irreducible representation of U ′
q(son) charac-

terized by ε and mn is realized, and i separates multiple irreducible representations of
U ′

q(son) in the decomposition. If irreducible representations belong to the classical type,
then ε must be omitted.
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We take a Gel’fand-Tsetlin basis in each subspace �ε,mn,i and denote these basis vectors
by |ε,mn, i,α〉, where α≡ αn−1 are the corresponding Gel’fand-Tsetlin tableaux. Then the
subspaces

�α
ε,mn

=
⊕
i

C
∣∣ε,mn, i,α

〉
(4.5)

can be defined.
The Wigner-Eckart theorem for vector operators {Aj} (proved in [14]) states that the

matrix elements of Aj are of the form

〈
ε′,m′

n, i′,α′
∣∣Aj

∣∣ε,mn, i,α
〉= C

ε′,m′
n,α′

j;ε,mn,α

〈
ε′,m′

n, i′‖A‖ε,mn, i
〉

, (4.6)

where C
ε′,m′

n−1,α′
j;ε,mn−1,α are Clebsch-Gordan coefficients of the tensor product T1⊗Tε,mn (these

coefficients are given in an explicit form in [14]), and 〈ε′,m′
n−1, i′|A|ε,mn−1, i〉 are called

reduced matrix elements of the vector operator {Aj}. These reduced matrix elements de-
pend only on numbers characterizing the representations and on the indices separating
multiple representations, and are independent of basis elements of irreducible invariant
subspaces. They are also independent of the number j of the operator Aj . In the above
formulas, ε must be omitted if we deal only with representations of the classical type.

Due to the formulas for decompositions of the tensor products T1 ⊗ Tmn and T1 ⊗
Tε,mn , we find that matrix elements 〈ε′,m′

n, i′,α′|Aj|ε,mn, i,α〉 can be nonvanishing only
if ε′ = ε and also m′

n = m±s
n or m′

n = mn (since only for these cases, the correspond-
ing Clebsch-Gordan coefficients can be nonvanishing). Due to the above formulas for
decompositions of tensor products of representations, a vector operator cannot map a
subspace of an irreducible representation of the classical type (of the nonclassical type)
into subspaces on which irreducible representations of the nonclassical type (of the clas-
sical type) are realized. Therefore, in matrix elements (4.6), both indices ε and ε′ exist or
both are absent.

We can define the operators

Amn
mn

: �α
ε,mn

−→�α
ε,mn

, Am
+ j
n

mn
: �α

ε,mn
−→�α′

ε,m
+ j
n

, Am
− j
n

mn
: �α

ε,mn
−→�α′

ε,m
− j
n

, (4.7)

which have matrix elements coinciding with reduced matrix elements of the tensor oper-
ator {Aj}:

〈
ε,mn, i′,α

∣∣Amn
mn

∣∣ε,mn, i,α
〉= 〈ε,mn, i′‖A‖ε,mn, i

〉
,〈

ε,m
+ j
n , i′,α′

∣∣Am
+ j
n

mn

∣∣ε,mn, i,α
〉= 〈ε,m

+ j
n , i′‖A‖ε,mn, i

〉
,〈

ε,m
− j
n , i′,α′

∣∣Am
− j
n

mn

∣∣ε,mn, i,α
〉= 〈ε,m

− j
n , i′‖A‖ε,mn, i

〉
.

(4.8)

(The symbol ε must be omitted in these formulas if necessary.) It follows from the
Wigner-Eckart theorem that for any irreducible representation Tε,mn contained in the
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representation T , these operators satisfy the following relations:

Tε,mn(a)Amn
mn
=Amn

mn
Tε,mn(a), a∈U ′

q

(
son
)
,

Tε,mn(a)Amn

m
∓ j
n
Am

± j
n

mn
=Amn

m
∓ j
n
Am

± j
n

mn
Tε,mn(a), a∈U ′

q

(
son
)
,

(4.9)

where Amn

m
∓ j
n
Am

± j
n

mn
is considered as operators from �α

ε,mn
into �α

ε,mn
.

Proposition 4.1. Let ξ ∈� belong to a subspace �mn of the irreducible representation Tmn

of U ′
q(son). Then Am

+ j
n

mn
ξ and Am

− j
n

mn
ξ belong to some subspaces �m

+ j
n

and �m
− j
n

of �, on which
the irreducible representations Tm

+ j
n

and Tm
− j
n

of U ′
q(son) are realized, respectively. All the

vectors Am
± j
n

mn
(Tmn(a)ξ), a∈U ′

q(son), also belong to these subspaces �m
± j
n

, respectively.

Proof. The assertion follows from the definition of vector operators and from formula
(4.6). �

5. Auxiliary propositions

As stated above, the algebra U ′
q(son) has a commutative subalgebra � generated by the

elements I2s,2s−1, s= 1,2, . . . ,r, where r = �n/2	 is the integral part of n/2.

Proposition 5.1. (a) If T is a finite-dimensional representation of the algebra U ′
q(son),

then the operators

T
(
I21
)
,T
(
I43
)
, . . . ,T

(
I2k,2k−1

)
, (5.1)

where n= 2k or n= 2k+ 1, are simultaneously diagonalizable.
(b) Possible eigenvalues of any of these operators can be only as i[m], m ∈ (1/2)Z, i =√−1, or [m]+, m∈ Z+ 1/2, where

[m]≡ [m]q = qm− q−m

q− q−1
, [m]+ = qm + q−m

q− q−1
. (5.2)

Proof. This proposition is true for the algebra U ′
q(so3). It follows from complete re-

ducibility of finite-dimensional representations of U ′
q(so3) (see [12]) and from the fact

that representations of the classical and of the nonclassical types exhaust all irreducible
representations of U ′

q(so3) (see [11]). Each of the elements I21,I43, . . . ,I2k,2k−1 can be in-
cluded into some subalgebra U ′

q(so3) as one of its generating elements. Therefore, each of
the operators T(I2 j,2 j−1), j = 1,2, . . . ,k, can be diagonalized and has eigenvalues indicated
in assertion (b). This means that these operators are semisimple. Semisimple operators
on a finite-dimensional space can be simultaneously diagonalized if they commute with
each other. The proposition is proved. �

Eigenvalues of the form i[m] are called eigenvalues of the classical type. Eigenvalues of
the form [m]+ are called eigenvalues of the nonclassical type.
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Remark 5.2. In the formulation of Proposition 5.1, we could take for the algebra
U ′

q(so2k+1) the operators T(I32),T(I54), . . . ,T(I2k+1,2k) instead of T(I21),T(I43), . . . ,
T(I2k,2k−1).

In Propositions 5.3, 5.4, and 5.5 below, we suppose that the following assumption is
fulfilled: each finite-dimensional representation of U ′

q(son−1) is completely reducible and
irreducible finite-dimensional representations of U ′

q(son−1) are exhausted by the irreducible
representations of the classical and nonclassical types described in Section 3. Note that for
U ′

q(so3) and U ′
q(so4), this assumption is true (see [10, 11, 12]).

Proposition 5.3. The restriction of any irreducible finite-dimensional representation T of
the algebra U ′

q(son) onto the subalgebra U ′
q(son−1) is completely reducible representation of

U ′
q(son−1) and decomposes into irreducible representations of this subalgebra which belong

only to the classical type or only to the nonclassical type.

Proof. The restriction of T to the subalgebra U ′
q(son−1) is completely reducible due to the

assumption. LetT↓U ′
q(son−1) =

⊕
i Ri, whereRi are irreducible representations ofU ′

q(son−1),
and let � =⊕i�i be the corresponding decomposition of the space � of the repre-
sentation T . The subspaces �i are invariant with respect to the operators T(I j, j−1), j =
2,3, . . . ,n− 1, corresponding to the elements of U ′

q(son−1). Only the operator T(In,n−1)
maps vectors of any of the subspaces �i to linear combinations of vectors from other sub-
spaces �i. Since the representation T is irreducible, then acting repeatedly by T(In,n−1)
upon any vector of any subspace �i we obtain linear combinations of vectors from all
other subspaces �i. Let some irreducible representation Ri0 of U ′

q(son−1) in the decom-
position of T belong to the classical type. We state then that all other representations
Ri in the decomposition belong to the classical type. This follows from the following
reasoning. We take the operators T(In,s), s = 1,2, . . . ,n− 1. It follows from the commu-
tation relations (2.6), (2.7), and (2.8) for the elements Ir,s, r > s, given in Section 2, that
these operators constitute a vector operator for the subalgebra U ′

q(son−1) (generated by
I21,I32, . . . ,In−1,n−2) acting on the space �. Then due to the Wigner-Eckart theorem, the
action of operators T(In,s), s= 1,2, . . . ,n− 1, on vectors of �i0 gives linear combinations
of vectors of subspaces �i on which only irreducible representations of the classical type
are realized. Repeated application of T(In,s) again gives representations of the same type.
Therefore, in this case, all representations Ri belong to the classical type. If Ri0 belongs to
the nonclassical type, then (by the same reasoning) all representations Ri belong to the
nonclassical type. The proposition is proved. �

We write down the decomposition T↓U ′
q(son−1) =

⊕
i Ri from the above proof in the

form T↓U ′
q(son−1) =

⊕
mn−1

dmn−1Tmn−1 if the decomposition contains representations of the
classical type, where Tmn−1 are irreducible representations of U ′

q(son−1) from Section 3
and dmn−1 are multiplicities of these representations. If the decomposition contains irre-
ducible representations of the nonclassical type, then T↓U ′

q(son−1) =
⊕

ε,mn−1
dε,mn−1Tε,mn−1 ,

where Tε,mn−1 are irreducible representations of the nonclassical type.

Proposition 5.4. The action of the operator T(In,n−1) upon a vector of a subspace, on
which the representation Tmn−1 (the representation Tε,mn−1 ) of U ′

q(son−1) is realized, gives
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a linear combination of vectors belonging only to subspaces of the irreducible representa-
tions of U ′

q(son−1) contained in the decomposition into irreducible components of the tensor
product T1⊗Tmn−1 (of the tensor product T1⊗Tε,mn−1 ), where T1 is the vector representation
of U ′

q(son−1).

Proof. The operators T(In,s), s= 1,2, . . . ,n− 1, constitute a vector operator for the subal-
gebra U ′

q(son−1). Now the proposition follows from the Wigner-Eckart theorem. �
Proposition 5.5. Let T be a finite-dimensional irreducible representation of U ′

q(son). Then
all operatorsT(I2i,2i−1) from Proposition 5.1 have eigenvalues only of the classical type or only
of the nonclassical type.

