By using the concept of \mathcal{I}-convergence defined by Kostyrko et al. in 2001, the \mathcal{I}-limit superior of real sequences was introduced and the inequality $\mathcal{I} - \limsup(Ax) \leq \mathcal{I} - \limsup(x)$ for all $x \in \ell_\infty$ was studied by Demirci in 2001. In this paper, we have characterized a class of \mathcal{I}-conservative matrices by studying some new inequalities related to the \mathcal{I}-limit superior.

1. Introduction

Let ℓ_∞ and c be the Banach spaces of bounded and convergent sequence $x = (x_k)$ with the usual supremum norm. Let σ be a one-to-one mapping of \mathbb{N}, the set of positive integers, into itself and $T : \ell_\infty \to \ell_\infty$ a linear operator defined by $Tx = (Tx_k) = (x_{\sigma(k)})$. An element $\phi \in \ell'_\infty$, the conjugate space of ℓ_∞, is called an invariant mean or a σ-mean if and only if (i) $\phi(x) \geq 0$ when the sequence $x = (x_k)$ has $x_k \geq 0$ for all k, (ii) $\phi(e) = 1$ where $e = (1, 1, 1, \ldots)$, and (iii) $\phi(Tx) = \phi(x)$ for all $x \in \ell_\infty$. Let M be the set of all σ-means on ℓ_∞. A sublinear functional P on ℓ_∞ is said to generate σ-means if $\phi \in \ell'_\infty$ and $\phi \leq P \Rightarrow \phi$ is a σ-mean, and to dominate σ-means if $\phi \leq P$ for all $\phi \in M$, where $\phi \leq P$ means that $\phi(x) \leq P(x)$ for all $x \in \ell_\infty$.

It is shown [8] that the sublinear functional

$$V(x) = \sup_n \limsup_p t_{pn}(x)$$

(1.1)

both generates and dominates σ-means, where

$$t_{pn}(x) = \frac{1}{p+1} (x_n + x_{\sigma(n)} + \cdots + x_{\sigma^p(n)}), \quad t_{-1,n}(x) = 0.$$ (1.2)

A bounded sequence x is called σ-convergent to s if $V(x) = -V(-x) = s$. In this case, we write $\sigma - \lim x = s$. Let V_σ be the set of all σ-convergent sequences. We assume throughout this paper that $\sigma^p(n) \neq n$ for all $n \geq 0$ and $p \geq 1$, where $\sigma^p(n)$ is the pth iterate of
The matrix $A = (a_{nk})$ be an infinite matrix of real numbers and $x = (x_k)$ a real sequence such that $Ax = (A_n(x)) = (\sum k a_{nk}x_k)$ exists for each n. Then, the sequence $Ax = (A_n(x))$ is called an A-transform of x. For two sequence spaces E and F, we say that the matrix A maps E into F if Ax exits and belongs to F for each $x \in E$. By (E,F), we denote the set of all matrices which map E into F.

A matrix $A \in (c,c)$ is said to be conservative. It is known [1, page 21] that A is conservative if and only if $||Ax|| = \sup_n \sum_k |a_{nk}| < \infty$, $a_k = \lim_n a_{nk}$ for each k, and $a = \lim_n \sum_k b_{nk}$. If A is conservative, the number $\chi = \chi(A) = a - \sum_k a_k$ called the characteristic of A is of importance in summability [1, page 46].

Let E be a subset of \mathbb{N}. Natural density δ of E is defined by

$$\delta(E) = \lim_{n} \frac{1}{n} \left| \{k \leq n : k \in E\} \right|,$$

where the vertical bars indicate the number of elements in the enclosed set. The number sequence $x = (x_k)$ is said to be statistically convergent to the number l if for every ε, $\delta \{k : |x_k - l| \geq \varepsilon\} = 0$ [4]. In this case, we write $st - \lim x = l$.

A matrix $A \in (c,c)_{reg}$ is said to be regular and it is known [1, page 21] that A is regular if and only if $||A|| \leq \infty$, $\lim_n a_{nk} = 0$ for each k, and $\lim_n \sum_k a_{nk} = 1$. For a given nonnegative regular matrix A, the number

$$\delta_A(E) = \lim_{n} \sum_{k \in E} a_{nk}$$

is said to be the A-density of $E \subseteq \mathbb{N}$ [5]. A sequence $x = (x_k)$ is said to be A-statistical convergent to a number s if for every $\varepsilon > 0$, the set $\{k : |x_k - s| \geq \varepsilon\}$ has A-density zero [5]. In this case, we write $st_A - \lim x = s$. By st_A, we denote the set of all A-statistically convergent sequences.

