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Suppose that X is a nonempty subset of a metric space E and Y is a nonempty subset of a
topological vector space F. Let g: X — Y and y: X X Y — R be two functions and let S
X —2Yand T:Y — 2" be two maps. Then the generalized g-quasivariational inequality
problem (GgQVI) is to find a point ¥ € X and a point f € T(g(X)) such that g(X)
S(x) and supyes@{Re(f,y —-g(@) +y(x,y)} = v(x,2(X)). In this paper, we prove the
existence of a solution of (GgQVI).

1. Introduction and preliminaries

The quasivariational inequality has proven to be useful in different areas such as mathe-
matical physics, nonlinear optimization, optimal control theory, and mathematical eco-
nomics (see Arrow and Debreu [2], Aubin [3], Aubin and Ekeland [6], Mosco [17], and
Shafer and Sonnenschein [21]). Many researchers attempted to generalize this inequality
by weakening the conditions of existence of a solution. Among these researchers, we can
mention Shih and Tan [22], Tian and Zhou [23, 24], Zhou and Chen [26], and Nessah
and Chu [19]. Our work follows this direction of reseach. In this paper, we introduce the
generalized g-quasivariational inequality (GgQVI) and provide sufficient conditions for
the existence of its solution.

Let E be a metric space and let F be a topological vector space. Let X and Y be
nonempty subsets of E and F, respectively, and let 2% be the family of all nonempty sub-
sets of X. We will denote by F* the continuous dual of F, by Re( f, y) the real part of pair-
ing between F* and F for f € F* and y € F. Given the functions g: X — Y and y : X X
Y — R and the maps S: X — 2¥ and T: Y — 2F", the generalized g-quasivariational in-
equality problem (GgQVI) is to find a point ¥ € X, g(¥) € S(X), and a point f € T(g(X))
such that sup,, g {Re(f,y —g(X)) + y(x, )} = y(%,¢(x)).

Some particular cases of the (GgQVI) were introduced before: by Chan and Pang [9]
in 1982 in the case where E = F = R", g = idx, and y = 0, by Shih and Tan [22] in 1985
in the case where E = F is infinite dimensional, g = idx, ¥ = 0, and by Chowdhury and
Tarafdar [10] in the case where E = F, g = idx, and v = 0.
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Gwinner [14], Ansari et al. [1], Ding et al. [12], and Nessah [18] introduced and stud-
ied the following nonlinear inequality problem of finding ¥ € X such that

g®) e Cx), ¢&,y)<Re(f,y—gx), VyecCX), (1.1)

where (-, -) is the pairing between F* and F, in the case where E=F, X =Y, g = idy and
C(x) =Y, for all x € X. This problem is equivalent to the problem of solving the GgQV]I,
where T(y) =0, forall y € Y and y(x, y) = ¢(x,y) <Re(f,y —g(x)).

It is to be noted that in all the previous works, it is assumed that the function ¢(x, y)
is defined on the cartesian product X x X of the same set X. In contrast, in GgQVI, the
function ¢(x, y) is defined on the cartesian product of two different sets X x Y. This gen-
eralization opens more possibilities for applications of the quasivariational inequalities.
One of the potential areas of application of the GgQVTI is game theory. Indeed, the exis-
tence of some equilibria like the strong Berge equilibrium [16] requires a function ¢(x, y)
defined on the product of two different sets.

Let us consider the following notations. Let Y be a subset of a topological vector space.
Let K be a subset of Y and x € K.

(1) The tangent cone of K in x is defined by

Tk =, [K;x]. (1.2)

(2) The normal cone of K in x is defined by

Nk(x) = {p € X* such that Re(p,v) <0, Vv € Tx(x)},

Zr(x) = [Tx(x)+x]NnY. (13)
Note that A is the closure of the subset A and 0A is its boundary.

Consider X a nonempty subset of a metrical space E, Y a nonempty subset of a locally
convex space F. Let 2" be the set of all the parts of Y.

A map C:X — 2% is said to be upper semicontinuous if the set {x € X such that
C(x)NA + @} isclosedin X, for all closed set A in Y [25]; it is said to be closed if the cor-
responding graph is closed in X X Y, that is, the set {(x,y) € X X Y such that y € C(x)}
is closed in X x Y [5].