Proof. The proposition is true for the algebra U ′
q(so4). Namely, eigenvalues of T(I21) and

T(I43) of an irreducible representation T of U ′
q(so4) are of the classical type if T is a rep-

resentation of the classical type and of the nonclassical type if T is a representation of the
nonclassical type (see [10]). We restrict the representation T of U ′

q(son) successively to
U ′

q(son−1),U ′
q(son−2), . . . ,U ′

q(so4) and decompose it into irreducible constituents. (More-
over, the chain of these subalgebras can be taken in such a way that the last subalgebra
U ′

q(so4) contains any two fixed neighbouring operators from Proposition 5.1(a).) Ap-
plying Proposition 5.3 at the first step, we obtain in the decomposition of T irreducible
representations of U ′

q(son−1) all belonging to the classical type or all belonging to the non-
classical type. Due to the assumption before Proposition 5.3 and Remark 3.1 at the end
of Section 3, on each next step, we obtain only irreducible representations of the classical
type or only irreducible representations of the nonclassical type, described in Section 3.
Thus, restriction of T onto any subalgebra U ′

q(so4) decomposes into irreducible represen-
tations of U ′

q(so4) all belonging to the classical type or all belonging to the nonclassical
type. Our proposition follows from this assertion. The proposition is proved. �

An irreducible representation T of U ′
q(son) for which all the operators T(I2i,2i−1),

i= 1,2, . . . ,�n/2	, have eigenvalues of the classical type (of the nonclassical type) is called
a representation of the classical type (of the nonclassical type). The algebra U ′

q(son) does
not have irreducible finite-dimensional representations of other types. In Section 3, ir-
reducible representations of the classical and of the nonclassical type are given. But we
do not know yet that they exhaust all irreducible representations of these types. Our aim
is to prove that the irreducible representations of Section 3 exhaust all irreducible finite-
dimensional representations of U ′

q(son).

6. Reduced matrix elements for the classical type representations

The theorem on classification of irreducible finite-dimensional representations of the al-
gebra U ′

q(son) will be proved by means of mathematical induction. Namely, we make an
assumption on irreducible finite-dimensional representations of the subalgebra U ′

q(son−1)
(which is true for the subalgebra U ′

q(so4)) and then prove that this assumption is true for
the algebra U ′

q(son).

Assumption 6.1. Each finite-dimensional representation of U ′
q(son−1) is completely re-

ducible and irreducible finite-dimensional representations of U ′
q(son−1) are exhausted by

irreducible representations of the classical and nonclassical types described in Section 3.
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This assumption is true for the algebras U ′
q(so3) and U ′

q(so4) (see [10, 11]).
As we know from the previous section, irreducible finite-dimensional representations

T of U ′
q(son) are divided into two classes—irreducible representations of the classical

type and irreducible representations of the nonclassical type. For deriving the theorem
on classification of irreducible representations belonging to the classical type, we need
the results on reduced matrix elements of the tensor operator T(In,r), k = 1,2, . . . ,n− 1,
for the subalgebra U ′

q(son−1).
Let T be an irreducible finite-dimensional representation of U ′

q(son) belonging to the
classical type. According to our assumption and Proposition 5.3, this representation de-
composes under the restriction onto the subalgebra U ′

q(son−1) as a direct sum of irre-
ducible representations of the classical type from Section 3. For the space � of the repre-
sentation T , we have

�=
⊕

mn−1,i

�mn−1,i, (6.1)

where �mn−1,i is a linear subspace, on which the irreducible representation Tmn−1 of
U ′

q(son−1) from Section 3 is realized, and i separates multiple irreducible representations
of U ′

q(son−1) in the decomposition. Let

�mn−1 =
⊕
i

�mn−1,i. (6.2)

We take a Gel’fand-Tsetlin basis in each subspace �mn−1,i and denote these basis vectors
by |mn−1, i,α〉, where α≡ αn−2 are the corresponding Gel’fand-Tsetlin tableaux. Then the
subspaces

�α
mn−1

=
⊕
i

C
∣∣mn−1, i,α

〉
(6.3)

can be defined. We know from Proposition 5.4 that the operator T(In,n−1) maps the vec-
tor |mn−1, i,α〉 into a linear combination of vectors of the subspaces �mn−1 and �m±s

n−1
,

s= 1,2, . . . ,k, where n− 1= 2k or n− 1= 2k + 1. Since the operator T(In,n−1) commutes
with all the operators T(Is,s−1), s= 2,3, . . . ,n− 2 (i.e., with operators corresponding to el-
ements of the subalgebra U ′

q(son−2)), it maps the subspace �α
mn−1

into a sum of subspaces
�α

m′
n−1

with the same α.
Due to Proposition 5.4 and Wigner-Eckart theorem (see formula (4.6)), the action of

the operator T(In,n−1) on the subspace �α
mn−1

can be represented in the form

T
(
I2p+2,2p+1

) ↓�α
m2p+1

=
p∑
j=1

( p∏
r=1

[
l j,2p+1 + lr,2p

][
l j,2p+1− lr,2p

])1/2

ρj
(

m2p+1
)

+
p∑
j=1

( p∏
r=1

[
l j,2p+1 + lr,2p− 1

][
l j,2p+1− lr,2p− 1

])1/2

τj
(

m2p+1
)

+

( p∏
r=1

[
lr,2p

])
σ
(

m2p+1
)

(6.4)
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if n= 2p+ 2 and in the form

T
(
I2p+1,2p

) ↓�α
m2p
=

p∑
j=1

( p−1∏
r=1

[
l j,2p + lr,2p−1

][
l j,2p− lr,2p−1 + 1

])1/2

ρ′j
(

m2p
)

+
p∑
j=1

( p−1∏
r=1

[
l j,2p + lr,2p−1− 1

][
l j,2p− lr,2p−1

])1/2

τ′j
(

m2p
) (6.5)

if n= 2p+ 1, where ρj(m2p+1), ρ′j(m2p), τj(m2p+1), τ′j(m2p), and σ(m2p+1) are the oper-
ators such that

ρj
(

m2p+1
)

: �α
m2p+1

−→�α
m

+ j
2p+1

, ρ′j
(

m2p
)

: �α
m2p
−→�α

m
+ j
2p

,

τj
(

m2p+1
)

: �α
m2p+1

−→�α
m
− j
2p+1

, τ′j
(

m2p
)

: �α
m2p
−→�α

m
− j
2p

,

σ
(

m2p+1
)

: �α
m2p+1

−→�α
m2p+1

(6.6)

(they are the operators A
m
± j
n−1

mn−1 and Amn−1
mn−1 from Section 4). The last summand in (6.4)

must be omitted if lp,2p+1 = 1 (in this case the representation Tm2p+1 does not occur in
the tensor product T1⊗Tm2p+1 ). The coefficients in (6.4) and (6.5) are the corresponding
Clebsch-Gordan coefficients of the algebra U ′(son−1) taken from [14]. As we know from
the Wigner-Eckart theorem, ρj(m2p+1), ρ′j(m2p), τj(m2p+1), τ′j(m2p), and σ(m2p+1) are
independent of α. A dependence on α is contained in the Clebsch-Gordan coefficients.

We first consider the case of the algebra U ′
q(so2p+2). We act by both parts of the relation

I2p+1,2pI
2
2p+2,2p+1−

(
q+ q−1)I2p+2,2p+1I2p+1,2pI2p+2,2p+1 + I2

2p+2,2p+1I2p+1,2p =−I2p+1,2p,
(6.7)

taken for the representation T , upon vectors of the subspace �α
m2p+1

with fixed m2p+1

and α, and take into account formula (6.4). Comparing terms with the same resulting
subspaces �α

m′
2p+1

, we obtain for ρj(m2p+1), τj(m2p+1), and σ(m2p+1), the relations

[
li,2p+1− l j,2p+1 + 1

]
ρj
(

m+i
2p+1

)
ρi
(

m2p+1
)− [li,2p+1− l j,2p+1− 1

]
ρi
(

m
+ j
2p+1

)
ρj
(

m2p+1
)= 0,

(6.8)[
li,2p+1 + l j,2p+1

]
τi
(

m
+ j
2p+1

)
ρj
(

m2p+1
)− [li,2p+1 + l j,2p+1− 2

]
ρj
(

m−i
2p+1

)
τi
(

m2p+1
)= 0,

(6.9)[
li,2p+1− l j,2p+1 + 1

]
τi
(

m
− j
2p+1

)
τj
(

m2p+1
)− [li,2p+1− l j,2p+1− 1

]
τj
(

m−i
2p+1

)
τi
(

m2p+1
)= 0,
(6.10)[

l j,2p+1 + 1
]
σ
(

m
+ j
2p+1

)
ρj
(

m2p+1
)− [l j,2p+1− 1

]
ρj
(

m2p+1
)
σ
(

m2p+1
)= 0, (6.11)
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l j,2p+1

]
τj
(

m2p+1
)
σ
(

m2p+1
)− [l j,2p+1− 2

]
σ
(

m
− j
2p+1

)
τj
(

m2p+1
)= 0, (6.12)

p∑
i=1

−[2li,2p+1 + 1
] p∏
r=1
r 
=k

([
li,2p+1

]2− [lr,2p
]2
)
τi
(

m+i
2p+1

)
ρi
(

m2p+1
)

+
[
2li,2p+1− 3

] p∏
r=1
r 
=k

([
li,2p+1− 1

]2− [lr,2p
]2
)
ρi
(

m−i
2p+1

)
τi
(

m2p+1
)

+
p∏

r=1
r 
=k

[
lr,2p

]2 · σ2(m2p+1
)=−E,

(6.13)

where i 
= j, E is the unit operator on �α
m2p+1

and k is a fixed number from the set {1,2, . . . ,
p}. Note that the last term on the left-hand side of (6.13) must be omitted if lp,2p+1 = 1.

The irreducible representations Tm2p+1 of U ′
q(so2p+1) under restriction to U ′

q(so2p) de-
compose into irreducible representations Tm2p of this subalgebra such that the numbers
m2p satisfy the inequalities determined by the Gel’fand-Tsetlin tableaux (see Section 3).
Under this, each of the numbers lr,2p runs over a certain set of values. Assuming that none
of lr,2p, r 
= p, is a constant for the representation Tm2p+1 , we equate in (6.13) terms with
the same dependence on [lr,2p]2, r = 1,2, . . . , p, and obtain the relations

p∑
i=1

(−1)p
([

2li,2p+1 + 1
]
τi
(

m+i
2p+1

)
ρi
(

m2p+1
)− [2li,2p+1− 3

]
ρi
(

m−i
2p+1

)
τi
(

m2p+1
))

=−σ2(m2p+1
)
,

(6.14)

p∑
i=1

([
2li,2p+1 + 1

][
li,2p+1

]2(p−ν−1)
τi
(

m+i
2p+1

)
ρi
(

m2p+1
)

− [2li,2p+1− 3
][
li,2p+1− 1

]2(p−ν−1)
ρi
(

m−i
2p+1

)
τi
(

m2p+1
))= 0, ν= 1,2, . . . , p− 2,

(6.15)
p∑

i=1

([
2li,2p+1 + 1

][
li,2p+1

]2p−2
τi
(

m+i
2p+1

)
ρi
(

m2p+1
)

− [2li,2p+1− 3
][
li,2p+1− 1

]2p−2
ρi
(

m−i
2p+1

)
τi
(

m2p+1
))= E.

(6.16)

If s parameters lr,2p, r 
= p, are constant for the representationTm2p+1 , then the correspond-
ing ρr(m2p+1) and τr(m2p+1) vanish and the number of the relations (6.15) and (6.16) is
decreased by s.