Let $B = (B_i) = (b_{nk}(i))$ be a sequence of infinite matrices. Then, a bounded sequence x is said to be B summable to the value l if

$$\lim_n Bx = \lim_n \sum_{k} b_{nk}(i)x_k = l \quad \text{uniformly in } i.$$

The matrix B is regular [11] if and only if $||B|| < \infty$, $\lim_i b_{nk}(i) = 0$ for all k, uniformly in i, and $\lim_n \sum_k b_{nk}(i) = 1$ uniformly in i, where $||B|| = \sup_{n,i} \sum_k |b_{nk}(i)|$. For a given nonnegative regular matrix sequence B, Kolk [6] introduced the B-density of a subset of \mathbb{N} as follows.
The number

\[\delta_E (E) = \lim_n \sum_{k \in E} b_{nk} (i) = d \quad \text{uniformly in } i \]

(1.7)

is said to be \(B \)-density of \(E \) if it exists. In the cases \(B = (A) \) and \(B = (C, 1) \), the Cesàro matrix, the \(B \)-density reduces to the \(A \)-density and natural density, respectively. A sequence \(x = (x_k) \) is said to be \(B \)-statistically convergent [6] to a number \(s \) if for every \(\epsilon > 0 \), the set \(\{ k : |x_k - s| \geq \epsilon \} \) has \(B \)-density zero. The set of all \(B \)-statistically convergent sequences is denoted by \(s_B \).

Let \(X \neq \emptyset \). A class \(S \subset 2^X \) of subsets of \(X \) is said to be an ideal in \(X \) if \(S \) satisfies the conditions (i) \(\emptyset \in S \), (ii) \(Y \cup Z \in S \) whenever \(Y, Z \in S \), (iii) \(Y \in S \) and \(Z \subseteq Y \) implies that \(Z \in S \). An ideal is called nontrivial if \(X \notin S \). A nontrivial ideal is called admissible if \(\{ x \} \in S \) for each \(x \in X \) [7].

Let \(\mathcal{I} \) be a nontrivial ideal in \(\mathbb{N} \). A sequence \(x = (x_k) \) is said to be \(\mathcal{I} \)-convergent to a number \(l \) if for every \(\epsilon > 0 \), \(\{ k : |x_k - l| > \epsilon \} \in \mathcal{I} \) [7]. In this case, we write \(\mathcal{I} \)-lim \(x = l \). It is clear that a \(\mathcal{I} \)-convergent sequence need not be bounded. Let \(F_\mathcal{I} (b) \) be the set of all \(\mathcal{I} \)-convergent and bounded sequences.

Note that in the cases \(\mathcal{I}_c = \{ E \subseteq \mathbb{N} : \delta (E) = 0 \} \), \(\mathcal{I}_{\delta A} = \{ E \subseteq \mathbb{N} : \delta_A (E) = 0 \} \), and \(\mathcal{I}_{\delta B} = \{ E \subseteq \mathbb{N} : \delta_B (E) = 0 \} \), the \(\mathcal{I} \)-convergence is reduced to the statistically convergence, \(A \)-statistically convergence, and \(B \)-statistically convergence, respectively.

An admissible ideal \(\mathcal{I} \) in \(\mathbb{N} \) is said to satisfy the additive property if for every countable system \(\{ Y_1, Y_2, \ldots \} \) of mutually disjoint sets in \(\mathcal{I} \), there exist sets \(Z_j \subseteq \mathbb{N} (j = 1, 2, \ldots) \) such that the symmetric differences \(Y_j \Delta Z_j \), \(j = 1, 2, \ldots \) are finite and \(\bigcup_j Z_j \in \mathcal{I} \) [7].