A function f:Y — R is said to be upper semicontinuous if for all yo € Y, for all A >
f(y0), there is a neighborhood v of y, such that for all y € v, A = f(y); f is said to be
continuous if f and — f are upper semicontinuous. We say that f is quasiconcave if for
any y1, y> in Y and for any 6 € [0,1], we have min{ f (1), f(32)} < f(Oy1 + (1 = 0)y2); f
is said to be quasiconvex if — f is quasiconcave.

A function f:Y — F* is said to be upper hemicontinuous along line segments in Y
if for all y;, y, € Y, the function z — (f(z), y» — y1) is upper semicontinuous on the line
segment [y, 2].

We say that the map C: Y — 2" is upper hemicontinuous if for any p € Y*, function
x = 0(C(x), p) = sup,cc(x Re(p, y) is upper semicontinuous on Y.



R. Nessah and M. Larbani 3375

We say that the map C: X — 2F satisfies [4]
(1) the tangential condition if

VxeX, Cx)nTx(x)+Q, (1.4)

where X is assumed to be convex,
(2) the dual tangential condition if

VxeX, VpéeNx(x), theno(C(x),—p)=0. (1.5)

We will use the following results.
LemMA 1.1 [4]. The tangential condition (1.4) implies the dual tangential condition (1.5).

Lemma 1.2 [15]. Let X be a nonempty convex subset of a vector space and let Y be a
nonempty compact convex subset of a Hausdorff topological vector space. Suppose that f
is a real-valued function on X X Y such that for each x € X, the map y — f(x,y) is lower
semicontinuous and convex on Y and for each fixed y € Y, the map x — f(x,y) is concave
on X. Then,

minsup f(x,y) = supmigf(x,y). (1.6)

yeY xeX xeX Y€

LemMa 1.3 [10]. Let E be a topological vector space, let X be a nonempty convex subset of E,
leth:X — R be convex, and let T : X — 2F" be an upper hemicontinuous along line segments
in X. Suppose y € X is such that inf,,c ) Re{u,y — x) < h(x) — h(y) for all x € X. Then,
infyer) Re{u,y —x) < h(x) — h(y) forall x € X.

LemMA 1.4 [8]. Let C: E — 2F be a map, where E and F are metric spaces. If the graph of C
is compact, then C is upper semicontinuous.

LemMaA 1.5. Let X be a nonempty, compact set in a metric space E, let Y be a nonempty
convex, compact set in a Hausdorff locally convex space F, let g be a continuous function
from X into Y, and let C be an upper hemicontinuous set-valued function from X into Y,
with C(x) nonempty, closed, and convex. Suppose that the following conditions are met.

(1) g(X) is convexin Y.

(2) For each g(x) € 9g(X), C(x) N Zy(x)(g(x)) # .
Then, there exists x € X such that g(x) € C(x).

Proof. Consider the map Y defined as follows:
Y:g(X)— 2Y,

1.7
¢(x) — Y(g(x) = C(x) — g(x). (L7

Let us prove that Y is upper hemicontinuous.
Indeed, let g(x) € g(X) and p € Y*, we have

o(Y(g(x)),p) = sup Re(p,y)= sup Re(p,y)= sup Re(p,y). (1.8)
yeY(g(x)) yeC(x)—g(x) y+g(x)eC(x)
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Let z = y + g(x), then we obtain y = z — g(x) and

a(Y(g(x)),p) = sg?)Re (prz—gx)) = sté%))Re(p,z) —Re(p,g(x)). (1.9)
Then
a(Y(g(x)),p) = 0(C(x),p) — Re (p,g(x)). (1.10)

Since C is upper hemicontinuous and p, g are continuous functions, then we conclude
that F is upper hemicontinuous. Thus, the map Y is upper hemicontinuous with non-
empty, closed, and convex values. Since g is continuous on the compact X, then Weier-
strass theorem implies that g(X) is compact. Taking into account condition (2) of Lemma
1.5 and the fact that for g(x) € intg(X), we have Ty(x)(g(x)) = Y, we obtain Ty(x)(g(x)) N
Y(g(x)) # @, for all g(x) € g(X). Since g(X) is convex in a Hausdorff locally convex
space, then all the conditions of the zero-map theorem [7] are verified for Y. From
this theorem, we deduce that there exists X € X such that 0 € Y(g(x)), that is, g(X) €
C(x). O

2. Existence of solution

In the following theorem, we establish a sufficient condition for the existence of a solution
of the GgQVL

