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Some of the properties of the completely regular fuzzifying topological spaces are inves-
tigated. It is shown that a fuzzifying topology 7 is completely regular if and only if it is
induced by some fuzzy uniformity or equivalently by some fuzzifying proximity. Also, 7 is
completely regular if and only if it is generated by a family of probabilistic pseudometrics.

1. Introduction

The concept of a fuzzifying topology was given in [1] under the name L-fuzzy topology.
Ying studied in [9, 10, 11] the fuzzifying topologies in the case of L = [0,1]. A classical
topology is a special case of a fuzzifying topology. In a fuzzifying topology 7 on a set X,
every subset A of X has a degree 7(A) of belonging to 7, 0 < 7(A) < 1. In [4], we de-
fined the degrees of compactness, of local compactness, Hausdorftnes, and so forth in a
fuzzifying topological space (X, 7). We also introduced the fuzzifying proximities. Every
fuzzifying proximity ¢ induces a fuzzifying topology 7s. In [6], we studied the level classi-
cal topologies 7, 0 < 0 < 1, corresponding to a fuzzifying topology 7. In the same paper,
we studied connectedness and local connectedness in fuzzifying topological spaces as well
as the so-called sequential fuzzifying topologies. In [5], we introduced the fuzzifying syn-
topogenous structures. We also proved that every fuzzy uniformity U, as it is defined by
Lowen in [7], induces a fuzzifying proximity dq;, and that for every fuzzifying proximity
0, there exists at least one fuzzy uniformity U with § = d¢;. Some of the results contained
in papers [4, 6] are closely related to those which appeared in the papers [12, 13].

In this paper, we continue with the investigation of fuzzifying topologies. In particular,
we study the completely regular fuzzifying topologies, that is, those fuzzifying topologies
7 for which each level topology 7 is completely regular. As in the classical case, we prove
that for a fuzzifying topology 7 on X, the following properties are equivalent: (1) 7 is
completely regular; (2) 7 is uniformizable, that is, it is induced by some fuzzy uniformity;
(3) 7 is proximizable, that is, it is induced by some fuzzifying proximity; and (4) 7 is gen-
erated by a family of so-called probabilistic pseudometrics on X. We also give a charac-
terization of completely regular fuzzifying spaces in terms of continuous functions. Many
Theorems on classical topologies follow as special cases of results obtained in the paper.
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2. Preliminaries

A fuzzifying topology on a set X (see [1, 9, 10, 11]) is a map 7: 2% — [0,1] (where 2% is
the power set of X) satisfying the following conditions:

(FT1) 1(X) = 1(@) = 1;

(FT2) 1(A1nAz) = 7(A1) A T(Ar)s

(FT3) T(UA,‘) = il’lf,‘T(A,‘).

If 7 is a fuzzifying topology on X and x € X, then the t-neighborhood system of x is
the function

N, =N :2¥ — [0,1], N, (A) =sup{r(B):x € BC A}. (2.1)

By [9, Theorem 3.2], we have that 7(A) = infyea Nx(A).
The following theorem is contained in [9] (see also [3, 13]).

THEOREM 2.1. If T is a fuzzifying topology on a set X, then the map x — Ny = NY, from X
to the fuzzy power set F(2%) of 2%, has the following properties:

(FN1) Ny(X) =1 and Ny(A) =0ifx &€ A;

(FN2) Nx(A1 nAz) = Nx(A1) A Nx(A2);

(FEN3) Ny (A) < sup,.pc,infyep N, (D).
Conversely, if a map x — Ny, from X to F(2%), satisfies (FN1)—(FN3), then the map

7:2X —[0,1], 7(A) = inf Ny (A), (2.2)

xX€EA
is a fuzzifying topology and N, = N for every x € X.

Let now (X, 7) be a fuzzifying topological space. To every subset A of X corrersponds
a fuzzy subset A = A7 of X defined by A(x) = 1 — N,(A) (see [13, Remark 3.16]). A
function f, from a fuzzifying topological space (X,7;) to another one (Y, 1), is said to
be continuous at some x € X (see [4, 13]) if Nx(f'(A)) = Ny (A) for every subset A
of Y. If f is continuous at every point of X, then it is said that (11,1’2) continuous. As
it is shown in [4], f is continuous if and only if 7,(A) < 7;(f "'(A)) for every subset
Aof Y. For f:X — Y a function and 7 a fuzzifying topology on Y f (1) is defined
to be the weakest fuzzifying topology on X for which f is continuous. By [4], f~!
is given by the neighborhood structure Ny(A) = Ny (Y \ f(A°)). If ()ies is a family
of fuzzifying topologies on X, we will denote by V;c; 7;, or by sup;, the weakest of all
fuzzifying topologies on X which are finer than each 7;. As it is proved in [4], V;c; 7; is
given by the neighborhood structure

N, (A) = sup {ian; (A):xe[)Aic A}, (2.3)
i€]

ie]

where the infimum is taken over the family of all finite subsets J of I and all A; C X,
i€ ]. For Y a subset of a fuzzifying topological space (X, 7), 7|y will be the fuzzifying
topology induced on Y by 7, that is, the fuzzifying topology f~'(7), where f:Y — X is
the inclusion map. For a family (X;, 1;)ier of fuzzifying topological spaces, the product
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fuzzitying topology 7 = [[7; on X = [[X; is the weakest fuzzifying topology on X for
which each projection 7; : X — X; is continuous. Thus, 7 = \/;7; !(1;) and it is given by
the neighborhood structure

Ny (A) = sup { infN,, (A;) :x € ﬂ 7 } (2.4)

ie]

where the supremum is taken over the family of all finite subsets J of I and A; C X;, for
ie] (see [4]).