Demirci [3] has introduced the concepts \(\mathcal{I} \)-limit superior and inferior. For a real number sequence \(x \), let \(B_x \) and \(A_x \) denote the sets \(\{ b \in \mathbb{R} : \{ k : x_k > b \} \in \mathcal{I} \} \) and \(\{ a \in \mathbb{R} : \{ k : x_k < a \} \in \mathcal{I} \} \), respectively, and also let \(\mathcal{I} \) be admissible. Then,

\[
\mathcal{I} \text{-lim sup } x = \begin{cases}
\sup B_x & \text{if } B_x \neq \emptyset, \\
-\infty & \text{if } B_x = \emptyset,
\end{cases}
\]

\[
\mathcal{I} \text{-lim inf } x = \begin{cases}
\inf A_x & \text{if } A_x \neq \emptyset, \\
\infty & \text{if } A_x = \emptyset.
\end{cases}
\]

(1.8)

It is shown [3] that \(\mathcal{I} \)-lim sup \(x = \beta \) if and only if for every \(\epsilon > 0 \), \(\{ k : x_k < \beta - \epsilon \} \notin \mathcal{I} \) and \(\{ k : x_k > \beta + \epsilon \} \in \mathcal{I} \). Also, \(\mathcal{I} \)-lim inf \(x = \alpha \) if and only if for every \(\epsilon > 0 \), \(\{ k : x_k < \alpha + \epsilon \} \notin \mathcal{I} \) and \(\{ k : x_k < \alpha - \epsilon \} \in \mathcal{I} \). Recall that a sequence \(x = (x_k) \) is said to be \(\mathcal{I} \)-bounded if there exists an \(N > 0 \) such that \(\{ k : |x_k| > N \} \in \mathcal{I} \). It is proved in [3] that a \(\mathcal{I} \)-bounded sequence \(x \) is \(\mathcal{I} \)-convergent if and only if \(\mathcal{I} \)-lim sup \(x = \mathcal{I} \)-lim inf \(x \).

For all \(x \in \ell_\infty \), the inequality

\[
\mathcal{I} \text{-lim sup } A(x) \leq \mathcal{I} \text{-lim sup } (x)
\]

(1.9)

has been studied in [3].

In this paper, we have characterized a class of matrices \(A \in (c, F_\mathcal{I} (b)) \) by studying some new inequalities related to the \(\mathcal{I} \)-limit superior and limit inferior.
2. The main results

Firstly, we will begin with the following lemma.

Lemma 2.1. \(A \in (c, F_\beta(b)) \) if and only if

\[
\sup_n \sum_k |a_{nk}| < \infty, \quad (2.1)
\]

\(F - \lim_n a_{nk} = t_k \) for every \(k \), \((2.2) \)

\(F - \lim_n \sum_k a_{nk} = t. \) \((2.3) \)

Proof. Assume that \(A \in (c, F_\beta(b)) \). Then, (2.1) follows from the fact that \((c, F_\beta(b)) \subset (\ell_\infty, \ell_\infty)\). For the necessity of the other conditions it is enough to consider the sequences \((e_k)\) and \(e\), respectively, where \((e_k)\) is the sequence whose \(k\)th place is 1 and the others are all zero.

Conversely, suppose that the conditions (2.1)–(2.3) hold. Let \(x \in c \) and \(\lim x = l \). Then, for any given \(\varepsilon > 0 \), there exists a \(k_0 \in \mathbb{N} \) such that \(|x_k - l| \leq \varepsilon \) whenever \(k \geq k_0 \). Now, we can write

\[
Ax = \sum_k a_{nk}(x_k - l) + l \sum_k a_{nk}. \quad (2.4)
\]

By an easy calculation, one can see that

\[
F - \lim_n \sum_k a_{nk}(x_k - l) = \sum_k t_k(x_k - l). \quad (2.5)
\]

So, by applying \(F - \lim_n \) in (2.4), we get that

\[
F - \lim Ax = lt + \sum_k t_k(x_k - l). \quad (2.6)
\]

This completes the proof. \(\square \)

In what follows, a matrix \(A \in (c, F_\beta(b)) \) is said to be \(F_\beta \)-conservative. In the case \(A \) is \(F_\beta \)-conservative, the number

\[
K_\beta = K_\beta(A) = t - \sum_k t_k \quad (2.7)
\]

is said to be \(F_\beta \)-characteristic of \(A \).

To the proof of our main results, we need two lemmas which can be proved by the same technique used in [2, Lemmas 2.3–2.4], respectively.