THEOREM 2.1. Let
(1) X be a nonempty compact subset of a metrical space E,
(2) Y a nonempty convex and compact subset of a locally convex Hausdorff topological
vector space F,
(3) g: X — Y a continuous function such that g(X) is a compact and convex subset of Y,
(4) S an upper hemicontinuous map from X into 2¥ with nonempty, convex, and closed
values such that for any g(x) € 0g(X), [S(x) — g(x)] N Tyx)(g(x)) # D,
(5) T:Y — 2F" an upper hemicontinuous along line segments in X with respect to the
weak* -topology on F* such that each T(y) is weak™ -compact convex and the function
y = inf ez, Re(f, y) is continuous and quasiconcave on Y,
(6) ¥: X XY — R a function satisfying that
(6.1) v is continuous;
(6.2) for any x € X, the function y — y(x, y) is quasiconcave on Y;
(6.3) forany g(x) € dg(X), forany y € Y, and for any q € F*, thereisaw € Zy(x)(g(x))
such that inf rer(yy Re(f, y — g(x)) + v(x, y) <inf rer() Re(f,g(x) —w) + y(x,
w) and Re(q, y) < Re(q,w),
(7) Vy the set

Vo = {x € X such that a(x) = sup { inf Re(f,y—g(x)) +1//(x,y)} > w(x,g(x))},
yes(x) LFETW)
(2.1)

which must be open.
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Then, there exists an x € X such that

g(x) €S(x), feT(g(x) suchthat yrgsag_g){Re (f,y—8@) +v(xy)} = v(xgX).

(2.2)
Proof. We divide the proof into three steps.
Step 1. There exists a point X € X such that g(x) € S(x) and
sup { inf Re(f,y—g(®) +y(x y)} — y(xg(®)). (23)
yesx) LFET(y)

Suppose that (2.3) is not true. Then for each x € X, either g(x) & S(x) or SUP eg(x)
{inf fer(y)Re(f,y — g(x)) + w(x, )} > y(x,g(x)); that is, for each x € X, either g(x) &
S(x) or x € V.

According to separation theorem and considering the fact that S(x) is nonempty, con-
vex, and closed, g(x) & S(x) implies that for all x € X, there exists g € F* such that

Re(—g,g(x)) —o(S(x),—q) >0, (2.4)

where 0(S(x),q) = sup,cg,) Re(—q, y) is the support function of S(x).
Let

Vg = {x € X such that Re( — g,g(x)) >0 (S(x),—q)}. (2.5)

Assumptions (3), (4), and (7) of Theorem 2.1 imply that the sets Vo, V,, and g € F* are
openin E.

The equality (2.3) implies that X € Vi U Ugep» V. Since X is compact, it is possible to
partition of unity associated with the subcover {Vp, Vg,,..., V1.

Let us introduce the function ® : X X Y — R defined by

(x,y) — O(x,y) = ho(x){ inf Re(f,y—g(x)) +1//(x,y)} + Zh,-(x)Re(q,»,y —g(x)).

feT(y) P
(2.6)
We now show that there is an X € X such that
sup®@(x, y) = O(x,¢(%)). (2.7)
yeyY
Assume that
VxeX, 3TJyeY suchthat®(x,y)>P(x,g(x)). (2.8)

Consider the following set:

0, = {x € X such that ®(x,y) > ®(x,g(x))}, yeY. (2.9)
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Then, forall y € Y, 6, isopenand X C Uyey 8. Since X is compact, it can be covered by a
finite number r of its subsets {0,,,...,0,, }. Let {I;} i=Tr be a continuous partition of unity
associated with the subcover {0,,,...,0,, }; that is, we have for all x € X, z;:llj (x)=1
and forall j = 1,7, supp [; C 0},],.

Consider the map

M:X —2Y (2.10)
defined by
x— M(x) = {y € Y such that Iileasxglid)(x,y,-) < CD(x,y))S», (2.11)
where
S= {/1 = (A1,...,A4) € R” such that i)u =1,14=0,Vi= ﬁ} (2.12)
i=1

We now show that the map M is upper semicontinuous on X, with nonempty, convex,
and closed values in Y and satisfying that for all g(x) € dg(X), there exists u € X, there
exists a > 0 such that ag(u) + (1 — a)g(x) € M(x).

(1) Let us prove that for all x € X, M(x) # @.