The degree of convergence to an x € X, of a net (xs) in a fuzzifying topological space
(X,71), is the number ¢(x; — x) = ¢" (x5 — x) defined by

c(xs — x) =inf {1 = N,(A): A C X, (xs) frequently in A°}. (2.5)
As it is shown in [6], for A C X and x € X, we have
A(x) = max {c(xs — x) : (xs) netin A}. (2.6)
The degree of Hausdorffness of X (see [4]) is defined by

T>(X) =1 —supsup {c(xs — x) Ac(xs — y) : (xs) netin X}. (2.7)
x#y

Also, the degree of X being T} is defined by

Ti(X) = infirifsup {N.(B):y ¢ B}. (2.8)
x y#x

Let now (X, 7) be a fuzzifying topological space. For each 0 < 6 < 1, the family By = {A C
X :7(A) > 0} is a base for a classical topology 7% on X (see [5]). It is easy to see that
a subset B of X is a 7-neighborhood of x if and only if N,(B) > 6. By [6], T2(X) (resp.,
T1(X)) is the supremum of all 0 < 6 < 1 for which 7% is T, (resp., T:). Also, for T = V1;, we
have that t¥ = sup, ¥ (see [6, Theorem 3.5]). If 7 = [] 7; is a product fuzzifying topology,
then ¢ = HT,-Q (see [6, Theorem 3.5]). If Y is a subspace of (X,7) and 7; = 7|Y, then
¥ = 79|Y. By [6, Theorem 3.10], for a fuzzifying topological space (X, 1), co(X) coincides
with the supremum of all 0 < 6 < 1 for which 71~ is compact.

Next, we will recall the notion of a fuzzifying proximity given in [4]. A fuzzifying
proximity on a set X is a map & : 2X x 2X — [0,1] satisfying the following conditions:

(FP1) 8(A,B) = 1if the A, B are not disjoint;

(FP2) 6(A,B) = 6(B,A);

(FP3) 6(9,B) =
(FP4) (A1 qu,B) 0(A1,B) v 8(Az,B);
(FP5) 8(A,B) =inf{8(A,D) v §(D,B): D C X}.
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Every fuzzifying proximity § induces a fuzzifying topology 75 given by the neighborhood
structure N (A) = 1 — 8(x,A°). A fuzzifying proximity d, is said to be finer than another
one 6§, if 01(A,B) < 6,(A,B) for all subsets A, B of X. For f: X — Y a function and § a
fuzzitying proximity on Y, the function

f18):2¥ x2X —[0,1],  f7U(8)(A,B) = 8(f(A), f(B)), (2.9)

is a fuzzifying proximity on X (see [4]) and it is the weakest of all fuzzifying proximi-
ties §; on X for which f is (8;,8)-proximally continuous, that is, it satisfies §;(A,B) <
O(f(A), f(B)) for all subsets A, B of X. As it is shown in [4], 77-1(5) = f ' (75).

Let now (8))aca be a family of fuzzifying proximities on a set X. We will denote by
0 =\/, 01, or by sup Jy, the weakest fuzzifying proximity on X which is finer than each §,.
By [4, Theorem 8.10], d is given by

0(A,B) = inf{sup inf SA(A,-,B]-)}, (2.10)
ij AeEA

where the infimum is taken over all finite collections (A;), (B;) of subsets of X with A =
UAj, B=UBj. Moreover, 75 = \/ 75, (see [4]).

Finally, we will recall the definition of a fuzzy uniformity introduced by Lowen in
[7]. For a set X, let Qx be the collection of all functions a: X X X — [0,1] such that
a(x,x) = 1 forallx € X. For a, f€ Qx, thea A B, a 0 fand o ! are defined by a A f(x, y) =
a(x, ) AP(x,y), ao f(x,y) = sup, B(x,2) A a(z, y), a H(x,y) = a(y,x). fa= a1, then «
is called symmetric. A fuzzy uniformity on X is a nonempty subset U of Qy satisfying the
following conditions.

(FUL) If o, 5 € U, then a A S € U.

(FU2) If & € U is such that, for every € >0, there exists a § € U with § < a+¢€, then

a e .
(FU3) For each & € U and each € > 0, there existsa f € U with fo f < a+e€.
(FU4) If « € U, then a~! € .
A subset B, of a fuzzy uniformity AU, is a base for U if for each a € U and each € > 0,
there exists § € B with § < o+ €. It is easy to see that for a subset & of Qx, the following
are equivalent.
(1) R is a base for a fuzzy uniformity on X.
(2) (a) If o, p € B and € > 0, then there exists y € B withy <a A f+e.
(b) For each « € % and each € > 0, there exists § € B with fof <a+e.
(c) For each a € B and each € > 0, there exists f € B with f <a™! +€.
In case (2) is satisfied, the fuzzy uniformity U for which @ is a base consists of all « € Qx
such that for each € > 0, there existsa f € B with f < a+e€.
By [5], every fuzzy uniformity U on X induces a fuzzifying proximity &q, defined by

0 (A,B) = inf sup a(x,y). (2.11)
a €U x€A, yeB
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In case 9B is a base for AU, then

0 (A,B) = inf sup a(x,y). (2.12)

a€RB xcA,yeB

Every fuzzy uniformity U induces a fuzzifying topology 1o, given by the neighborhood
structure

N:(A) =1- 8y (x,A°) =1 — inf supa(x,y). (2.13)
acW y¢A

For every fuzzifying proximity &, there exists at least one compatible fuzzy uniformity,
that is, a fuzzy uniformity U with q, = & (see [5, Theorem 11.4]).