In a similar way, it is proved that ρ′i (m2p) and τ′i (m2p) from formula (6.5) satisfy the
relations
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li,2p− l j,2p + 1

]
ρ′j
(

m+i
2p

)
ρ′i
(

m2p
)− [li,2p− l j,2p− 1

]
ρ′i
(

m
+ j
2p

)
ρ′j
(

m2p
)= 0, i 
= j, (6.17)[

li,2p + l j,2p + 1
]
τ′i
(

m
+ j
2p

)
ρ′j
(

m2p
)− [li,2p + l j,2p− 1

]
ρ′j
(

m−i
2p

)
τ′i
(

m2p
)= 0, i 
= j, (6.18)[

li,2p− l j,2p + 1
]
τ′i
(

m
− j
2p

)
τ′j
(

m2p
)− [li,2p− l j,2p− 1

]
τ′j
(

m−i
2p

)
τ′i
(

m2p
)= 0, i 
= j, (6.19)

∑
i

(
−

[
2li,2p + 2

][
li,2p

][
li,2p + 1

] p−1∏
r=1

([
li,2p

][
li,2p + 1

]− [lr,2p−1
][
lr,2p−1− 1

])
τ′i
(

m+i
2p

)
ρ′i
(

m2p
)

+
[2li,2p− 2]

[li,2p][li,2p−1]

p−1∏
r=1

([
li,2p

][
li,2p− 1

]−[lr,2p−1
][
lr,2p−1− 1

])
ρ′i
(

m−i
2p

)
τ′i
(

m2p
))=−E,

(6.20)

and the last equality leads to the system of equations

p∑
i=1

([
2li,2p + 2

]([
li,2p

][
li,2p + 1

])p−ν−2
τ′i
(

m+i
2p

)
ρ′i
(

m2p
)

− [2li,2p− 2
]([

li,2p
][
li,2p− 1

])p−ν−2
ρ′i
(

m−i
2p

)
τ′i
(

m2p
))= 0, ν= 1,2, . . . , p− 1,

(6.21)
p∑

i=1

([
2li,2p + 2

]([
li,2p

][
li,2p + 1

])p−2
τ′i
(

m+i
2p

)
ρ′i
(

m2p
)

− [2li,2p− 2
]([

li,2p
][
li,2p− 1

])p−2
ρ′i
(

m−i
2p

)
τ′i
(

m2p
))= E.

(6.22)

It follows from the last relations of Section 4 that for any a∈U ′
q(so2p+1) the operators

ρi(m2p+1), τi(m2p+1), and σ(m2p+1) satisfy the relations

Tm2p+1 (a)σ
(

m2p+1
)= σ

(
m2p+1

)
Tm2p+1 (a), (6.23)

ρi
(

m−i
2p+1

)
τi
(

m2p+1
)
Tm2p+1 (a)= Tm2p+1 (a)ρi

(
m−i

2p+1

)
τi
(

m2p+1
)
. (6.24)

Similar relations are satisfied by ρ′i (m2p) and τ′i (m2p).

Remark 6.2. Relations (6.8), (6.9), (6.10), (6.11), (6.12), and (6.13) and relations (6.17),
(6.18), (6.19), and (6.20) are consequences of the relation (2.3) with i = n− 1. Other
relations from (2.2), (2.3), and (2.4) containing In,n−1 are satisfied by the operators (6.4)
and (6.5). It is a consequence of the fact that In,n−1 is a component of the vector operator.

Proposition 6.3. Let ξ ∈� belong to a subspace �m2p+1 , on which the irreducible rep-
resentation Tm2p+1 of U ′

q(so2p+1) is realized. Then ρj(m2p+1)ξ ∈�m
+ j
2p+1

and τj(m2p+1)ξ ∈
�m

− j
2p+1

, where �m
± j
2p+1

are subspaces of �, on which the irreducible representations Tm
± j
2p+1

of

U ′
q(so2p+1) are realized, respectively. All the vectors ρj(m2p+1)(Tm2p+1 (a)ξ), a∈U ′

q(so2p+1),
and all the vectors τj(m2p+1)(Tm2p+1 (a)ξ), a∈U ′

q(so2p+1), belong to these subspaces �m
+ j
2p+1

and �m
− j
2p+1

, respectively.

This proposition is a corollary of Proposition 4.1.
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Theorem 6.4. If the above assumption is true, then the restriction of an irreducible repre-
sentation T of U ′

q(son) to the subalgebra U ′
q(son−1) contains each irreducible representation

of this subalgebra not more than once.

Proof. We prove the theorem for the algebra U ′
q(so2p+2). For the algebra U ′

q(so2p+1), the
proof is the same. We consider the decomposition

T↓U ′
q(so2p+1) =

⊕
m2p+1

dm2p+1Tm2p+1 , (6.25)

where dm2p+1 denotes a multiplicity of the representation Tm2p+1 in the decomposition. The
decomposition � =⊕m2p+1,α�α

m2p+1
corresponds to the decomposition (6.25), where, as

in Section 4, α numerates elements of the Gel’fand-Tsetlin basis for the representation
Tm2p+1 . Let Tm′

2p+1
≡ Tmmax

2p+1
be a maximal irreducible representation of U ′

q(so2p+1) in the
decomposition (6.25), that is, such that ρj(m′

2p+1)= 0, j = 1,2, . . . , p. Due to the relations
(6.8), (6.9), and (6.10), the operators ρi and ρj , as well as the operators ρi and τj , i 
= j,
and the operators τi and τj , commute (up to a constant) with each other. For this reason,
each of the parameters li,2p+1, i = 1,2, . . . , p, in the set of the representations Tm2p+1 from
the decomposition (6.25) runs over some set of numbers independent of values of other
parameters l j,2p+1, j 
= i.

We take one of the subspaces �α
m′

2p+1
, where m′

2p+1 ≡ mmax
2p+1. Its dimension is equal

to the multiplicity dm′
2p+1

of the representation Tm′
2p+1

in the decomposition (6.25). Then
σ(m′

2p+1) is an operator on �α
m′

2p+1
. Clearly, σ(m′

2p+1) has at least one eigenvector ξ0 in

�α
m′

2p+1
. According to (6.23), all the vectors Tm′

2p+1
(a)ξ0, a ∈ U ′

q(so2p+1), are eigenvectors

of σ(m′
2p+1). The vectors Tm′

2p+1
(a)ξ0, a∈U ′

q(so2p+1), constitute a subspace �ir
m′

2p+1
, where

the irreducible representation Tm′
2p+1

of U ′
q(so2p+1) is realized. Let ξj = τj(m′

2p+1)ξ0, j =
1,2, . . . , p. Then ξj ∈�α

m′− j
2p+1

and, due to (6.9), ρi(m′− j
2p+1) = 0 for i 
= j. It follows from

(6.12) that ξj is an eigenvector of the operator σ(m′− j
2p+1). Due to Proposition 6.3, the

vector Tm′
2p+1

(a)ξ0 is mapped by the operator τj(m′
2p+1) into the subspace �ir

m′− j
2p+1

. Hence,

the operator τj(m′
2p+1) maps �ir

m′
2p+1

into {0} or into the subspace �ir
m′− j

2p+1
, on which the

irreducible representation Tm′− j
2p+1

is realized.

Under a restriction to U ′
q(so2p), the representation Tm′

2p+1 decomposes into a sum of
irreducible representations Tm2p , m2p = (m1,2p, . . . ,mp,2p). With the numbers mi,2p we as-
sociate numbers li,2p (see Section 3). Suppose that none of lr,2p is a constant for the rep-
resentation Tm′

2p+1
. We apply both sides of the relations (6.14), (6.15), and (6.16) to the

vector ξ0 and obtain p equations with p unknown ρi(m′−i
2p+1)τi(m′

2p+1)ξ0, i = 1,2, . . . , p.
(Note that ρj(m′

2p+1)= 0, j = 1,2, . . . , p.) Since l1,2p+1 > l2,2p+1 > ··· > lp,2p+1 and q is not
a root of unity, the form of coefficients in (6.14), (6.15), and (6.16) shows that the deter-
minant of this system is not equal to 0. (In fact, this determinant is proportional to the
Vandermond determinant for [li,2p+1]2, i = 1,2, . . . , p.) Solving this system, we obtain its
(unique) solution. Since the right-hand side of (6.13) is −E, this means that the vectors
ρi(m′−i

2p+1)τi(m′
2p+1)ξ0, i= 1,2, . . . , p, are multiple to the vector ξ0. Since τi(m′

2p+1)ξ0 = ξi,

the vector ρi(m′−i
2p+1)ξi is a multiple to the vector ξ0. Therefore, due to (6.24), the operator
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ρi(m′−i
2p+1) maps the subspace �ir

m′−i
2p+1

into {0} or into �ir
m′

2p+1
. If some of the parameters

lr,2p are constant, then the number of (6.14), (6.15), and (6.16) is smaller than p. As it
is easy to see, in this case, the system of equations also has a unique solution and the
conclusion remains true.

Let ξj,i = τj(m′−i
2p+1)ξi, i = 1,2, . . . , p. As above, it is shown that the subspace �ir

m′− j,−i
2p+1

spanned by the vectors Tm′− j,−i
2p+1

ξj,i is irreducible for U ′(so2p+1) and consists of eigenvec-

tors of the operator σ(m′− j,−i
2p+1 ). It is mapped by the operator ρj(m′− j,−i

2p+1 ) into {0} or into

�ir
m′−i

2p+1
. Moreover, due to (6.9), up to a constant we have

τj
(

m′−i
2p+1

)
ξi = ξj,i = τi

(
m′− j

2p+1

)
ξj = ξi, j . (6.26)

Hence, the subspaces constructed by means of the vectors ξj,i and ξi, j coincide. Note that if

m′−i
2p+1, m′− j

2p+1, and m′− j,−i
2p+1 satisfy the dominance conditions, then the constant in (6.26)

is not vanishing.
We continue this reasoning further applying successively the operators τj and ρj with

appropriate values of the numbers m2p+1. Due to the relations (6.8), (6.9), and (6.10),
the operators ρi and ρj , as well as the operators ρi and τj , i 
= j, and the operators τi and
τj , commute (up to a constant) with each other. Therefore, as a result of such contin-
uation, we obtain the set of subspaces �ir

m2p+1
of the representation space �, on which

nonequivalent irreducible representations of the subalgebra U ′
q(so2p+1) are realized and

which consist of eigenvectors of the operators σ(m2p+1). These subspaces are mapped by
the operators ρi and τi into subspaces of this set. We consider the subspace �′ of the space
�, which is a direct sum of these subspaces �ir

m2p+1
. It follows from the expression (6.4)

for T(I2p+2,2p+1) that this operator leaves �′ invariant. Due to irreducibility of the repre-
sentation T , we have �′ =�. This completes the proof for the algebra U ′

q(so2p+2). As is
noted above, for U ′

q(so2p+1), the proof is the same. The only difference is that instead of
relations (6.8), (6.9), (6.10), (6.11), (6.12), (6.13), (6.14), (6.15), and (6.16), we have to
use relations (6.17), (6.18), (6.19), (6.20), (6.21), and (6.22). The theorem is proved. �

The fact that any irreducible representation T of U ′
q(son) contains each irreducible

representation of the subalgebra U ′
q(son−1) not more than once means that the operators

ρj(m2p+1), τj(m2p+1), σj(m2p+1), ρ′j(m2p), and τ′j(m2p) in (6.4) and (6.5) are numerical
functions. Thus, the formula (6.4) can be represented in the form

T
(
I2p+2,2p+1

)∣∣m2p+1,α
〉=∑

j

( p∏
r=1

([
l j,2p+1

]2− [lr,2p
]2
))1/2

ρj
(

m2p+1
)∣∣m

+ j
2p+1,α

〉

+
∑
j

( p∏
r=1

([
l j,2p+1− 1

]2− [lr,2p
]2
))1/2

τj
(

m2p+1
)∣∣m

− j
2p+1,α

〉

+

( p∏
r=1

[
lr,2p

])
σ
(

m2p+1
)∣∣m

+ j
2p+1,α

〉
(6.27)
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and the formula (6.5) in the form

T
(
I2p+1,2p

)∣∣m2p,α
〉=∑

j

( p−1∏
r=1

([
l j,2p +

1
2

]2

−
[
lr,2p−1− 1

2

]2
))1/2

ρ′j
(

m2p
)∣∣m

+ j
2p,α

〉

+
∑
j

( p−1∏
r=1

([
l j,2p− 1

2

]2

−
[
lr,2p−1− 1

2

]2
))1/2

τ′j
(

m2p
)∣∣m

− j
2p ,α

〉
,

(6.28)

where ρj(m2p+1), τj(m2p+1), σj(m2p+1), ρ′j(m2p), and τ′j(m2p+1) are appropriate numeri-
cal functions.