Lemma 2.2. Let \(A \) be \(F_\beta \)-conservative and \(\lambda > 0 \). Then,

\[
F - \limsup_n \sum_k |a_{nk} - t_k| \leq \lambda \quad (2.8)
\]
if and only if

\[
\mathcal{J} - \limsup_n \sum_k (a_{nk} - t_k)^+ \leq \frac{\lambda + K\delta}{2},
\]
\[
\mathcal{J} - \limsup_n \sum_k (a_{nk} - t_k)^- \leq \frac{\lambda - K\delta}{2}.
\]

(2.9)

Lemma 2.3. Let \(\|A\| < \infty\) and \(\mathcal{J} - \lim_n |a_{nk}| = 0\). Then there exists a \(y \in \ell_\infty\) such that

\[
\mathcal{J} - \limsup \sum_k a_{nk} y_k = \mathcal{J} - \limsup \sum_k |a_{nk}|.
\]

(2.10)

Theorem 2.4. Let \(A\) be \(\mathcal{J}\)-conservative. Then, for some constant \(\lambda \geq |K\delta|\) and for all \(x \in \ell_\infty\),

\[
\mathcal{J} - \limsup_n \sum_k (a_{nk} - t_k) x_k \leq \frac{\lambda + K\delta}{2} L(x) - \frac{\lambda - K\delta}{2} l(x)
\]

(2.11)

if and only if

\[
\mathcal{J} - \limsup_n \sum_k |a_{nk} - t_k| \leq \lambda.
\]

(2.12)

Proof. Let (2.11) hold. Define \(B = (b_{nk})\) by \(b_{nk} = (a_{nk} - t_k)\) for all \(n, k\). Then, since \(A\) is \(\mathcal{J}\)-conservative, the matrix \(B\) satisfies the hypothesis of Lemma 2.3. Hence, we have from (2.11) for a \(y \in \ell_\infty\) with \(\|y\| \leq 1\) that

\[
\mathcal{J} - \limsup_n \sum_k |b_{nk}| = \mathcal{J} - \limsup_n \sum_k b_{nk} y_k
\]

\[
\leq \frac{\lambda + K\delta}{2} L(y) - \frac{\lambda - K\delta}{2} l(y)
\]

(2.13)

\[
\leq \left(\frac{\lambda + K\delta}{2} + \frac{\lambda - K\delta}{2} \right) \|y\| = \lambda,
\]

which yields (2.12).

Conversely, let (2.12) hold and \(x \in \ell_\infty\). Then, for any \(\varepsilon > 0\), there exits a \(k_0 \in \mathbb{N}\) such that \(l(x) - \varepsilon < x_k < L(x) + \varepsilon\) whenever \(k > k_0\). Now, we can write

\[
\sum_k (a_{nk} - t_k) x_k = \sum_{k \leq k_0} (a_{nk} - t_k) x_k + \sum_{k > k_0} (a_{nk} - t_k)^+ x_k - \sum_{k > k_0} (a_{nk} - t_k)^- x_k.
\]

(2.14)

Since \(A\) is \(\mathcal{J}\)-conservative and by Lemma 2.2, we obtain

\[
\mathcal{J} - \limsup_n \sum_k (a_{nk} - t_k) x_k \leq (L(x) + \varepsilon) \left(\frac{\lambda + K\delta}{2} \right) - (l(x) - \varepsilon) \left(\frac{\lambda - K\delta}{2} \right)
\]

\[
= \frac{\lambda + K\delta}{2} L(x) - \frac{\lambda - K\delta}{2} l(x) + \lambda \varepsilon,
\]

which yields (2.11), since \(\varepsilon\) is arbitrary.
When \(K_\delta > 0 \) and \(\lambda = K_\delta \), we can conclude from Theorem 2.4 the following result.

Theorem 2.5. Let \(A \) be \(\mathcal{I} \)-conservative. Then, for all \(x \in \ell_\infty \),

\[
\mathcal{I} - \limsup_n \sum_k (a_{nk} - t_k) x_k \leq K_\delta L(x) \tag{2.16}
\]

if and only if

\[
\mathcal{I} - \lim_n \sum_k |a_{nk} - t_k| \leq K_\delta. \tag{2.17}
\]

In the cases \(\mathcal{I} = \mathcal{I}_{\delta_a} \) and \(\mathcal{I} = \mathcal{I}_{\delta_A} \), we respectively have the following results from Theorem 2.4.