3. Probabilistic pseudometrics

A fuzzy real number is a fuzzy subset u of the real numbers R which is increasing, left
continuous, and such that lim_ e u(#) = 1, lim;—_ u(t) = 0. A fuzzy real number u is
said to be nonnegative if u(t) = 0 if £ < 0. We will denote by R§ the collection of all
nonnegative fuzzy real numbers. To every real number r corresponds a fuzzy real number
7, where 7(t) =0 if t <r and 7(¢t) = 1 if t > r. For u,v € [R;, we define u < v if and only
if v(t) < u(t) for all £ € R. If 4 is a nonempty subset of Ry and if u, € R} is defined
by u,(t) = sup,c 4 v(t), then u, is the biggest of all u € R with u < v for all v € s. We
will denote u, by inf & or by A\ sd. For uy,u, € [R;g, wedefineu =u; ®u, € [R:; by u(t) =
supfui(t1) Aup(ty) 1t =t + £}, Also, for u € [Rg and A > 0, we define Au by (Au)(¢f) =
u(A1t). It is easy to see that for u € [Rg and A >0, we have (A ® u)(t) = u(t — \).

Definition 3.1. A probabilistic pseudometric on a set X (see [2]) is a mapping F: X X X —
[R;g such that for all x, y, z€X,
F(x,x) =0, F(x,y) = F(y,x), F(x,z) X F(x,y) @ F(y,2). (3.1)

If in addition F(x, y)(0+) = 0 when x # y, then F is called a probabilistic metric.

If 7, r, are nonnegative real numbers, then 77 X 7; if and only if r; < r,. Also, for
r = |ry — r2|, we have that

F=nueR:H2uer, nIusnl (3.2)

In fact, let u, = A{u € [Rg 17 2ue7r and 71 X u @ 7;} and assume that (say) r; = .
Letu € %; besuchthatr, <ue 7,71 S udr. Thenr(t) > (ue7;)(t) = u(t —ry) forall
t.Ifs<ry, then 0 =71(s) > u(s — r2) and so u(r; — r2) = sup,_,, u(s — r2) = 0 which implies
that7 < u. Thus 7 < u,. On the other hand, we have 7 & 7, = 7 and 7 @ 71 = 2r; — 5. Since
72 < 2r; — 1, it follows that u, < 7, and hence 7 = u,. Motivated by the above, we define
the following distance function on % :

D:%gngt;—»%g, D(ul,uz)z/\{uegig:ulﬁuzeau, wudu . (3.3)
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Then D is a probabilistic pseudometric on %;f In fact, it is clear that D(uy,u,) =
D(u,u1). Also, since u = u @ 0, when u € R}, we have that D(u,u) = 0. Finally, let
D(uy,uz)(t1) A D(ua,us3)(t,) > 60 > 0. There are vi,v, € 971; with ) v @ up, u) v @
U, Us TV @ U, Uy XV ® U3, vi(t) >0, va(t) >0. Now ug X vi@u <vi® (va ®u3) =
(view)ousand us X v, ®uy X v, ® (v ®uy) = (vi ® ) ® uy. Thus, D(up,uz) < v &
vy and D(uy,us)(t +t2) = vi(t1) A v2(t2) > 0. This proves that D(uy,us3) < D(uy,uy) ®
D(u3,u3) and the claim follows. We will refer to D as the usual probabilistic pseudomet-
ric on g%

Let now F be a probabilistic pseudometric on X. For ¢ > 0, let ug; be defined on X2 by
up(x,y) = F(x,y)(t). The family Br = {up, : t >0} is a base for a fuzzy uniformity Up
on X. Let 7r be the fuzzifying topology induced by Ug.

In the rest of the paper, we will consider on % the fuzzifying topology induced by the
usual probabilistic pseudometric D.

THEOREM 3.2. A probabilistic pseudometric F, on a fuzzifying topological space (X, 1), is
T X T continuous if and only if T < 7.

Proof. Assume that 77 < 7 and let G be a subset of [Rg and u = F(x,, y,) with N,(G) >0 >
0. There exists a £ > 0 such that 1 — sup, . D(v,u)(t) > 6. For x, y€X, we have

F(x,y) 2 F(x,%,) ® (X0, ¥0) ® F(¥0,¥) = [F(x,%0) ® F(¥,%0)] @ F(xo, o). (3.4)

Similarly, F(x,, y,) X [F(x,%,) ® F(y,5,)] ® F(x, y). Thus,

D(E(x,y),F(x0,0)) < F(x,%0) & F(y, ). (3.5)
Let
Alz{xeX:F(x,xo)G) 21—0}, Azz{xeX:F(y,yo)G) 21—6}. (3.6)
Ifx € Ay, y € Ay, then
D(F(y)F5oy0) (0 = Flx) (5) AP (5) 2 1-0, )

and so F(x,y) € G. Also, Ny (A1) = NJF (A1) = 1 = sup,z,, F(x,%,)(#/2) = 6 and Nj (A;)
> 0. Therefore,

N(T}:;,O)(F‘I(G)) > Ni (A1) ANj (Ar) = 6, (3.8)

which proves that N(Txffyo)(F “(G)) = Nk(x,,y,)(G) and so F is 7 X T continuous. Con-

versely, assume that F is 7 X 7 continuous and let N*(A) > 6 > 0. Choose € > 0 such
that N7 (A) > 0 + €. There exists a t > 0 such that 1 —sup, ., F(x,x,)(t) > 0 + €. If

Z={ueRy:Du,0)(t) =u(t)>1-0-¢€}, (3.9)
then

Ng(Z) =1 —supD(u,0)(t) > 0+¢€ > 6. (3.10)
ué¢Z
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Since F is 7 X 7 continuous and F(x,,x,) = 0, there exists a subset A; of X contain-
ing x, such that A; X A} C F71(Z) and Ny, (A;) > 0. If x € A}, then F(x,x,) € Z and so
F(x,x,)(t) > 1 — 6 — €, which implies that x € A. Thus, A; C A and so N,,(A) = N7 (A)
for every subset A of X and every x, € X. Hence, 75 < 7 and the result follows. O

THEOREM 3.3. Let F be a probabilistic pseudometric on a set X, T = 1p, (x5)sea a netin X,
and x € X. Then

c(xs — x) = 1tng lirr%ian(xg,x) (t). (3.11)