Remark 6.5. We have seen under proving Theorem 6.4 that in the set of the representa-
tions Tm2p+1 from the decomposition (6.25) each of the parameters mi,2p+1, i= 1,2, . . . , p,
runs over some set of numbers independent of values of other parameters mj,2p+1, j 
= i.
It is easy to show by means of formula (6.27) that in an irreducible representation T
of U ′

q(so2p+2) each mi,2p+1, i = 1,2, . . . , p, takes all values from the set mmin
i,2p+1,mmin

i,2p+1 +
1, . . . ,mmax

i,2p+1 without any omitting. A similar assertion is true for irreducible finite-
dimensional representations of U ′

q(so2p+1).

We find an explicit form of the functions ρj , τj , σ , ρ′j and τ′j from (6.27) and (6.28).
We first consider the case of U ′

q(so2p+2). From (6.11), we obtain the relation [l j,2p+1 +

1]σ(m
+ j
2p+1)= [l j,2p+1− 1]σ(m2p+1). This means that

∏p
j=1[l j,2p+1][l j,2p+1− 1] · σ(m2p+1)

is independent of l j,2p+1, j = 1,2, . . . , p, that is,

σ
(

m2p+1
)= p∏

j=1

([
l j,2p+1

][
l j,2p+1− 1

])−1 · σ , (6.29)

where σ is a constant. (Note that if lp,2p+1 = 1, then σ(m2p+1)≡ 0.)
We derive from (6.8), (6.9), and (6.10) the relation[

li,2p+1− l j,2p+1 + 1
][
li,2p+1 + l j,2p+1 + 1

]
ρj
(

m+i
2p+1

)
τj
(

m
+i+ j
2p+1

)
= [li,2p+1− l j,2p+1− 1

][
li,2p+1 + l j,2p+1− 1

]
ρj
(

m2p+1
)
τj
(

m
+ j
2p+1

)
,

(6.30)

which shows (after multiplication of both sides by [li,2p+1]2 − [l j,2p+1]2) that the expres-
sion ([

li,2p+1
]2− [l j,2p+1

]2
)([

li,2p+1− 1
]2− [l j,2p+1

]2
)
ρj
(

m2p+1
)
τj
(

m
+ j
2p+1

)
(6.31)

is independent of li,2p+1. Therefore, the expression

βj
(
l j,2p+1

)= ρj
(

m2p+1
)
τj
(

m
+ j
2p+1

)[
l j,2p+1

]2[
2l j,2p+1− 1

][
2l j,2p+1 + 1

]
×
∏
r 
= j

([
lr,2p+1

]2− [l j,2p+1
]2
)([

lr,2p+1− 1
]2− [l j,2p+1

]2
) (6.32)

depends only on l j,2p+1.
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In order to find βj(l j,2p+1) we rewrite the relations (6.14), (6.15), and (6.16) for
βi(li,2p+1):

p∑
i=1

1[
2li,2p+1− 1

]( βi
(
li,2p+1

)[
li,2p+1

]2
ci
(
li,2p+1

) − βi
(
li,2p+1− 1

)[
li,2p+1− 1

]2
ci
(
li,2p+1− 1

))

= (−1)p+1 σ2∏p
r=1

[
lr,2p+1

]2[
lr,2p+1− 1

]2 ,

(6.33)

p∑
i=1

1[
2li,2p+1− 1

]([li,2p+1
]2ν

βi
(
li,2p+1

)
ci
(
li,2p+1

) −
[
li,2p+1− 1

]2ν
βi
(
li,2p+1− 1

)
ci
(
li,2p+1− 1

) )
= 0,

ν= 0,1,2, . . . , p− 3,

(6.34)

p∑
i=1

1[
2li,2p+1− 1

]([li,2p+1
]2p−4

βi
(
li,2p+1

)
ci
(
li,2p+1

) −
[
li,2p+1− 1

]2p−4
βi
(
li,2p+1− 1

)
ci
(
li,2p+1− 1

) )
= 1, (6.35)

where

ci
(
li,2p+1

)=∏
r 
=i

([
lr,2p+1

]2− [li,2p+1
]2
)([

lr,2p+1− 1
]2− [li,2p+1

]2
)
. (6.36)

For each fixed σ , this system of equations has a unique solution βi(li,2p+1), i= 1,2, . . . , p,
since the determinant of this system is nonvanishing. In order to give this solution, we
take into account the constants

lr+1,2p+2 = lmin
r,2p+1− 1, r = 1,2, . . . , p, (6.37)

where lmin
r,2p+1, r = 1,2, . . . , p, are minimal values of lr,2p+1 in the decomposition (6.25), and

represent σ (without loss of a generality) in the form

σ = i
p+1∏
r=1

[
lr,2p+2

]
, (6.38)

where l1,2p+2 is a number, which is determined by σ .
From the definition of numbers lr,2p+2, r = 2,3, . . . , p + 1, and from Remark 6.5 after

Theorem 6.4, it follows that

l2,2p+2 > l3,2p+2 > ··· > lp+1,2p+2. (6.39)

Proposition 6.6. Solutions of the system (6.33), (6.34), and (6.35) are given by the expres-
sions

βi
(
li,2p+1

)= p+1∏
r=1

([
li,2p+1

]2− [lr,2p+2
]2
)

=
p+1∑
j=0

(−1) j ep− j+1

([
l1,2p+2

]2
, . . . ,

[
lp+1,2p+2

]2
)[
li,2p+1

]2 j
,

(6.40)

where er(x1, . . . ,xp+1) are elementary symmetric polynomials in x1, . . . ,xp+1.
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Proof. In order to prove this proposition, we use the relations

s∑
i=1

zmi∏s
r=1,r 
=i

(
zi− zr

) =
1 if m= s− 1,

0 if 0≤m≤ s− 2,
(6.41)

s∑
i=1

1
zi
∏s

r=1,r 
=i
(
zi− zr

) = (−1)s−1

z1 ···zs (6.42)

(see, e.g., [25]). We put in these relations s = 2p and use the notations zi = xi,zi+p = yi,
i= 1,2, . . . , p. Then they can be written as

p∑
i=1

1
xi−yi

(
xmi∏

r 
=i
(
xr−xi

)(
yr−xi

) − ymi∏
r 
=i
(
xr−yi

)(
yr−yi

))

=
1 if m= 2p− 1,

0 if 0≤m≤ 2p− 2,

(6.43)

p∑
i=1

1
xi− yi

(
1

xi
∏

r 
=i
(
xr − xi

)(
yr − xi

) − 1
yi
∏

r 
=i
(
xr − yi

)(
yr − yi

))

= −1
x1 ···xp y1 ··· yp .

(6.44)

We put into the relations (6.33), (6.34), and (6.35) l j,2p+1 = lmin
j,2p+1, j = 1,2, . . . , p, where

lmin
j,2p+1 is a minimal value of l j,2p+1 in the decomposition (6.25). Taking into account that

βj(lmin
j,2p+1− 1)= 0, j = 1,2, . . . , p, we see that (6.33), (6.34), and (6.35) turn into a system

of p equations for βj(lmin
j,2p+1), j = 1,2, . . . , p. We substitute into this system the expressions

(6.40) for βi(lmin
i,2p+1) and then cancel p− 1 multipliers from the expression for βi(lmin

i,2p+1)

with the corresponding parts of the expressions for ci(lmin
i,2p+1), which are in the denom-

inators. As a result, we obtain a system of relations, which contains only the multiplier
([l1,2p+2]2 − [lmin

i,2p+1]2) from βi(lmin
i,2p+1). Our expressions for βi(lmin

i,2p+1) are correct if these
relations are true. It is easy to see that they are reduced to the relations (6.41) and (6.42)
at s= p if we set zi = [lmin

i,2p+1]2, i= 1,2, . . . , p.
Further we prove the correctness of the expressions (6.40) for βi(li,2p+1) by induc-

tion. Namely, we first put l j,2p+1 = lmin
j,2p+1, j 
= 1, and successively conduct the proof for

β1(lmin
1,2p+1 + 1),β1(lmin

1,2p+1 + 2), . . . ,β1(lmax
1,2p+1− 1). Then we put l j,2p+1 = lmin

j,2p+1, j 
= 1,2, and

conduct the proof for β2(lmin
2,2p+1 + 1),β2(lmin

2,2p+1 + 2), . . . ,β2(lmax
2,2p+1 − 1) under any value of

l1,2p+1. We continue this procedure up to βp(lp,2p+1). On each step, this proof is conducted
by using the relations (6.43) and (6.44). Namely, we put in these relations xi = [li,2p+1]2

and yi = [li,2p+1− 1]2, then multiply each of them by the corresponding symmetric poly-
nomial from (6.40), and sum up them termwise in order to obtain the relation (6.33),
then the relations (6.34) for ν= 0,1,2, . . . , p− 3, and at last the relation (6.35). This proves
that βj(l j,2p+1), j = 1,2, . . . , p, for given values of l j,2p+1 satisfy the relations (6.33), (6.34),
and (6.35). Note that βi(lmax

i,2p+1) = 0 since in this case ρi(mmax
2p+1) = 0. The proposition is

proved. �
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Thus, we have found the expressions for βj(l j,2p+1), j = 1,2, . . . , p, depending on l1,2p+2,

and the corresponding values of σ . In order to separate ρj(m2p+1) and τj(m
+ j
2p+1) in ex-

pression (6.32) for βj(l j,2p+1), we note that these functions are not determined uniquely

by the representation. Ambiguity in a choice of ρj(m2p+1) and τj(m
+ j
2p+1) is related to a

choice of basis elements. Namely, in the basis

∣∣m2p+1,α
〉′ = p∏

r=1

ωr
(
lr,2p+1

) ·∣∣m2p+1,α
〉

, (6.45)

where ωr(lr,2p+1) is a numerical multiplier depending only on lr,2p+1, we obtain some-
what different formulas for the operator T(I2p+2,2p+1). Actually, if to pass to the basis
{|m2p+1,α〉′} in formula (6.27), then the coefficient σ(m2p+1) remains without any
change, and ρj(m2p+1) and τj(m2p+1) are transformed into

ρ̂ j
(

m2p+1
)= ωj

(
l j,2p+1

)
ωj
(
l j,2p+1 + 1

)ρj(m2p+1
)
,

τ̂ j
(

m2p+1
)= ωj

(
l j,2p+1

)
ωj
(
l j,2p+1− 1

)τj(m2p+1
)
.