Consider a point x € X, the function A — >/ ; ,;®(x, y;) is linear on R". Therefore,
it is continuous over the compact set S and according to the theorem of Weierstrass [5],
there exists A € S such that

r r r
ngg%&@(x, yi) = ;/\;d)(x, yi) < ;Aiz%@(x, i) = D(x, yi, ). (2.13)
Therefore, y;, € M(x), which implies that M (x) # @.

(2) Forall x € X, M(x) is closed in Y.

Consider x € X and z € M(x). There is a sequence {zx} -1 of elements of M (x) which
converges to z.

As a consequence of the fact that for all k > 1, zx € M(x), we get

Vk=1, TagZA,-(D(x,y,-) < D(x,zk). (2.14)
€% i1

Taking into account condition (6.1) of Theorem 2.1 and the fact that p; € Y*, i = 1,r
with k — +oc0, we obtain

maxZ)Liq)(x,yi) < O(x,z). (2.15)
AeS -1

Therefore, z € M(x), that is, M(x) is closed.
(3) Forall x € X, M(x) is convexin Y.
Let x € X and let Z, Z be two elements of M(x) and 0 € [0,1].
We now show that 6z + (1 — 0)z € M(x).
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Since Z and Z are two elements of M(x), we have max)es >.;_; Li®(x, y;) < ®(x,Z) and
maxyes .. i®(x, yi) < ®(x,Z). Therefore,

maxi)t,'d)(x,yi) <min{®(x,2), O(x,2)}. (2.16)

AeS -1

Taking into account condition (6.2) of Theorem 2.1, the fact that p; € Y*, i = 1,r, and
inequality (2.16), we obtain

TathA;@(x,yi) <®(x,0z+(1-0)z), VvOe]o,1], (2.17)
€

i=1
thatis, 0z + (1 — 0)z € M(x).

(4) M is upper semicontinuous.

According to Lemma 1.2, it is sufficient to show that the graph of M is closed in the
compactset X X Y.

Let (x,2) € Graph(M). There is a sequence {(xk,zx)}k=1 of elements of Graph(M)
which converges to (x,z). Therefore, for all k > 1, zx € M(x¢); that is, for all k > 1,

I}Llél;(Z/\idD(xk,yi) < D(xk,2k). (2.18)
i=1

Taking into account condition (6.1) of Theorem 2.1 and the fact that p; € Y*, i =
1,7, when k — o0, we obtain maxyes >.;_; Li®(x, y;) < ®(x,2); that is, z € M(x). Hence,
(x,z) € Graph(M). In other words, Graph(M) is closed.

(5) For all g(x) € dg(X), there exists a > 0, there exists u € X such that ag(u) + (1 -
a)g(x) € M(x).

Let g(x) € dg(X). It is shown in (1) that for all x € X, there exists y;, € Y such that

max » L@ (x,yi) < O(x,y;,). (2.19)
YN -1

(In particular, (2.19) remains true for any x € X such that g(x) € dg(X).)
Condition (6.3) of Theorem 2.1 implies that there exists « > 0, there exists u € X such
that O(x, y;,) < D(x,ag(u) + (1 — a)g(x)) with ag(u) + (1 — a)g(x) € Y.Therefore,

ng(i/\iq)(x’yi) < O(x,ag(u) + (1 —a)g(x)), (2.20)
i1

that is, ag(u) + (1 — a)g(x) € M(x).
From (1)—(5), we deduce that M satisfies all conditions of Lemma 1.5. Hence, there
exists a point X € X such that g(¥) € M(%); that is,

max > Li®(%,y;) < ®(X,g()). (2.21)
i1

Thus, forallA € S, > LiO(X, i) < D(X,g(X)).
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Let A = (I (%),...,1,(%)). We have A € S since /;(¥) = 0 and 3'_, ;%) = 1, then

r

S LER)OR,yi) < D(X,g(R)). (2.22)

i=1

Consider the set ] = {i € {1,...,r} such that [;(X) > 0}. By construction, | # @.

Note that >.i_; [(X)D(X, yi) = X/ L(X)O(X, y1).

We have for all i € ], [i(X) > 0. Therefore, X € suppl; C 0,, for all i € ], that is, for all
ie], O, y)>0(x,¢(X)).

Then, we have >;c; i(X)D(X, yi) > >ic; Li(X) P (%, g (X)) = (%, ¢ (%)), that is, (¥, g (X)) <
O(X,g(X)), which is impossible.