Proof. Let d = inf,oliminfs F(xs,x)(f) and assume that d < 8 < 1. There exists a £ >0
such that liminfs F(xs5,x)(¢t) < 0. Let A = {y: F(y,x)(t) > 8}. Then (xs) is not eventually
in A, and so ¢(xs —> x) <1 —N,(A) < supyéAF(y,x)(t) < 0, which proves that c(xs —
x) < d. On the other hand, let c(xs — x) < r < 1. There exists a subset B of X such that (x;)
is not eventually in B and 1 — Ny(B) <r. Let s > 0 be such that 1 — supyéBF(y,x)(s) >1-
r. For each § € A, there exists 6" > § with x5 & B, and so F(xs,x)(s) < sup),GEBF(y,x)(s).
Thus, d < liminfs F(xs,x)(s) < r, which proves that d < ¢(xs — x) and the result follows.

a
THEOREM 3.4. Let F1,F,,...,F, be probabilistic pseudometrics on X and define F by
F(x,y)(t) = 1r<r1ki§an(x,y)(t)- (3.12)

Then F is a probabilistic pseudometric and tr = \/},, TF,.

Proof. Using induction on #, it suffices to prove the result in the case of n = 2. It follows
easily that F is a probabilistic pseudometric. Since F;, F, < F, it follows that 7, 7, < 1
and so 7, = 75, V 7, < 75. On the other hand, let N7 (A) > 0 > 0. There exists a t > 0 such
that 1 — supyéAF(y,x)(t) >0.Let Bi={y € A°: Fi(y,x)(t) <1—0},i=1,2. Then A° =
By UB,andso A = A; N A,, A; = B{. Moreover Ny (A)=>1- sup,cp, Fi(y,x)(t) = 6, and
thus

N(A) = NP (A1) A\ NP (Az) = N2 (A1) A\ N2 (42) = 6. (3.13)

This proves that Ni°(A) > N*(A) and the result follows. O

For & a family of probabilistic pseudometrics on a set X, we will denote by 75 the
supremum of the fuzzifying topologies 7¢, F € &, that is, 75 = \/peg TF.

THEOREM 3.5. If T = 19, where F is a family of probabilistic pseudometrics on a set X, then
Hh(X)=Ti(X)=1- SUp,, .y infpeg F(x, y)(0+).

Proof. Letd =1- SUp,,., infres F(x, ¥)(0+4). It is always true that T>(X) < T1(X). Sup-
pose that T7(X) >r >0 and let x # y. Since 7" is T}, there exists a 7"-neighborhood A
of x not containing y. Now N,(A) > r, and hence there are subsets A;,...,A, of X and
Fi,...,F,€% such that Ax C A, Nk (Ak) > r. Since y is not in A, there exists a k with
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y & Ag. Let t > 0 be such that

1 — sup Fx(z,x)(t) >r and so inf F(x,y)(t)(0+) < Fi(x, y)(t) <1 -1, (3.14)
2 A FeF

which proves that d > r. Thus d > T1(X). On the other hand, assume that d > 6 >0 and

let x # y. Choose € >0 such that d > 6 + €. There exists F € % with F(x, y)(0+) <1—-0 -
€, and hence F(x, y)(t) <1 — 0 — € for some ¢ > 0. Let

A= {z:F(z,x)(%) >1—9—e}, B- {z:F(z,y)(%) >1—9—e}. (3.15)

Clearlyx € A, y € B.If z € AN B, then

F(x,y)(t)zF(x,z)(%) /\F(z,y)(%) S1-6—¢, (3.16)

a contradiction. Thus A N B = &. Moreover

Ni(A) = N7 (A) = l—supF(x,z)<§> >0+e>0,  N,(A)>0 (3.17)
z¢A
It follows that T5(X) = d and the proof is complete. O

Let us say that a fuzzifying topology 7 on a set X is pseudometrizable if there exists a
probabilistic pseudometric F on X with 7 = 5.

THEOREM 3.6. A fuzzifying topology v on X is pseudometrizable if and only if each level
topology 1%, 0 < 0 < 1, is pseudometrizable.

Proof. Assume that T = 75 for some probabilistic pseudometric F and let 0 < 0 < 1. For
each positive integer n, with n > 1/(1 — 0), let

Anz{(x,y)EXz:F(x,y)<%> >1797%}. (3.18)
Then A,;; C A, and the family % = {A,:n € N, n > 1/(1 — 0)} is a base for a uniformity
U on X. The topology oy induced by U is pseudometrizable since % is countable. More-

over og = 7%, Indeed, let A be a gg-neighborhood of x. There exists n € N, n > 1/(1 - 0),
such that B= {y:F(x,y)(1/n) >1 -0 —1/n} C A. Now

NT(A) zN;(B)z1—supF(x,y)(l) L) (3.19)
yé&B n n

and so A is a 7%-neighborhood of x. Conversely, assume that A is a 7%-neighborhood of
x. There exists € > 0 with Ny(A) > 0 + €. Now there exists a positive integer n > 1/€ such
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that 1 — supyéAF(x,y)(l/n) > 6+ 1/n. Hence

y:F(x,y) >1—9—l CA, (3.20)
brrten(y)>1-0-5]