(6.46)

Moreover, we have

ρ̂ j
(

m2p+1
)
τ̂ j
(

m
+ j
2p+1

)= ρj
(

m2p+1
)
τj
(

m
+ j
2p+1

)
. (6.47)

It is clear that the multiplier ω(l j,2p+1) can be chosen in such a way that ρ̂ j(m2p+1) =
−τ̂ j(m

+ j
2p+1), that is,

ωj
(
l j,2p+1

)
ωj
(
l j,2p+1 + 1

)ρj(m2p+1
)=−ωj

(
l j,2p+1 + 1

)
ωj
(
l j,2p+1

) τj
(

m
+ j
2p+1

)
. (6.48)

We obtain from here that

(
ωj
(
l j,2p+1

)
ωj
(
l j,2p+1 + 1

))2

=− τj
(

m
+ j
2p+1

)
ρj
(

m2p+1
) . (6.49)

Taking this relation for l j,2p+1 = lmin
j,2p+1, lmin

j,2p+1 + 1, lmin
j,2p+1 + 2, . . . , we find that

ωj
(
l j,2p+1

)= c

l j,2p+1−1∏
l=lmin

j,2p+1

ρj
(

m2p+1
)

τj
(

m
+ j
2p+1

)


1/2

, (6.50)
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where c is a constant. Thus, we may consider that from the very beginning we have a basis
for which

ρj
(

m2p+1
)=−τj(m

+ j
2p+1

)
. (6.51)

Then it follows from (6.32), (6.40), and (6.51) that

ρj
(

m2p+1
)=


[
l j,2p+1

]−2[
2l j,2p+1− 1

]−1∏p+1
r=1

([
lr,2p+2

]2− [l j,2p+1
]2
)

[
l j,2p+1 + 1

]∏
r 
= j

([
lr,2p+1

]2− [l j,2p+1
]2
)([

lr,2p+1− 1
]2− [l j,2p+1

]2
)


1/2

,

(6.52)

where lr+1,2p+2 = lmin
r,2p+1 − 1, r = 1,2, . . . ,p, and l1,2p+2 is a parameter which together with

lr,2p+2, r = 2,3, . . . , p+ 1, must determine irreducible representations. In the next section,
we will find a domain of the parameters lr,2p+2, r = 1,2, . . . , p+ 1.

Substituting the expressions (6.51) and (6.52) for ρj(m2p+1) and τj(m2p+1) into (6.27),
we obtain

T
(
I2p+2,2p+1

)∣∣m2p+1,α
〉= p∑

j=1

B
j
2p+1

(
m2p+1

)
b
(
l j,2p+1

)[
l j,2p+1

]∣∣m
+ j
2p+1,α

〉

−
p∑
j=1

B
j
2p+1

(
m
− j
2p+1

)
b
(
l j,2p+1− 1

)[
l j,2p+1− 1

]∣∣m
− j
2p+1,α

〉
+ iC2p+1

(
m2p+1

)∣∣m2p+1,α
〉

,

(6.53)

where b(l j,2p+1)= ([2l j,2p+1 + 1][2l j,2p+1− 1])1/2 and

B
j
2p+1

(
m2p+1

)
=
 ∏p+1

i=1

[
li,2p+2 + l j,2p+1

][
li,2p+2− l j,2p+1

]∏p
i=1

[
li,2p + l j,2p+1

][
li,2p− l j,2p+1

]∏p
i 
= j

[
li,2p+1+l j,2p+1

][
li,2p+1−l j,2p+1

][
li,2p+1+l j,2p+1−1

][
li,2p+1−l j,2p+1−1

]
1/2

,

C2p+1
(

m2p+1
)= ∏p+1

s=1

[
ls,2p+2

]∏p
s=1

[
ls,2p

]∏p
s=1

[
ls,2p+1

][
ls,2p+1− 1

] .
(6.54)

This formula coincides with (3.6) if we replace p+ 1 by p. We have to determine admis-
sible values of the parameters li,2p+2, i= 1,2, . . . , p+ 1.

Now we consider the case of U ′
q(so2p+1). We have to find possible expressions for

ρ′j(m2p) and τ′j(m2p) in (6.28).
We derive from (6.17), (6.18), and (6.19) the relation

[
li,2p + l j,2p

][
li,2p− l j,2p− 1

][
li,2p + l j,2p + 1

][
li,2p− l j,2p

]
ρ′j
(

m2p
)
τ′j
(

m
+ j
2p

)
= [li,2p + l j,2p

][
li,2p− l j,2p− 1

][
li,2p + l j,2p− 1

][
li,2p− l j,2p− 2

]
ρ′j
(

m−i
2p

)
τ′j
(

m
−i+ j
2p

)
,

(6.55)
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which shows that the expression

([
li,2p

][
li,2p− 1

]− [l j,2p][l j,2p + 1
])([

li,2p + 1
][
li,2p

]− [l j,2p][l j,2p + 1
])
ρ′j
(

m2p
)
τ′j
(

m
+ j
2p

)
(6.56)

is independent of li,2p. Therefore, the expression

β′j
(
l j,2p

)= ρ′j
(

m2p
)
τ′j
(

m
+ j
2p

)(
qlj,2p + q−l j,2p

)(
qlj,2p+1 + q−l j,2p−1)

×
∏
r 
= j

([
lr,2p

][
lr,2p− 1

]− [l j,2p][l j,2p + 1
])([

lr,2p + 1
][
lr,2p

]− [l j,2p][l j,2p + 1
])

(6.57)

depends only on l j,2p. Then we rewrite the relations (6.21) and (6.22) for β′j(l j,2p) and
in the same way as in Proposition 6.6, using the equalities (6.41) and (6.43), derive the
following proposition.

Proposition 6.7. Solutions of the system of equations for β′j(l j,2p) are given by the expres-
sions

β′j
(
l j,2p

)= p∏
r=1

([
l j,2p

][
l j,2p + 1

]− [lr,2p+1
][
lr,2p+1− 1

])
=

p∏
r=1

[
lr,2p+1 + l j,2p

][
lr,2p+1− l j,2p− 1

]
=

p∑
j=0

(−1)p− j ep− j
([
l1,2p+1

][
l1,2p+1−1

]
, . . . ,

[
lp,2p+1

][
lp,2p+1−1

])([
l j,2p

][
l j,2p+1

]) j
,

(6.58)

where li,2p+1 = lmax
i,2p + 1, i = 1,2, . . . , p, and er(x1, . . . ,xp) are elementary symmetric polyno-

mials in x1, . . . ,xp.

Separating ρ′j(m2p) and τ′j(m
+ j
2p) from β′j(l j,2p) as in the previous case, for the operator

T(I2p+1,2p) of an irreducible representation T of U ′
q(so2p+1), we obtain

T
(
I2p+1,2p

)∣∣m2p,α
〉= p∑

j=1

A
j
2p

(
m2p

)
a
(
l j,2p

) ∣∣m
+ j
2p,α

〉− p∑
j=1

A
j
2p

(
m
− j
2p

)
a
(
l j,2p− 1

)∣∣m
− j
2p ,α

〉
, (6.59)

where a(l j,2p)= {(qlj,2p+1 + q−l j,2p−1)(qlj,2p + q−l j,2p)}1/2 and

A
j
2p

(
m2p

)
=
∏p

i=1

[
li,2p+1 + l j,2p

][
li,2p+1− l j,2p− 1

]∏p−1
i=1

[
li,2p−1 + l j,2p

][
li,2p−1− l j,2p− 1

]∏p
i 
= j

[
li,2p + l j,2p

][
li,2p− l j,2p

][
li,2p + l j,2p + 1

][
li,2p− l j,2p− 1

]
1/2

.

(6.60)
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Thus, we derived an explicit form of the operator T(In,n−1) of an irreducible represen-
tation of U ′

q(son). In order to obtain a classification of irreducible representations of the
classical type, we have (by using (6.53) and (6.59)) to derive a domain of the parameters
l1n, l2n, . . . , lpn, p = �n/2	.

7. Reduced matrix elements for the nonclassical type representations

We assume that Assumption 6.1 of Section 6 is acting.

Proposition 7.1. Let T be an irreducible finite-dimensional representation of U ′
q(son) be-

longing to the nonclassical type. Then the decomposition of T↓U ′
q(son−1) into irreducible con-

stituents contains irreducible representations Tε,mn−1 with the same ε.

Proof. The proposition follows from Proposition 5.4 and from the fact that the decom-
position of the tensor products T1⊗Tε,mn−1 (where T1 is a vector representation) into ir-
reducible constituents contains irreducible representations of the nonclassical type with
ε coinciding with ε in Tε,mn−1 . The proposition is proved. �

Let T be such as in Proposition 7.1 and let � be a space on which T acts. Let

�=
⊕

mn−1,i

�ε,mn−1,i, (7.1)

where �ε,mn−1,i is a linear subspace, on which an irreducible representation Tε,mn−1 of
U ′

q(son−1) is realized, and i separates multiple irreducible representations in the decom-
position. We also introduce the subspaces

�ε,mn−1 =
⊕
i

�ε,mn−1,i, (7.2)

We take a Gel’fand-Tsetlin basis in each subspace �ε,mn−1,i and denote the basis vectors by
|ε,mn−1, i,α〉, where α≡ αn−2 are the corresponding Gel’fand-Tsetlin tableaux. Let

�α
ε,mn−1

=
⊕
i

C
∣∣ε,mn−1, i,α

〉
. (7.3)

We know from Proposition 5.4 that the operator T(In,n−1) transforms the vector |ε,mn−1,
i,α〉 into a linear combination of vectors of the subspaces �ε,mn−1 and �ε,m±s

n−1
, s= 1,2, . . . ,

k, where k = �(1/2)(n− 1)	. Since the operator T(In,n−1) commutes with all the oper-
ators T(Is,s−1), s = 2,3, . . . ,n− 2 (i.e., with operators corresponding to elements of the
subalgebra U ′

q(son−2)), it maps subspaces �α
ε,mn−1

into a sum of subspaces �α
ε,m′

n−1
with

the same α.
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Due to Wigner-Eckart theorem (see formula (4.6)), the action of the operator
T(In,n−1) on the subspace �α

ε,mn−1
can be represented in the form

T
(
I2p+2,2p+1

)↓�α
ε,m2p+1

=
p∑
j=1

( p∏
r=1

[
l j,2p+1 + lr,2p

][
l j,2p+1− lr,2p

])1/2

ρj
(
ε,m2p+1

)