Theorem 2.6. (a) Let \(A \in (c, st_{\delta_a} \cap \ell_\infty) \). Then, for some constant \(\lambda \geq |K_{\delta_a}| \) and for all \(x \in \ell_\infty \),

\[
st_{\delta_a} - \limsup_n \sum_k (a_{nk} - t_k) x_k \leq \frac{\lambda + K_{\delta_a}}{2} L(x) - \frac{\lambda - K_{\delta_a}}{2} l(x) \tag{2.18}
\]

if and only if

\[
st_{\delta_a} - \limsup_n \sum_k |a_{nk} - t_k| \leq \lambda. \tag{2.19}
\]

(b) Let \(A \in (c, st_A \cap \ell_\infty) \). Then, for some constant \(\lambda \geq |K_A| \) and for all \(x \in \ell_\infty \),

\[
st_A - \limsup_n \sum_k (a_{nk} - t_k) x_k \leq \frac{\lambda + K_A}{2} L(x) - \frac{\lambda - K_A}{2} l(x) \tag{2.20}
\]

if and only if

\[
st_A - \limsup_n \sum_k |a_{nk} - t_k| \leq \lambda. \tag{2.21}
\]

Also, if \(\mathcal{I} = \mathcal{I}_\delta \), Theorem 2.4 appears as in [2, Theorem 2.5].

Theorem 2.7. Let \(A \) and \(\lambda \) be as in Theorem 2.4. Then, for all \(x \in \ell_\infty \),

\[
\mathcal{I} - \limsup_n \sum_k (a_{nk} - t_k) x_k \leq \frac{\lambda + K_\delta}{2} V(x) + \frac{\lambda - K_\delta}{2} V(-x) \tag{2.22}
\]

if and only if (2.12) holds and

\[
\mathcal{I} - \lim_n \sum_k |a_{nk} - a_{n,\sigma(k)} - t_k + t_{\sigma(k)}| = 0. \tag{2.23}
\]

Proof. Let (2.22) hold. Then, since \(V(x) \leq L(x) \) and \(V(-x) \leq -l(x) \) for all \(x \in \ell_\infty \), (2.12) follows from Theorem 2.4.
Define a matrix $C = (c_{nk})$ by $c_{nk} = (b_{nk} - b_{n,\sigma(k)})$ for all n, k, where b_{nk} is defined as in Theorem 2.4. Then, we have the hypothesis of Lemma 2.3. Now, choose the sequence y such that $y_k = 0$ for $k \notin \sigma(\mathbb{N})$. Then, $(y_k - y_{\sigma(k)}) \in Z$ and also, by the same argument used in [10, Theorem 23], one can easily see that

$$\sum_k b_{nk} (y_k - y_{\sigma(k)}) = \sum_k c_{nk} y_{\sigma(k)}. \quad (2.24)$$

Hence, (2.22) implies that

$$\mathcal{J} - \limsup_n \sum_k |c_{nk}| = \mathcal{J} - \limsup_n \sum_k c_{nk} y_{\sigma(k)}$$

$$= \mathcal{J} - \limsup_n \sum_k b_{nk} (y_k - y_{\sigma(k)})$$

$$\leq \frac{\lambda + K_\mathcal{J}}{2} V(y_k - y_{\sigma(k)}) + \frac{\lambda - K_\mathcal{J}}{2} V(y_{\sigma(k)} - y_k) = 0. \quad (2.25)$$

This yields (2.23).

Conversely, suppose that (2.12) and (2.23) hold. Then, for any $x \in \ell_\infty$, we have (2.24). Hence, since $(x_k - x_{\sigma(k)}) \in Z$, (2.23) implies that $B \in (Z, F_j(b))$ with $\mathcal{J} - \lim Bz = 0, (z \in Z)$. We also see from the assumption that (2.11) holds. Thus, by taking infimum over $z \in Z$ in (2.11), we observe that

$$\inf_{z \in Z} \left(\mathcal{J} - \limsup_n \sum_k b_{nk} (x_k + z_k) \right) \leq \frac{\lambda + K_\mathcal{J}}{2} L(x + z) - \frac{\lambda - K_\mathcal{J}}{2} l(x + z)$$

$$= \frac{\lambda + K_\mathcal{J}}{2} W(x) + \frac{\lambda - K_\mathcal{J}}{2} W(-x). \quad (2.26)$$