which implies that A is a gp-neighborhood of x. Thus 7% = gy, and therefore each ¢
is pseudometrizable. Conversely, suppose that each 79 is pseudometrizable. By an argu-
ment analogous to the one used in the proof of [6, Theorem 3.3], we show that there
exists a family {dp: 0 < 6 < 1} of pseudometrics on X such that dp = supy .4dp,, for each
0 <6<1,and 79 coincides with the topology induced by the pseudometric dg. Now,
for x, yeX, define F(x,y): R — [0,1] by F(x,y)(t) =0 if t <0 and F(x, y)(t) = sup{0:
0<8=<1,d-p(x,y) <t} if t >0. It is clear that F(x, y) is increasing and left continuous.
For 0 <r<1andt>d;_,(x,y), we have that F(x, y)(t) = r, and so lim;_ F(x, y)(t) = 1.
Also F(x,x)(t) = 1 for every x and every t > 0. To show that F is a probabilistic pseudo-
metric on X, we must prove that it satisfies the triangle inequality. So, let F(x, y)(t;) A
F(y,2)(t;) >0 >0. Then dy_g(x, y) < t1, di—¢(y,2) < 2, and so d;_g(x,2) < t; + t;, which
implies that F(x,z)(t; + ;) = 0. Thus the triangle inequality is satisfied and F is a proba-
bilistic pseudometric. We will finish the proof by showing that 7= = 7. So let N7* >0 >0
and choose t > 0 such that 1 — supyéAF(y,x)(t) > 0. If now dp(x, y) < t, then F(x, y)(t) =
1 — 6, and thus y € A, which proves that A is a og = 7% neighborhood of x. Hence 7 > 7%.
On the other hand, let B be a 7%-neighborhood of x. There exists §; > 6 such that N, (B) >
0. Now B is a 79, -neighborhood of x, and so there exists ¢ > 0 such that {y: dy, (x,y) <
t} C B. If F(x,y)(t) > 1 — 0y, then there exists « > 1 — 6, such that d,_q(x,y) < t and so
dp, (x,y) <t. Thus {y: F(x,y)(t) >1 -6} C B, and therefore

N (B) = 1 —supF(x, y)(t) = 6; > 6. (3.21)
yé€B

Thus, 77 = 7 and the result follows. O

THeOREM 3.7. Let (X, F) be a probabilistic pseudometric space, A C X, and x € X.
Let

= sup fhmmfF (20, x) (£) = (x,) sequence in A},

B sup{hmmfF X, X) (tn) 1ty — O+, (x,) sequence in A}, (3.22)

y = sup hmmfF (x4,) (1/n) : (x,,) sequence in A}.

Thena=p =y = A(x).
Proof. If (x,) C A, then

Alx) 2 c(x, — x) = itng lirnnian(xn,x)(t), (3.23)

and so A(x) > a. Assume that > 6 > 0. There exist a sequence (x,)EA and a sequence
(tn) of positive real numbers, with t, — 0+, such that liminf, F(x,,x)(t,) > 0. Let t >0
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and choose k such that t, <t when n > k. For m > k, we have inf,,, F(x,,x)(t) >
inf,=, F(x,,x)(t,) > 6. Thus liminf, F(x,,x)(t) > 0 for each t > 0 and so « > 6, which
proves that a« > . Clearly B > y. Finally, Ny(A¢) = 1 — sup,ecaF(y,x)(1/n), and so
sup 4 F(y,%)(1/n) = 1 — Nx(A°) = A(x) > A(x) — 1/n. Hence, for each n € N, there ex-
ists x, € A with F(x,,x)(1/n) > A(x) — 1/n. Consequently,

1

y = liminf F (x,,) (%) = liminf (A(x) - Z) — A(x), (3.24)

and so y > A(x) > a > B > y, which completes the proof. O
In view of [6, Theorem 4.14], we have the following corollary.

CoRroLLARY 3.8. Every pseudometrizable fuzzifying topological space is N-sequential and
hence sequential.

TaeoREM 3.9. If (F,) is a sequence of probabilistic pseudometrics on a set X, then there
exists a probabilistic pseudometric F such that tp = \/,, 1f,.

Proof. If F is a probabilistic pseudometric on X and if F is defined by F(x,y)(t) =
F(x,y)(t)ift < 1and F(x, y)(t) = 1 if t > 1, then F is a probabilistic pseudometric on X
and 77 = 7p. Hence, we may assume that F,,(x, y)(¢t) = 1, for all n, if ¢ > 1. For x, yeX, de-
fine F(x,y) on R by F(x,y)(t) = 0if t <0 and F(x, y)(¢) = inf,[(1/n)F,(x, y)](t) if t > 0.
Clearly, F(x, y) is increasing and F(x, y)(¢) = 1 if t > 1. Also, F(x, y) is left continuous.
In fact, let F(x, y)(t) > 0 >0 and choose n such that (n+ 1)t > 1. There exists 0 <s; <t
such that F(x, y)(ks;) > 0 for k = 1,...,n. Choose s; < s < t such that (n+1)s > 1. Now,
Fpu(x,y)(ms) = 1if m >n. Thus

L rx, y)] (5) >0, (3.25)

F(x,y)(s) = m'gn [k

1<k
which proves that F(x, y) is in [R%. It is clear that F(x,x) = 0. We need to prove that F
satisfies the triangle inequality. So assume that F(x, y)(t;) A F(y,2)(t) >0 > 0. If m is
such that (m+1)(t; +t,) > 1, then

F(x,z)(t1+ 1) = 1r<r11<i<n Fi(x,2)(k(t; +1)). (3.26)
Since
Fr(x,2) (k(t: +t2)) = Fi(x, y) (kt1) A Fx(y,2) (kt2) > 0, (3.27)

it follows that F(x,z)(t; + ;) > 0, and so F satisfies the triangle inequality. We will fin-
ish the proof by showing that 7z = \/ 7g,. To see this, we first observe that (1/n)F, X F,
which implies that 75, = 7(1/m)E, < T, and so 7, = \/,, T(1/n)E, < Tr. On the other hand,
let N77(A) > 0 and choose € >0 such that NJ7(A) >0+ €. Let t >0 be such that 1 —
supyeAF(y,x)(t) >0+e. If (m+1)t>1, then

F(y,2)(t) = lrsrllcisank(y’Z)(kt). (3.28)
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Let Ax = {y: Fx(y,x)(kt) = 1 — 0 — €}. Then

N2 (Ax) = Ne* (Ax) = 1 — sup Fe(z,x)(kt) = 0+¢ >0 (3.29)
ZéAk

and L, Ax C A. Hence, Ny°(A) > minj<x<p, Nx°(Ax) > 6. This proves that 1z < 7, and
the result follows. O

TueoreMm 3.10. Let f : X — Y be a function and let F be a probabilistic pseudometric on Y.
Then the function

fHE): X2 —RG, B p) =F(f(x), f(1), (3.30)

is a probabilistic pseudometric on X and Tp-(p) = f ' (1p).