+
p∑
j=1

( p∏
r=1

[
l j,2p+1 + lr,2p− 1

][
l j,2p+1− lr,2p− 1

])1/2

τj
(
ε,m2p+1

)

+

( p∏
r=1

[
lr,2p

]
+

)
σ
(
ε,m2p+1

)
,

(7.4)

if n= 2p+ 2 and in the form

T
(
I2p+1,2p

)↓�α
ε,m2p

=
p∑
j=1

( p−1∏
r=1

[
l j,2p + lr,2p−1

][
l j,2p− lr,2p−1 + 1

])1/2

ρ′j
(
ε,m2p

)

+
p∑
j=1

( p−1∏
r=1

[
l j,2p + lr,2p−1− 1

][
l j,2p− lr,2p−1

])1/2

τ′j
(
ε,m2p

) (7.5)

if n= 2p+ 1, where ρj(ε,m2p+1), ρ′j(ε,m2p), τj(ε,m2p+1), τ′j(ε,m2p), and σ(ε,m2p+1) are
the operators such that

ρj
(
ε,m2p+1

)
: �α

ε,m2p+1
−→�α

ε,m
+ j
2p+1

, ρ′j
(
ε,m2p

)
: �α

ε,m2p
−→�α

ε,m
+ j
2p

,

τj
(
ε,m2p+1

)
: �α

ε,m2p+1
−→�α

ε,m
− j
2p+1

,

τ′j
(
ε,m2p

)
: �α

ε,m2p
−→�α

ε,m
− j
2p

, if j 
= p or mp,2p ≥ 3
2

,

τ′p
(
ε,m2p

)
: �α

ε,m2p
−→�α

ε,m2p
, if mp,2p = 1

2
,

σ(ε,m2p+1) : �α
ε,m2p+1

−→�α
ε,m2p+1

.

(7.6)

The coefficients in (7.4) and (7.5) are the corresponding Clebsch-Gordan coefficients of
the algebra U ′(son−1) taken from [14]. As we know from the Wigner-Eckart theorem,
ρj(ε,m2p+1), ρ′j(ε,m2p), τj(ε,m2p+1), τ′j(ε,m2p), and σ(ε,m2p+1) are independent of α. A
dependence on α is contained in the Clebsch-Gordan coefficients.

We first consider the case of the algebra U ′
q(so2p+2). We act by both parts of the relation

I2p+1,2pI
2
2p+2,2p+1−

(
q+q−1)I2p+2,2p+1I2p+1,2pI2p+2,2p+1 +I2

2p+2,2p+1I2p+1,2p=−I2p+1,2p (7.7)

upon vectors of the subspace �α
ε,m2p+1

with fixed ε, m2p+1, α and take into account formula
(7.4). As a result, we obtain for ρj(ε,m2p+1), τj(ε,m2p+1), and σ(ε,m2p+1) the relations
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li,2p+1− l j,2p+1 + 1

]
ρj
(
ε,m+i

2p+1

)
ρi
(
ε,m2p+1

)
− [li,2p+1− l j,2p+1− 1

]
ρi
(
ε,m

+ j
2p+1

)
ρj
(
ε,m2p+1

)= 0,
(7.8)

[
li,2p+1 + l j,2p+1

]
τi
(
ε,m

+ j
2p+1

)
ρj
(
ε,m2p+1

)
− [li,2p+1 + l j,2p+1− 2

]
ρj
(
ε,m−i

2p+1

)
τi
(
ε,m2p+1

)= 0,
(7.9)

[
li,2p+1− l j,2p+1 + 1

]
τi
(
ε,m

− j
2p+1

)
τj
(
ε,m2p+1

)
− [li,2p+1− l j,2p+1− 1

]
τj
(
ε,m−i

2p+1

)
τi
(
ε,m2p+1

)= 0,
(7.10)

[
l j,2p+1 + 1

]
+σ
(
ε,m

+ j
2p+1

)
ρj
(
ε,m2p+1

)
− [l j,2p+1− 1

]
+ρj

(
ε,m2p+1

)
σ
(
ε,m2p+1

)= 0,
(7.11)

[
l j,2p+1

]
+τj
(
ε,m2p+1

)
σ
(
ε,m2p+1

)
− [l j,2p+1− 2

]
+σ
(
ε,m

− j
2p+1

)
τj
(
ε,m2p+1

)= 0,
(7.12)

p∑
i=1

−[2li,2p+1 + 1
] p∏
r=1
r 
=k

([
li,2p+1

]2
+−

[
lr,2p

]2
+

)
τi
(
ε,m+i

2p+1

)
ρi
(
ε,m2p+1

)

+
[
2li,2p+1− 3

] p∏
r=1
r 
=k

([
li,2p+1− 1

]2
+−

[
lr,2p

]2
+

)
ρi
(
ε,m−i

2p+1

)
τi
(
ε,m2p+1

)
−

p∏
r=1
r 
=k

[
lr,2p

]2
+ · σ2(ε,m2p+1

)=−E,

(7.13)

where i 
= j, E is the unit operator on �α
ε,m2p+1

and k is a fixed number from the set
{1,2, . . . , p}.

The irreducible representations Tε,m2p+1 of U ′
q(so2p+1) under restriction to U ′

q(so2p)
decompose into irreducible representations Tε,m2p of this subalgebra such that the num-
bers m2p satisfy the inequalities determined by the Gel’fand-Tsetlin tableaux. Under this,
each of the numbers lr,2p runs over a certain set of values. Assuming that none of lr,2p,
r 
= p, is a constant for the representation Tε,m2p+1 , we equate in (7.13) terms with the
same dependence on [lr,2p]2

+ and obtain the relations

p∑
i=1

([
2li,2p+1 + 1

]
τi
(
ε,m+i

2p+1

)
ρi
(
ε,m2p+1

)− [2li,2p+1− 3
]
ρi
(
ε,m−i

2p+1

)
τi
(
ε,m2p+1

))
= (−1)pσ2(ε,m2p+1

)
,

(7.14)
p∑

i=1

([
2li,2p+1 + 1

][
li,2p+1

]2(p−ν−1)
+ τi

(
ε,m+i

2p+1

)
ρi
(
ε,m2p+1

)
− [2li,2p+1− 3

][
li,2p+1− 1

]2(p−ν−1)
+ ρi

(
ε,m−i

2p+1

)
τi
(
ε,m2p+1

))= 0,

ν= 1,2, . . . , p− 2,

(7.15)
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p∑
i=1

([
2li,2p+1 + 1

][
li,2p+1

]2p−2
+ τi

(
ε,m+i

2p+1

)
ρi
(
ε,m2p+1

)
− [2li,2p+1− 3

][
li,2p+1− 1

]2p−2
+ ρi

(
ε,m−i

2p+1

)
τi
(
ε,m2p+1

))= E.

(7.16)

If k parameters lr,2p, r 
= p, are constant for the representation Tε,m2p+1 , then the number
of the relations (7.14), (7.15), and (7.16) is decreased by k.

In a similar way it is proved that ρ′i (ε,m2p) and τ′i (ε,m2p) from formula (7.5) satisfy
the relations

[
li,2p− l j,2p + 1

]
ρ′j
(
ε,m+i

2p

)
ρ′i
(
ε,m2p

)
− [li,2p− l j,2p− 1

]
ρ′i
(
ε,m

+ j
2p

)
ρ′j
(
ε,m2p

)= 0, i 
= j,
(7.17)

[
li,2p + l j,2p + 1

]
τ′i
(
ε,m

+ j
2p

)
ρ′j
(
ε,m2p

)
− [li,2p + l j,2p− 1

]
ρ′j
(
ε,m−i

2p

)
τ′i
(
ε,m2p

)= 0, i 
= j,
(7.18)

[
li,2p− l j,2p + 1

]
τ′i
(
ε,m

− j
2p

)
τ′j
(
ε,m2p

)
− [li,2p− l j,2p− 1

]
τ′j
(
ε,m−i

2p

)
τ′i
(
ε,m2p

)= 0, i 
= j,
(7.19)

p∑
i=1

− [
2li,2p + 2

][
li,2p

]
+

[
li,2p + 1

]
+

p−1∏
r=1

([
li,2p

]
+

[
li,2p + 1

]
+

− [lr,2p−1
]

+

[
lr,2p−1− 1

]
+

)
τ′i
(
ε,m+i

2p

)
ρ′i
(
ε,m2p

)
+

[
2li,2p− 2

][
li,2p

]
+

[
li,2p− 1

]
+

p−1∏
r=1

([
li,2p

]
+

[
li,2p− 1

]
+

−[lr,2p−1
]

+

[
lr,2p−1− 1

]
+

)
ρ′i
(
ε,m−i

2p

)
τ′i
(
ε,m2p

)=−E.
(7.20)

If lp,2p ≡mp,2p = 1/2, then ρ′p(ε,m
−p
2p )τ′p(ε,m2p) must be replaced by (τ′p(ε,m2p))2. The

last relation implies the equalities

p∑
i=1

([
2li,2p + 2

]([
li,2p

]
+

[
li,2p + 1

]
+

)p−ν−2
τ′i
(
ε,m+i

2p

)
ρ′i
(
ε,m2p

)
− [2li,2p− 2

]([
li,2p

]
+

[
li,2p− 1

]
+

)p−ν−2
ρ′i
(
ε,m−i

2p

)
τ′i
(
ε,m2p

))= 0,

ν= 1,2, . . . , p− 1,

(7.21)

p∑
i=1

([
2li,2p + 2

]([
li,2p

]
+

[
li,2p + 1

]
+

)p−2
τ′i
(
ε,m+i

2p

)
ρ′i
(
ε,m2p

)
− [2li,2p− 2

]([
li,2p

]
+

[
li,2p− 1

]
+

)p−2
ρ′i
(
ε,m−i

2p

)
τ′i
(
ε,m2p

))= E.

(7.22)
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Theorem 7.2. The restriction of a nonclassical type irreducible representation T of U ′
q(son)

to the subalgebra U ′
q(son−1) contains each irreducible representation of this subalgebra not

more than once.

This theorem is proved (by using relations (7.8), (7.9), (7.10), (7.11), (7.12), (7.13),
(7.14),(7.15), (7.16), (7.17), (7.18), (7.19), (7.20), (7.21), and (7.22)) in the same way as
Theorem 6.4 and we omit this proof.

According to this theorem, the operators ρj(ε,m2p+1), ρ′j(ε,m2p), τj(ε,m2p+1), τ′j(ε,
m2p), and σ(ε,m2p+1) are numerical functions. We have to find possible expressions for
these functions.