On the other hand, since $\mathcal{J} - \lim Bz = 0$,

$$\inf_{z \in Z} \left(\mathcal{J} - \limsup_n \sum_k b_{nk} (x_k + z_k) \right) \geq \mathcal{J} - \limsup_n \sum_k b_{nk} x_k + \inf_{z \in Z} \left(\mathcal{J} - \limsup_n \sum_k b_{nk} z_k \right)$$

$$= \mathcal{J} - \limsup_n \sum_k b_{nk} x_k. \quad (2.27)$$

Since $W(x) = V(x)$ for all $x \in \ell_\infty$, we conclude that (2.22) holds and the proof is completed. \hfill \Box

When $K_\mathcal{J} > 0$ and $\lambda = K_\mathcal{J}$, we have the following result.

Theorem 2.8. Let A be \mathcal{J}-conservative. Then, for all $x \in \ell_\infty$,

$$\mathcal{J} - \limsup_n \sum_k (a_{nk} - t_k) x_k \leq K_\mathcal{J} V(x) \quad (2.28)$$

if and only if (2.17) and (2.23) hold.
A class of \mathcal{H}-conservative matrices

The following results can be derived from Theorem 2.7 for the special cases $\mathcal{H} = \mathcal{H}_{\delta_A}$ and $\mathcal{H} = \mathcal{H}_{\delta_A}$.

Theorem 2.9. (a) Let $A \in (c, st_A \cap \ell_\infty)$. Then, for some constant $\lambda \geq |K_A|$ and for all $x \in \ell_\infty$,

$$st_{\mathcal{H}} - \limsup_n \sum_k (a_{nk} - t_k) x_k \leq \frac{\lambda + K_A}{2} V(x) + \frac{\lambda - K_A}{2} V(-x)$$

if and only if (2.19) holds and

$$st_{\mathcal{H}} - \lim_n \sum_k |a_{nk} - a_{n,\sigma(k)} - t_k + t_{\sigma(k)}| = 0.$$ (2.30)

(b) Let $A \in (c, st_A \cap \ell_\infty)$. Then, for some constant $\lambda \geq |K_A|$ and for all $x \in \ell_\infty$,

$$st_A - \limsup_n \sum_k (a_{nk} - t_k) x_k \leq \frac{\lambda + K_A}{2} V(x) + \frac{\lambda - K_A}{2} V(-x)$$

if and only if (2.21) holds and

$$st_A - \lim_n \sum_k |a_{nk} - a_{n,\sigma(k)} - t_k + t_{\sigma(k)}| = 0.$$ (2.32)

Further, for $\mathcal{H} = \mathcal{H}_{\delta}$, Theorem 2.7 is reduced to [2, Theorem 2.7].

Theorem 2.10. Let A and λ be as in Theorem 2.4. Then, for all $x \in \ell_\infty$,

$$\mathcal{H} - \limsup_n \sum_k (a_{nk} - t_k) x_k \leq \frac{\lambda + K_{\mathcal{H}}}{2} y(x) + \frac{\lambda - K_{\mathcal{H}}}{2} y(-x)$$

if and only if (2.12) holds and

$$\mathcal{H} - \lim_n \sum_{k \in E} |a_{nk} - t_k| = 0.$$ (2.34)

for every $E \in \mathcal{H}$, where $y(x) = \mathcal{H} - \limsup_k x_k$.

Proof. If (2.33) holds, since $y(x) \leq L(x)$ and $y(-x) \leq -l(x)$, (2.12) follows from Theorem 2.4. To show the necessity of (2.34), for any $E \in \mathcal{H}$, let us define a matrix $D = (d_{nk})$ by $d_{nk} = a_{nk} - t_k, k \in E$; otherwise, it equals zero for all n. Then, clearly, D satisfies the conditions of Lemma 2.2, and therefore there exists a $y \in \ell_\infty$ such that $\|y\| \leq 1$ and

$$\mathcal{H} - \limsup_n \sum_k d_{nk} y_k = \mathcal{H} - \limsup_n \sum_k |d_{nk}|.$$ (2.35)

Now, for the same E, we choose the sequence y as

$$y_k = \begin{cases} 1, & k \in E, \\ 0, & k \notin E. \end{cases}$$ (2.36)
Then, since \(\lim y = y(y) = y(-y) = 0 \), (2.33) implies that
\[
\mathcal{F} - \lim sup_n \sum_{k \in E} |d_{nk}| \leq \frac{\lambda + K_{\mathcal{F}}}{2} y(y) + \frac{\lambda - K_{\mathcal{F}}}{2} y(-y) = 0,
\] (2.37)
which yields (2.34).