Proof. 1t follows easily that f!(F) is a probabilistic pseudometric on X. Let x € X and
BCcX.IfD=Y\ f(B°), then

NI (B = 1t1>10f [1 - supF(f(y),f(x))(t):|

y¢B

= 1&? [1 —sup F(z, f(x))(t)

zeDe

] (3.31)

= Njiy(D) = N (B),

which clearly completes the proof. O

CoRroLLARY 3.11. If F is a probabilistic pseudometric on a set X and Y C X, then tp|y is
induced by the probabilistic pseudometric G = F|yxy, G(x,y) = F(x, y).

CoROLLARY 3.12. If (X, 7,) is a sequence of pseudometrizable fuzzifying topological spaces,
then the Cartesian product (X, 1) = ([1 X, [[74) is pseudometrizable.

Proof. Let F, be a probabilistic pseudometric on X,, inducing 7,.. If G, = 7, }(F,), then
16, =, '(tn), and so 7 =\, 7, ' (1,,) is pseudometrizable. O

4. Level proximities

Let 8 be a fuzzifying proximity on a set X. For each 0 < d < 1, let 8 be the binary relation
on 2% defined by A§?B if and only if §(A,B) > d. It is easy to see that §¢ is a classical
proximity on X. We will show that the classical topology o, induced by 8¢ coincides
with 7179, In fact, let x € A € 04. Then, x is not in the o4-closure of A€, which implies
that x S9A¢, that is, (x,A) < d, and so N7 (A) = 1 — §(x,A¢) > 1 — d. This proves that
A € 1179, Conversely, if x € B € 7'79, then N7 (A) > 1 — d, and thus 8(x,A¢) < d, which
implies that x is not in the g;-closure of B¢. Hence B¢ is g4-closed, and so B is g4-open.
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TaEOREM 4.1. If § is a fuzzifying proximity on a set X and 0 < d < 1, then

8=\ ¢ (4.1)

0<0<d

Proof. 1f 0 < 6 < d, then 6? is coarser than 6%, and so &, = \/(.4.46? is coarser than 8.
On the other hand, let Ad,B. Since &, is finer than 67 (for 0 < 8 < d), we have that A8?B
and so 8(A,B) = 0, for each 0 < 6 < d, which implies that (A, B) > d, that is, A6?B. So &,
is finer than ¢ and the result follows. a

TaEOREM 4.2. For a family {yq:0 < d < 1} of classical proximities on a set X, the following
are equivalent.

(1) There exists a fuzzifying proximity & on X such that 8 = y, for all d.

(2) yda = Vocga Yo foreach0 < d < 1.

Proof. In view of the preceding theorem, (1) implies (2). Assume now that (2) is satis-
fied and define § on 2% x 2% by 8(A,B) = sup{d : Ay;B} (the supremum over the empty
family is taken to be zero). It is clear that §(A,B) = 1 if the A,B are not disjoint. Also,
6(A,B) =6(A,B) and 6(A,B = §(A1,B1) if Ay C A, B; C B.Letnow §(A,B) <d < 1. Then
A 4B, and so there exists a subset D of X such that A 4D and D¢ §4B. Since A 4D, we
have that §(A,D) < d. Similarly §(D¢,B) < d, and so inf{§(A,D) A §(D¢,B)} < §(A,B).
On the other hand, if §(A,D) A §(D¢,B) < 6 < 1, then A C D¢, and so 6(A,B) < §(D¢,B) <
6. This proves that ¢ is a fuzzifying proximity on X. We will finish the proof by showing
that 8¢ = y, for all d. Indeed, if Ay,B, then §(A,B) > d, that is, A§B. On the other
hand, let A69B and let (4;), (Bj) be finite families of subsets of X with A = {J;, B = U B;.
Since 8(A,B) =V, ; 6(A;, Bj) > d, there exists a pair (i, j) such that §(A;,B;) > d. If now
0 < 0 < d, then there exists r > 6 with A;y, B}, and so A;yyB;. This proves that AyyB since
yd = Vo<g<aq y9- This completes the proof. O

Tueorem 4.3. Let (X,01), (Y8,) be fuzzifying proximity spaces and let f : X — Y be a
function. Then f is proximally continuous if and only if f : (X,8%) — (Y,8%) is proximally
continuous for each 0 < d < 1.

Proof. Tt follows immediately from the definitions. O

THEOREM 4.4. Let (X),00)ren be a family of fuzzifying proximity spaces and let (X,8) =
(I1X2,[182) be the product fuzzifying proximity space. Then 8% = [18¢ forall 0 <d < 1.

Proof. Since each projection m : (X,8) — (X)L,Sf) is proximally continuous, it follows
that 87 is finer than o = [| éf. On the other hand, let Ao B. We need to show that §(A,B) >
d. In fact, let (A;), (B;) be finite families of subsets of X such that A = [JA;, B = UB;.
Since AogB and ¢ =/, 71):1(853), there exists a pair (i, j) such that A,'rr[l((Sd)Bj, that is,
O\ (m(Ai),m(B))) = d. In view of [4, Theorem 8.9], we conclude that §(A,B) > d. Hence,
o = 8% and the proof is complete. O

We have the following easily established theorem.