Thus, we conclude that there exists X € X such that Supcy d(x, y) = D(x,g(X)), that
is, for all y € Y, we have

ho(f){ 1nf Re(f y—g@) +y(x,y } Zh(x)Re(q,,y gX) <hyX)v(x,g(X)).
i=1
(2.23)

If ho(xX) = 0, we have >, h;(x) = 1. Therefore, (2.23) becomes

ihi(f) Re(gi,y—g(x)) <0, VyeY. (2.24)

i=1

Inequality (2.24) implies that g = >, hi(X)g; belongs to the normal cone Ng(x)(g(%)).
According to Lemma 1.1 and condition (4) of Theorem 2.1, we have

0(S(%),—q) = Re( - q,g(%)). (2.25)
The fact that h;(X) >0, i = 1,...,n, implies that X € supph; C V,,, that is,
Re(~g;,¢(X)) > (S(%), —qi). (2.26)

Then,

o (S(X),-q) =a<5(z),2hi(x)qi> Z i(®)0 (8(X), —qi)

n (2.27)
<2 hi(@)Re (- gig(X)) =Re (- 7,¢(X),
i=1
which contradicts inequality (2.25). We then conclude that hy(x) > 0.
The inequality k(%) > 0 implies that X € supphy C Vi. Therefore,
ho(®) sup | inf Re(f,y-g(®) +y(@ | > ho@y(g(). (2.28)
yesx) LFET()

Since the function y ~— inf rer(,) Re(f,y — g(X)) + ¥ (X, y) is continuous on the compact
S(x), it follows that according to Weierstrass theorem [5], there exists ¥ € S(x) such
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that SUP e (%) {inf ey Re(f,y — g(x)) + y(x,»)} = inf rer) Re(f,y — g(x)) + y(X, 7).
Therefore,

m@ | inf Re(f.7-g) +vmD)| >h@y(EgE).  (229)
If > hi(x) = 0, (2.23) becomes ho(X){inf rer(,) Re(f,y—g(x) +y(x, y)} <ho(x)y (X,

g(x)), for all y € Y, which contradicts inequality (2.29). Therefore, > ; h;(x) > 0. Let
K={ie{l,...,n}/hi(x) >0}, then K # @.1Ifi € K, then X € supph; C V,; that is,

Re(—qi,g(%)) >0 (S(%),—qi)- (2.30)
We have
Re(—4,7) < 0(S(X),—q) = U(S(x), - zhi(x)qi>
i=1
< ;hi(f)U(S(f),—qi) (2‘31)
<> hi(x)Re(—q;,g(x))
ieK
=Re(-7,g(x)).
Thus,
Zh (x)Re(gi,y —g(x)) >0. (2.32)

i=1
Inequalities (2.29) and (2.32) imply that

n

ho(?){ inf Re(fy gx >+ww>} Z X)Re (g, 7 — g(x)) > ho(X)y (%,2(%)),

feT(y i
(2.33)
which contradicts (2.23). This contradiction proves the statement of Step 1.
Step 2. We have
inf Re(f,y—-g(®)+y(xy) <y(xg(x), VyeSX). (2.34)
feT(gx)

Indeed, from Step 1, g(¥) € S(X) and S(X) is a convex subset of X. We have also
Jinf Re(f,y~g(®) +y(®y) < y(®g(D), VyeSE. (239)
Hence, by assumption (6.2) of Theorem 2.1 and Lemma 1.3, we have

f€1Tnfx))Re (fLy—g@x)+v(xy) <v(xg¢Xx), VyeSk). (2.36)
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Step 3. There exists a function f € T(X) such that Re(f,y —g(¥)) +y(X,y) < y(x,¢(x)),
for all y € S(x).

From Step 2, we have supyes(@{infng(g(g))Re(f,y —gX) +y(x )} = y(xg(%)),
where T(g(x)) is a weak™-compact convex subset of the Hausdorff topological vector
space F* and S(X) is a compact convex subset of X.

Indeed, define F : S(x) X T(g(x)) = R by F (y,f) = Re(f,y —g(x)) + y(x, y) for all
y € §(x) and for all f € T(g(x)). For each y € S(X), the function f — F (f,y) is linear
and continuous on T(g(x)) and for each f € T(g(X)), the function y — F (f, y) is quasi-
concave on S(x). Thus by Lemma 1.2, we have

i F(f,y)= in £ (f,y). 2.37
R RS P U 0) = g i P Y) s

Hence,
min max {Re(f,y - g(X)) +y(% )} = y(%,¢(x)). (2.38)

feT(g(x)) yesS(x)

Since T'(g(X)) is compact, there exists f € T(g(x)) such that Re(f,y — g(X)) +y(X,y) <
y(x,g(x)), for all y € S(x). O

Remark 2.2. 1f we consider X =Y, and g = idy, then [10, Theorem 3.1] becomes a par-
ticular case of Theorem 2.1.