First we consider the case of U ′
q(so2p+2). We obtain from (7.11) that

σ
(

m2p+1
)= p∏

j=1

([
l j,2p+1

]
+

[
l j,2p+1− 1

]
+

)−1 · σ , (7.23)

where σ is a constant. As in the case of the representations of the classical type, from
relations (7.8), (7.9), and (7.10) we derive that the expression

βj
(
l j,2p+1

)= ρj
(
ε,m2p+1

)
τj
(
ε,m

+ j
2p+1

)[
l j,2p+1

]2
+

[
2l j,2p+1− 1

][
2l j,2p+1 + 1

]
×
∏
r 
= j

([
lr,2p+1

]2− [l j,2p+1
]2
)([

lr,2p+1− 1
]2− [l j,2p+1

]2
) (7.24)

depends only on l j,2p+1.
We rewrite the relations (7.14), (7.15), and (7.16) for βj(l j,2p+1) and introduce the

notations

lr+1,2p+2 = lmin
r,2p+1− 1, r = 1,2, . . . , p. (7.25)

Then we represent σ (without loss of a generality) in the form

σ = ε2p+2

p+1∏
r=1

[
lr,2p+2

]
+, (7.26)

where l1,2p+2 is a number, which is determined by σ .

Proposition 7.3. Solutions of the system of equations for βj(l j,2p+1) are given by the ex-
pressions

βi
(
li,2p+1

)= p+1∏
r=1

([
li,2p+1

]2− [lr,2p+2
]2
)

=
p+1∏
r=1

([
li,2p+1

]2
+−

[
lr,2p+2

]2
+

)

=
p+1∑
j=0

(−1) j ep− j+1

([
l1,2p+2

]2
+, . . . ,

[
lp+1,2p+2

]2
+

)([
l j,2p+1

]2
+

) j
,

(7.27)

where er(x1, . . . ,xp+1) are elementary symmetric polynomials in x1, . . . ,xp+1.
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This proposition is proved in the same way as Proposition 6.6 by using relations (6.41),
(6.42), (6.43), and (6.44).

Separation of ρj(ε,m2p+1) and τj(ε,m
+ j
2p+1) from βj(l j,2p+1) are fulfilled in the same

way as in the case of formula (6.32) and we obtain the following formula for T(I2p+2,2p+1):

T
(
I2p+2,2p+1

)∣∣ε,m2p+1,α
〉= p∑

j=1

B
j
2p+1

(
m2p+1

)
b
(
l j,2p+1

)[
l j,2p+1

]
+

∣∣ε,m
+ j
2p+1,α

〉

−
p∑
j=1

B
j
2p+1

(
m
− j
2p+1

)
b
(
l j,2p+1− 1

)[
l j,2p+1− 1

]
+

∣∣ε,m
− j
2p+1,α

〉
+ ε2pĈ2p+1

(
m2p+1

)∣∣m2p+1,α
〉

,

(7.28)

where B
j
2p+1(m2p+1) and b(l j,2p+1) are given by the same expressions as in (6.53) and

Ĉ2p+1
(

m2p+1
)= ∏p+1

s=1

[
ls,2p+2

]
+

∏p
s=1

[
ls,2p

]
+∏p

s=1

[
ls,2p+1

]
+

[
ls,2p+1− 1

]
+

. (7.29)

This formula coincides with (3.15) if we replace p+ 1 by p.
Now we consider the case of U ′

q(so2p+1). We derive from the relations (7.17), (7.18),
and (7.19) that

β′j
(
l j,2p

)= ρ′j
(
ε,m2p

)
τ′j
(
ε,m

+ j
2p

)(
qlj,2p − q−l j,2p

)(
qlj,2p+1− q−l j,2p−1)

×
∏
r 
= j

([
lr,2p

]
+

[
lr,2p− 1

]
+−

[
l j,2p

]
+

[
l j,2p + 1

]
+

)
×
([
lr,2p + 1

]
+

[
lr,2p

]
+−

[
l j,2p

]
+

[
l j,2p + 1

]
+

) (7.30)

depends only on l j,2p (we used here the relation [x][x− 1]− [y][y− 1]= [x]+[x− 1]+−
[y]+[y− 1]+). Then we rewrite the relations (7.21) and (7.22) for β′j(l j,2p) and, using the
equalities (6.41) and (6.43), derive the following proposition.

Proposition 7.4. Solutions of the system of equations for β′j(l j,2p) are given by the
expression

β′j
(
l j,2p

)= p∏
r=1

([
l j,2p

]
+

[
l j,2p + 1

]
+−

[
lr,2p+1

]
+

[
lr,2p+1− 1

]
+

)
, (7.31)

where li,2p+1 = lmax
i,2p + 1, i= 1,2, . . . , p.
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We separate ρ′j(m2p) and τ′j(m
+ j
2p) from β′j(l j,2p) and obtain for the operator T(I2p+1,2p)

of an irreducible representation T of U ′
q(so2p+1) the expression

T
(
I2p+1,2p

)∣∣ε,m2p,α
〉= δmp,2p ,1/2

ε2p+1

q1/2− q−1/2
D2p

(
αn
)∣∣ε,m2p,α

〉
+

p∑
j=1

A
j
2p

(
m2p

)
a′
(
l j,2p

) ∣∣ε,m
+ j
2pα

〉− p∑
j=1

A
j
2p

(
m
− j
2p

)
a′
(
l j,2p− 1

)∣∣ε,m
− j
2p ,α

〉
,

(7.32)

where ε2p+1 takes one of the values ±1, A
j
2p(m2p) is given by the same expression as in

the case of the formula (6.59), a′(l j,2p) is such as in (3.14) and

D2p
(

m2p)=
∏p

i=1

[
li,2p+1− 1/2

]∏p−1
i=1

[
li,2p−1− 1/2

]∏p−1
i=1

[
li,2p + 1/2

][
li,2p− 1/2

] . (7.33)

8. Complete reducibility

In this section, we prove complete reducibility of finite-dimensional representations of
U ′

q(son) if Assumption 6.1 of Section 6 is true. For the algebras U ′
q(so3) and U ′

q(so4), this
assumption is fulfilled (see [10, 12]).

Theorem 8.1. If Assumption 6.1 of Section 6 is true, then each finite-dimensional represen-
tation of U ′

q(son) is completely reducible.

Proof. To prove the theorem, it is enough to show that every finite-dimensional represen-
tation T of U ′

q(son), containing two irreducible constituents, is completely reducible. We
represent the space � of the representation T in the form H =�1⊕�2 such that �1 and
�2 are invariant with respect to U ′

q(son−1) and on �1 and �/�1 irreducible representa-
tions of U ′

q(son) are realized (we denote them by T1 and T2, resp.). We have to consider
three cases.
Case 1. One irreducible constituent of T is of the classical type and another of the non-
classical type.
Case 2. Both irreducible constituents of T are of the classical type.
Case 3. Both irreducible constituents of T are of the nonclassical type.

Proof of Case 1. We restrict the representation T onto U ′
q(son−1) and decompose it into

a direct sum of irreducible representations of U ′
q(son−1). Then � is the direct sum � =

�1 ⊕�2, where �1 and �2 are sums of the linear subspaces on which irreducible rep-
resentations of U ′

q(son−1) are realized, which belong to the classical type and to the non-
classical type, respectively. Let ξ1 ∈ �1 transform under an irreducible representation
of U ′

q(son−1). Then due to Proposition 5.4 and the statements of Section 4 on decom-
position of tensor products of irreducible representations, T(In,n−1)ξ1 ∈�1. Similarly, if
ξ2 ∈�2 transforms under an irreducible representation of U ′

q(son−1), then by the same
reason T(In,n−1)ξ2 ∈�2. Therefore, �1 and �2 are invariant (with respect to U ′

q(son))
subspaces of �. This means that the representation T is completely irreducible. �



N. Z. Iorgov and A. U. Klimyk 257

Proof of Case 2. Under restriction of the representation T upon U ′
q(son−1), its irreducible

constituents T1 and T2 decompose into a direct sum of irreducible representations of this
subalgebra. We denote the corresponding collections of numbers, characterizing these
representations of U ′

q(son−1), by mn−1 and m̃n−1, respectively. The corresponding sets of
mn−1 and of m̃n−1 will be denoted by Ω1 and Ω2, respectively. Since for mn−1 ∈Ω1 each
mi,n−1 runs over values independent of values of mj,n−1, j 
= i, then in Ω1 there exists a
single maximal mn−1 denoted by mmax

n−1. Similarly, in Ω2 there exists a single m̃max
n−1. We

divide Case 2 into four subcase.
Subcase 1. There exists no irreducible representation Tmn−1 of U ′

q(son−1) with mn−1 ∈Ω1

such that m̃max
n−1 =mn−1.

Subcase 2. The representation Tm̃max
n−1

is equivalent to some irreducible representation
Tmn−1 , mn−1 ∈Ω1 and m̃max

n−1 
=mmax
n−1.

Subcase 3. m̃max
n−1 =mmax

n−1 and T1 is not equivalent to T2.
Subcase 4. T1 is equivalent to T2.

We conduct the proof for the representations of the algebra U ′
q(so2p+2). For the algebra

U ′
q(so2p+1), the proof is similar and we omit it.

Let ξ be a vector of the subspace �irr
m̃max

2p+1
on which the irreducible representation Tm̃max

2p+1

of U ′
q(so2p+1) is realized. A multiplicity of Tm̃max

2p+1
in the representation T↓U ′

q(so2p+1) is one.
Therefore, ξ is an eigenvector of the operator σ(m̃max

2p+1). We follow the reasoning of the
proof of Theorem 6.4 acting successively upon ξ by the operators ρi and τj of Section 6
(corresponding to the appropriate values of m̃2p+1). As a result, we obtain an invariant
(with respect to U ′

q(so2p+2)) subspace �̃ of �, which is a direct sum of nonequivalent

irreducible (with respect to the subalgebra U ′
q(so2p+1)) subspaces �irr

m̃2p+1
. On �̃ the ir-

reducible representation T2 of U ′
q(so2p+2) is realized. Therefore, T is a direct sum of its

subrepresentations T1 and T2.
In Subcase 2, m̃max

2p+1 is not a maximal set of (m1,2p+1, . . . ,mp,2p+1) for the representation
T . Therefore, there exists j, 1 ≤ j ≤ p, such that ρj(m̃max

2p+1) 
= 0. This operator has one-
dimensional kernel �. We take a vector ξ ∈ �. Thus, ρj(m̃max

2p+1)ξ = 0. Due to relation
(6.11), ξ is an eigenvector of the operator σ(m̃max

2p+1), and due to (6.8) ρi(m̃max
2p+1)ξ = 0,

1≤ i≤ p. Now a proof is conducted in the same way as in the previous subcase (by using
the reasoning of the proof of Theorem 6.4).

Since T1 is not equivalent to T2 in Subcase 3, we easily derive from the results of
Section 6 that for irreducible representations T1 and T2, the corresponding values
σ(mmax

2p+1) and σ(m̃max
2p+1) are different. Therefore, the operator σ(mmax

2p+1) for the whole
representation T is diagonalizable. We take eigenvectors ξ1 and ξ2 belonging to differ-
ent eigenvalues. Then ρj(mmax

2p+1)ξs = 0, s = 1,2, for all values of j. We act upon ξ1 and
ξ2 by the operators ρi and τj and then, in the same way as in the proof of Theorem 6.4,
obtain two linear invariant (with respect to U ′

q(so2p+2)) subspaces �1 and �2 of � such
that �=�1⊕�1. This proves the theorem for Subcase 3.