Conversely, suppose that the conditions of the theorem hold and \(x \in \ell_\infty \). Let \(E_1 = \{ k : x_k > y(x) + \varepsilon \} \) and \(E_2 = \{ k : x_k < y(x) - \varepsilon \} \). Then, since \(E_1, E_2 \subseteq \mathcal{F} \), \(E = E_1 \cap E_2 \subseteq \mathcal{F} \). Now, we can write
\[
\sum_k (a_{nk} - t_k) x_k = \sum_{k \in E} (a_{nk} - t_k) x_k + \sum_{k \notin E} (a_{nk} - t_k)^+ x_k - \sum_{k \notin E} (a_{nk} - t_k)^- x_k.
\] (2.38)
Thus, by (2.34) and Lemma 2.2, (2.33) is obtained since
\[
\mathcal{F} - \lim sup_n \sum_k (a_{nk} - t_k) x_k \leq \frac{\lambda + K_{\mathcal{F}}}{2} y(x) + \frac{\lambda - K_{\mathcal{F}}}{2} y(-x) + \lambda \varepsilon
\] (2.39)
and \(\varepsilon \) is arbitrary. \(\square \)

When \(K_{\mathcal{F}} > 0 \) and \(\lambda = K_{\mathcal{F}} \), we have the following result.

Theorem 2.11. Let \(A \) be \(\mathcal{F} \)-conservative. Then, for all \(x \in \ell_\infty \),
\[
\mathcal{F} - \lim sup_n \sum_k (a_{nk} - t_k) x_k \leq K_{\mathcal{F}} y(x)
\] (2.40)
if and only if (2.17) and (2.34) hold.

We can choose \(\mathcal{F} = \mathcal{F}_{\delta_{\mathbb{A}}} \) and \(\mathcal{F} = \mathcal{F}_{\delta_{\mathbb{A}}} \) in Theorem 2.10 to obtain the following results.

Theorem 2.12. (a) Let \(A \in (c, st_{\mathbb{A}} \cap \ell_\infty) \). Then, for some constant \(\lambda \geq |K_{\mathbb{A}}| \) and for all \(x \in \ell_\infty \),
\[
st_{\mathbb{A}} - \lim sup_n \sum_k (a_{nk} - t_k) x_k \leq \frac{\lambda + K_{\mathbb{A}}}{2} y(x) + \frac{\lambda - K_{\mathbb{A}}}{2} y(-x)
\] (2.41)
if and only if (2.19) holds and
\[
st_{\mathbb{A}} - \lim_n \sum_{k \in E} |a_{nk} - t_k| = 0,
\] (2.42)
for every \(E \in \mathcal{F} \).

(b) Let \(A \in (c, st_{\mathbb{A}} \cap \ell_\infty) \). Then, for some constant \(\lambda \geq |K_{\mathbb{A}}| \) and for all \(x \in \ell_\infty \),
\[
st_{\mathbb{A}} - \lim sup_n \sum_k (a_{nk} - t_k) x_k \leq \frac{\lambda + K_{\mathbb{A}}}{2} y(x) + \frac{\lambda - K_{\mathbb{A}}}{2} y(-x)
\] (2.43)
A class of \mathcal{I}-conservative matrices

if and only if (2.21) holds and

$$
st_A - \lim_{n \to \infty} \sum_{k \in E} |a_{nk} - t_k| = 0,
$$

for every $E \in \mathcal{I}$.

Moreover, Theorem 2.10 is a dual case of [2, Theorem 2.6] for $\mathcal{I} = \mathcal{I}_{\delta}$.

Acknowledgment

We wish to thank the referees for valuable suggestions and comments which improved the paper considerably.

References

Celal Çakan: Faculty of Education, İnönü University, 44280 Malatya, Turkey

E-mail address: ccakan@inonu.edu.tr

Hüsamettin Çoşkun: Faculty of Education, İnönü University, 44280 Malatya, Turkey

E-mail address: hcoskun@inonu.edu.tr
Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>May 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie

Hindawi Publishing Corporation
http://www.hindawi.com