From Theorem 2.1, we deduce the following quasivariational equation theorem [19].

COROLLARY 2.3. Assume that
(1) X is a nonempty compact subset of a metric space E,
(2) Y is a nonempty convex and compact subset of a locally convex Hausdorff topological
vector space F,
(3) g: X = Y is a continuous function such that g(X) is convex,
(4) Cisan upper hemicontinuous map from X into 2¥ with nonempty, convex, and closed
values such that for any g(x) € 0g(X), [C(x) — g(x)] N Tgx)(g(x)) # O,
(5) ¥: X XY — Risa function satisfying that
(5.1) ¥ is continuous;
(5.2) for any x € X, the function y — Y(x, y) is quasiconcave on Y;
(5.3) for any g(x) € 0g(X), for any y € Y, and for any p € Y*, there exists w €
Zg(x)(g(x)) such that
(5.3.1) ¥(x,y) < ¥Y(x,w),
(5.3.2) Re{p,y) < Re(p,w),
(6) the set {x € X:a(x) = SUP () Y(x,y) < ¥(x,g(x))} is closed.
Then there exists X € X such that

g(x) € C(x), SIél())\I’(X,y) =¥ (x,¢(%)). (2.39)
yeC(x

Proof. It is sufficient to consider T : Y — 2" such that T(y) = 0, for all y € Y, where
0(z) = (0,z) =0, forallz€ F. O
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From Theorem 2.1, we deduce the following theorem [18].

CoROLLARY 2.4. Let X be a nonempty compact subset of a metric space E, let Y be nonempty
convex and compact subset of a locally convex separated space F, and let f be a nonzero
continuous linear functional on F. Assume that

(1) g: X = Y is a continuous function such that g(X) is convex over Y,

(2) C is an upper hemicontinuous set-valued function from X into 2¥ with nonempty,
convex, and closed values such that for any g(x) € dg(X), [C(x) — g(x)] N Tyx)
(gx) # 2,

(3) ¢: X XY — Ris a function satisfying that

(3.1) ¢ is continuous over X X Y and ¢p(x,g(x)) =0, for all x € X;
(3.2) for all x € X, the function y — ¢(x, y) is quasiconcave on Y;
(3.3) for any g(x) € 9g(X), for all y € Y, and for all p € Y*, there exists w € Zg(x)
(g(x)) such that
(3.3.1) ¢(x,y) —Re(f,y —g(x)) < p(x,w) —Re(f,w — g(x)),
(3.3.2) Re{p,y) < Re(p,w),

(4) the set {x € X such that a(x) = SUP e c(x) d(x,y) —Re(f,y —g(x)) < dp(x,g(x))} is
closed.

Then there exists X € X such that

gX) €C®), ¢Fxy) <Re(f,y-gx), VyeCR). (2.40)

Proof. Assume that in Theorem 2.1 we have y/(x, y) = ¢(x,y) —Re(f,y —g(x)) and T :
Y — 2F" such that T(y) = 0, for all y € Y. Then Corollary 2.4 follows immediately from
Theorem 2.1. U

From Theorem 2.1, we deduce the following g-maximum equality theorem [20].

CoROLLARY 2.5 [20] (g-maximum equality theorem). Assume that
(1) X is a nonempty, compact subset of a metric space E,
(2) Y is a nonempty, convex, and compact subset of a separated locally convex space F,
(3) g: X — Y is a continuous function such that g(X) is compact and convex in Y,
(4) ¥ :X XY — Risa function satisfying
(4.1) VY is continuous;
(4.2) for any x € X, the function y — Y(x, y) is quasiconcave on Y;
(4.3) for all g(x) € 0g(X) and for all y € Y, there exists z € Zy(x)(g(x)) such that
Y(x,y) < ¥(x,2).
Then there exists x € X such that

sug‘l’(f,y) =¥ (x,¢(x)). (2.41)
ye

Remark 2.6. Corollary 2.5 (g-maximum equality theorem) is a generalization of the min-
imax inequality (see Fan [13]).
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