For simplicity of notations, in Subcase 4, we set

m2p+1 =
(
m1,2p+1, . . . ,mp,2p+1

)≡m= (m1, . . . ,mp
)
,(

l1,2p+1, . . . , lp,2p+1
)≡ (l1, . . . , lp

)
.

(8.1)
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The operators σ(m), ρj(m), and τj(m) for the representation T of U ′
q(so2p+2) will be

denoted by σ (T)(m), ρ(T)
j (m), and τ(T)

j (m), respectively. In Subcase 4, these operators are
of the form

σ (T)(m)=
(
σ(m) σ̃(m)

0 σ(m)

)
, ρ(T)

j (m)=
(
ρj(m) ρ̃ j(m)

0 ρj(m)

)
,

τ(T)
j (m)=

(
τj(m) τ̃ j(m)

0 τj(m)

)
,

(8.2)

where σ(m), ρj(m), τj(m) σ̃(m), ρ̃ j(m), and τ̃ j(m) are usual functions. Moreover, σ(m),
ρj(m), and τj(m) are functions from Section 6, corresponding to the irreducible rep-

resentation T1. Substituting these expressions for σ (T)(m) and ρ(T)
j (m) into (6.11), we

obtain identities for elements σ(m) and ρj(m), coinciding with (6.11), and the identities

[
l j + 1

](
σ
(

m+ j
)
ρ̃ j(m) + σ̃

(
m+ j

)
ρj(m)

)= [l j − 1
](
ρ̃ j(m)σ(m) + ρj(m)σ̃(m)

)
. (8.3)

The function σ(m) corresponds to an irreducible representation of the algebra U ′
q(so2p+2)

and is given by (6.29) and (6.38). Using the relation [l j + 1]σ(m+ j) = [l j − 1]σ(m), fol-
lowing from (6.11), we derive from (8.3) that [l j + 1]σ̃(m+ j)= [l j − 1]σ̃(m). Thus, simi-
larly to the case of σ(m) in Section 6, we derive

σ̃(m)= σ̃
p∏
j=1

([
l j
][
l j − 1

])−1
, (8.4)

where σ̃ is a constant. We state that σ̃ = 0. In order to show this, we remark that if σ̃(m)=
0 for some m, then σ̃ = 0, and then σ̃(m)= 0 for all m.

In the case when lp+1,2p+2 = 0, the representation T1 ∼ T2 contains representations of
U ′

q(so2p+1) with lp = 1. In this case, σ = σ̃ = 0.
Let lp+1,2p+2 > 0. It this case, σ 
= 0. From the relation (6.13), written for the represen-

tation T of U ′
q(so2p+2), we derive that

p∑
i=1

(
− [2li + 1

] p−1∏
r=1

([
li
]2− [lr,2p

]2
)
Fi(m) +

[
2li− 3

] p−1∏
r=1

([
li− 1

]2− [lr,2p
]2
)
Fi
(

m−i))

+
p−1∏
r=1

[
lr,2p

]2 · 2σ(m)σ̃(m)= 0,

(8.5)

where

Fi(m) := τi
(

m+i)ρ̃i(m) + τ̃i
(

m+i)ρi(m). (8.6)

We consider representations Tm of U ′
q(so2p+1) from T↓U ′

q(so2p+1) with m2, . . . ,mp tak-
ing their minimal values. If all ls,2p, s= 1,2, . . . , p, are not fixed for these representations,
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we have[
2l1 + 1

]
F1
(
m1,mmin

2 , . . . ,mmin
p

)− [2l1− 3
]
F1
(
m1− 1,mmin

2 , . . . ,mmin
p

)
+

p∑
i=2

[
2li + 1

]
Fi
(
m1,mmin

2 , . . . ,mmin
p

)
= (−1)p+12σ

(
m1,mmin

2 , . . . ,mmin
p

)
σ̃
(
m1,mmin

2 , . . . ,mmin
p

)
,[

2l1 + 1
]
[l1]2νF1

(
m1,mmin

2 , . . . ,mmin
p

)− [2l1− 3
][
l1− 1

]2ν
F1
(
m1− 1,mmin

2 , . . . ,mmin
p

)
+

p∑
i=2

[
2li + 1

][
li
]2ν

Fi
(
m1,mmin

2 , . . . ,mmin
p

)= 0, ν= 1,2, . . . , p− 1.

(8.7)

We sum each equation in (8.7) over l1 from lmin
1 = l2,2p+2 + 1 to lmax

1 with weight coeffi-
cients [2l1− 1] and obtain

p∑
i=2

Gi = 2(−1)p+1
lmax
1∑

l1=lmin
1

[
2l1− 1

]
σ
(
m1,mmin

2 , . . . ,mmin
p

)
σ̃
(
m1,mmin

2 , . . . ,mmin
p

)
, (8.8)

p∑
i=2

[
li
]2ν

Gi = 0, ν= 1,2, . . . , p− 1, (8.9)

where

Gi =
lmax
1∑

l1=lmin
1

[
2l1− 1

][
2li + 1

]
Fi
(
m1,mmin

2 , . . . ,mmin
p

)
. (8.10)

Since the system of homogeneous equations (8.9) for Gi, i= 2,3, . . . , p, has nonvanishing
determinant, we get Gi = 0 and, therefore, (8.8) gives

lmax
1∑

l1=lmin
1

[
2l1− 1

]
σ
(
m1,mmin

2 , . . . ,mmin
p

)
σ̃
(
m1,mmin

2 , . . . ,mmin
p

)= 0. (8.11)

Taking into account (6.29) and (8.4), we get

0= σσ̃
lmax
1∑

l1=lmin
1

[
2l1− 1

][
l1
]2[

l1− 1
]2

= σσ̃
lmax
1∑

l1=lmin
1

(
1[

l1− 1
]2 −

1[
l1
]2

)

= σσ̃

(
1[

l2,2p+2
]2 −

1[
lmax
1

]2

)
.

(8.12)

Since [lmax
1 ]2 
= [l2,2p+2]2 and σ 
= 0, we obtain σ̄ = 0.
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If the values of ls,2p are fixed in the considered representations of U ′
q(so2p+1), then the

number of relations, which follow from (8.5) and the number of Gi are decreased by the
number of fixed ls,2p. Thus, as before, we get Gi = 0, i= 2,3, . . . , p and, therefore, σ̃ = 0.

We have proved that σ̃(m) = 0 for all irreducible representations Tm of U ′
q(so2p+1),

contained in the representation T↓U ′
q(son). This means that all operators σ (T)(m) are diag-

onal and the further proofs of complete reducibility are conducted in the same way as in
the previous subcase. �

Case 3 is proved in the same way as Case 2 and we omit this proof. The theorem is
proved. �

Corollary 8.2. If irreducible finite-dimensional representations ofU ′
q(son−1) are exhausted

by irreducible representations of Section 3, then each finite-dimensional representation of
U ′

q(son) is completely reducible.

9. Classification theorems

Suppose that Assumption 6.1 of Section 6 is acting.

Proposition 9.1. If Assumption 6.1 of Section 6 is true, then irreducible finite-dimensional
representations T of U ′

q(son) such that the restriction T↓U ′
q(son−1) contains in the decomposi-

tion into irreducible components only representations of the classical type of U ′
q(son−1) are

exhausted by the representations of the classical type from Section 3.

Proof. We prove the proposition when n= 2p+ 2. For n= 2p+ 1, the proof is similar.
Let T be a representation of U ′

q(so2p+2) from the formulation of the proposition.
Then the functions βj(li,2p+1), defined by the formula (6.32), are given by (6.40). It was
shown above that T↓U ′

q(so2p+1) =
⊕

m2p+1
Tm2p+1 and in this decomposition each mr,2p+1

runs over the values mmin
r,2p+1,mmin

r,2p+1 + 1, . . . ,mmax
r,2p+1, where lmin

r,2p+1 = lr+1,2p+2 + 1. Due to

the properties of the functions ρj , βr(lmin
r,2p+1 + s) 
= 0 for s= 0,1, . . . , lmax

r,2p+1− lmin
r,2p+1− 1 and

βr(lmax
r,2p+1)= 0. Then it follows from (6.40) that lmax

r,2p+1 = lr,2p+2, r 
= 1. Since βr(lmax
1,2p+1)= 0,

we find from (6.40) that lmax
1,2p+1 coincides with l1,2p+2 or with −l1,2p+2. Therefore, l1,2p+2

is an integer (a half-integer) if li,2p+2, i= 2,3, . . . , p+ 1, are integers (half-integers). More-
over, l1,2p+2 may be positive or negative. We see that the formula for the operator
T(I2p+2,2p+1) does not change if we replace l1,2p+2 and lp+1,2p+2 by −l1,2p+2 and −lp+1,2p+2,
respectively. Therefore, we may consider that l1,2p+2 is positive and lp+1,2p+2 takes positive
and negative values. Now taking into account admissible values for li,2p+2, i= 1,2, . . . , p+
1, and formula (6.53) for T(I2p+2,2p+1), we see that the representation T coincides with
one of the irreducible representations of the classical type from Section 3.

In order to prove the proposition for representations of the algebra U ′
q(so2p+1), we use

the formula of Proposition 6.7 and formula (6.59) instead of formulas (6.40) and (6.53).
The proposition is proved. �

Proposition 9.2. If Assumption 6.1 of Section 6 is true, then irreducible finite-dimensional
representations T of U ′

q(son) such that the restriction T↓U ′
q(son−1) contains in the decomposi-

tion into irreducible components only representations of the nonclassical type of U ′
q(son−1)

are exhausted by the representations of the nonclassical type of Section 3.
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The proof of this proposition is the same as that of Proposition 9.1.

Theorem 9.3. Irreducible finite-dimensional representations of the algebra U ′
q(son) are ex-

hausted by representations of the classical type and of the nonclassical type from Section 3.

Proof. For the algebra U ′
q(son−1) ≡ U ′

q(so4), Assumption 6.1 of Section 6 is true (see
[10]). Now the theorem is easily proved by induction taking into account Theorem 8.1
and Propositions 9.1 and 9.2. The theorem is proved. �

Corollary 9.4. Each finite-dimensional representation of U ′
q(son) is completely reducible.

Proof. This assertion follows from Corollary 8.2 of Section 8 and from Theorem 9.3. �
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[6] A. M. Gavrilik and N. Z. Iorgov, q-deformed algebras Uq(son) and their representations, Methods
Funct. Anal. Topology 3 (1997), no. 4, 51–63.

[7] , Representations of the nonstandard algebras Uq(so(n)) and Uq(so(n− 1,1)) in Gelfand-
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[11] M. Havlı́ček and S. Pošta, On the classification of irreducible finite-dimensional representations of

U ′
q(so3) algebra, J. Math. Phys. 42 (2001), no. 1, 472–500.

[12] N. Z. Iorgov, Complete reducibility of representations of the algebra U ′
Q(so3), Methods Funct.

Anal. Topology 5 (1999), no. 2, 22–28.
[13] , On tensor products of representations of the non-standard q-deformed algebra U ′

q(son),
J. Phys. A 34 (2001), no. 14, 3095–3108.

[14] , Wigner-Eckart theorem for an algebra related to quantum gravity, Ukraı̈n. Fīz. Zh. 47
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