Tueorem 4.5. Let (Y, 8) be a fuzzifying proximity space and let f : X — Y. Then f~1(8)4 =
f~1(8%) foreach 0 < d < 1.



A. K. Katsaras 3793

THEOREM 4.6. Let (8))ren be a family of fuzzifying proximities on a set X and & = V6.
Then 8¢ = \/, 8¢ for each 0 < d < 1.

Proof. Leto =/, 6,‘{. Since § is finer than each 8y, it follows that 89 is finer than each 8?,
and so 8 is finer than o. On the other hand, let AcB and let (4;), (B ) be finite families
of subsets of X such that A = (JA;, B = |JB;. There exists a pair (i, j) such that A;0B;.
Since o is finer than each Sf, we have that AiéfBj, that is, §)(A;,Bj) = d. In view of [4,
Theorem 8.10], we get that §(A,B) > d, that is, A?B. So ¢ is finer than 8¢ and the proof
is complete. O

5. Completely regular fuzzifying spaces

Definition 5.1. A fuzzifying topological space (X, 7) is called completely regular if each of
the classical level topologies 7¢, 0 < d < 1, is completely regular.

Definition 5.2. A fuzzifying proximity § on a set X is said to be compatible with a fuzzi-
tying topology 7 if 7 coincides with the fuzzifying topology 75 induced by §.

We have the following easily established theorem.

THEOREM 5.3. Subspaces and Cartesian products of completely regular fuzzifying spaces are
completely regular.

TaeOREM 5.4. Let (X,7) be a completely regular fuzzifying topological space and define
8 =08(r):2X x2%X - 10,1] by

8(A,B)=1-sup{d:0<d<1, 3f:(X,1%) — [0,1] continuous f(A) =0, f(B) = 1}.
(5.1)

Then, (1) § is a fuzzifying proximity on X compatible with t;
(2) if 6, is any fuzzifying proximity on X compatible with 7, then § is finer than ).

Proof. It is easy to see that § satisfies (FP1), (FP2), (FP3), and (FP5). We will prove that
0 satisfies (FP4). Let

a =inf {8(A,D) v §(D,B) : D C X}. (5.2)

If 5(A,D) v §(D¢,B) < 6, then A C D¢, and so §(A,B) < §(D¢,B) < 0, which proves that
6(A,B) < a. On the other hand, assume that §(A,B) <r < 1. Thereexistad, 1 —r<d<1,
and f: X — [0,1]7%-continuous such that f(A) =0, f(B)=1.Let D={xe X :1/2 <
f(x) <1} and define hy, by : [0,1] = [0,1], by (t) = 2¢, (1) = 0if 0 < t < 1/2 and hy (¢) =
Lhy(t)=2t-1if1/2<t<1.1fgi=h;o f,i=1,2,theng(A) =0,2(D) = 1,5 (D) =0,
& (B) = 1. Thus, 6(A,D) <1 —-d<r, §(D%B) < r, which proves that a« < §(A,B). Hence,
0 is a fuzzifying proximity on X. We need to show that 7 = 75. So, let 7(A) > 6 > 0. Since
79 is completely regular, given x € A, there exist f, : X — [0,1], 79-continuous, felx) =
0, fx(A°) = 1. Thus 8(x,A°) < 1 -6, and so N*(A) = 1 — 8(x,A¢) > 6. It follows that
75(A) = infyca N&°(A) = 6, which proves that 75 > 7. On the other hand, assume that
15(A) > >0.If x € A, then §(x,A°) = 1 — Ny’(A) < 1 — r, and therefore there exist a d,
0<1l-d<1-rand f:X — [0,1]7%-continuous such that f(x) =0, f(A) = 1. The set
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={y: f(y)<1/2}isin ¢ and x € G C A. Thus,
Ni(A)=NI(G)=d>r. (5.3)

This proves that 7(A) > r and so 7 > 75, which completes the proof of (1).

Let §) be a fuzzifying proximity on X compatible with 7 and let A, B be subsets of X
with §1(A,B) <0< 1.1fd =1 -0, then 519 is compatible with 7¢. Since A 5193, there exists
(by [8, Remark 3.15]) an f : X — [0, 1]74-continuous, with f(A) =0, f(B) = 1, and so
O(A,B) < 1 —d = 0, which proves that §(A, B) < §,(A, B), and therefore ¢ is finer than 6;.
This completes the proof. O

THEOREM 5.5. For a fuzzifying topological space (X, ), the following are equivalent.
(1) (X,7) is completely regular.
(2) There exists a fuzzifying proximity § on X compatible with .
(3) (X, 7) is fuzzy uniformizable, that is, there exists a fuzzy uniformity W on X such that
T coincides with the fuzzifying topology T, induced by .

Proof. By [5], (2) is equivalent to (3). Also (1) implies (2) in view of the preceding the-
orem. Assume now that 7 = 74 for some fuzzifying proximity 8. For each 0 <d < 1, 6% is
a classical proximity compatible with 7!=9, and so 7!~ is completely regular. This com-
pletes the proof. O

THEOREM 5.6. Every pseudometrizable fuzzy topological space (X, 1) is completely regular.

Proof. 1f 7 is pseudometrizable, then each 9 0<d<l,is pseudometrizable, and hence
7¢ is completely regular. O

THEOREM 5.7. For a fuzzifying topological space (X, 1), the following are equivalent.
(1) (X, 7) is completely regular.
(2) If F = &, is the family of all probabilistic pseudometrics on X which are T X T con-
tinuous as functions from X* to R§, then v = 13,
(3) There exists a family F of probabilistic pseudometrics on X such that T = 7.

Proof. (1)=(2). For each F € %, we have that 7z < 7 (by Theorem 3.2), and so 7%, < 7.
Let nowA C X and x, € X with N (A) > 0 > 0. Since ¥ is completely regular, there exists
a 9-continuous function f from X to [0,1] such that f(x,) =0, f(A°) =1.Forx,y € X,
define F(x, y) on R by

0 ift<0,

Flx,y)()=11-0 if [f(x)= f(y)] =£>0, (5.4)
1 if | fx) = f(n) ] <t.

Clearly, F(x,y) = F(y,x) € [R;g and F(x,x) = 0. We will prove that F satisfies the trian-
gle inequality. So, assume that F(x, y)(t1) A F(y,2)(f2) > F(x,2)(t; + £). Then, t1, ta >0,
F(x,z)(th + 1) =1 -0, F(x, )’)(tl) = F(y,2)() = 1. Thus, t; > |f(x) = f(¥)I, &2 >
[f(y) = f(2)], and hence | f(x) — f(2)| < t; + f,, which implies that F(x Z2)(th+h) =1,
a contradiction. So F is a probablhstlc pseudometric on X. Next we show that Fis 7 X T
continuous, or equivalently that 77 < 7. So assume that NJ¥(B) >r > 0. Let 6; > r be such
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that N (B) > 0. Choose t >0 such that 1 — supyéBF(x,y)(t) >0y, and so F(x,y)(t) =
1-0and|f(x)— f(y)| =tify € B. Thus, {y:|f(x) — f(y)| <t} C B. This shows that B
isa Te-neighborhood of x. As r < 0, B is a "-neighborhood of x, that is, Nf(B) > r, and
so 7p < 7. Finally if y ¢ A, then | f(y) — f(x,)| = 1, and so F(y,x,)(1/2) = 1 — 6, which
implies that

NI*(A) = NJF(A) = 1—supF(y,x,) (l> > 0. (5.5)
0 0 y%A 2

This shows that Ny, > N, and so 7 < 75, which completes the proof of the implica-
tion (1)=(2).

(3)=(1). Assume that 7 = 7 for some family % of probabilistic pseudometrics on
X. For each F € F, 1 is completely regular and so 75 is completely regular since 7% =
\/peg T8 for each 0 < d < 1. Hence the result follows. O

We will denote by [0,1]4 the subspace of [Rig consisting of all u € [R{;; with u(t) = 1if
t>1.

THEOREM 5.8. A fuzzifying topological space (X, 1) is completely regular if and only if the
following condition is satisfied. If Ny, (A) > 0 > 0, then there exists f : X — [0, 1]y continuous
such that f(x,) =0and f(y)(t)=1-0ify¢é Aand0<t< 1.

Proof. Assume that (X,7) is completely regular and let N,,(A) > 6 > 0. Since 77 is com-

pletely regular, there exists h : (X,7%) — [0,1] continuous, h(x,) = 0, h(y) = 1 if y & A.
For x, yeX, define F(x, y) on R by

0 ift <0,
F,y)(t)=41-0 if |h(x)—h(x,) | =t >0, (5.6)
1 if |h(x) —h(x,) | <t.

Clearly, F(x,y) € [0,1]¢. Also, F(x,z) X F(x,y) ® F(y,z). In fact, assume that F(x, y)
(t1) AF(y,2)(t2) >r > F(x,2)(t; + t2). Then 1, t, >0, F(x, y)(;) = F(y,2)(f2) = 1. Now,
[h(x) — h(y)| < t1, |h(y) = h(2)| < t, and so |h(x) — h(z)| < t; + f,, which implies that
F(x,z)(t; +t;) = 1, a contradiction. So F is a probabilistic pseudometric. Moreover, F is
T X T continuous, or equivalently 7z < 7. In fact, let NJ¥(B) > r > 0. There exists a t >0
such that 1 —sup,,; F(z,x)(t) >r. If z ¢ B, then F(z,x)(t) <1 —r < 1,and so F(z,x)(t) =
1-0<1-r,thatis,r<6,and |h(z) — h(x)| = t. Hence

M={z:|h(z) - h(x)| <t} CB. (5.7)

The set M is a Te—neighborhood of x, and hence a 7"-neighborhood, that is, N} (B) > r.
Thus 7 > 7¢. Finally, define f : X — [0,1]4, f(y) = F(y,%,). Then f is 7-continuous,
f(x,) =0.For y ¢ A and 0 <t < 1, we have that f(y)(¢) = F(y,x,)(t) = 1 — 6 (since
|h(x) — h(x,] = 1 = t). Conversely, assume that the condition is satisfied and let F be the
family of all 7 X T continuous pseudometrics on X. Then 73 < 7. Let Nf (A) > 6. There
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exists a 0 > 0 such that N7 (A) > 6,. By our hypothesis, there exists f : X — [0,1]4 con-
tinuous such that f(x,) =0 and f(y)(t) =1—6, if y ¢ A and 0 < t < 1. Define F(x, y)
=D(f(x), f(¥)). Then F is 7 X 7 continuous and

N7(A) = NJF(A) = 1 —supF(x,,y)(1)

yEA
=1-supD(0, 1
igg (0, f(»))(1) (5.8)
=1-supf(y)(1) =0, >0.
yEA

Thus Ni7 (A) = Ny (A), for every subset A of X, and so 7 < 74. Therefore, 7 = 75, and
so 7 is completely regular. O

For a fuzzifying topological space X, we will denote by C(X,[0,1]¢) the family of all
continuous functions from X to [0,1]4.

THEOREM 5.9. A fuzzifying topological space (X, 1) is completely regular if and only if T co-
incides with the weakest of all fuzzifying topologies 1, on X for which each f € C(X,[0,1]4)
is continuous.

Proof. Assume that (X, 7) is completely regular and let 7; be the weakest of all fuzzify-
ing topologies on X for which each f € C(X,[0,1]y) is continuous. Clearly 7; < 7. On
the other hand, let 7, be a fuzzifying topology on X for which each f € C(X,[0,1]y) is
continuous. Let N7(A) > 6 > 0. In view of the preceding theorem, there exists an f €
C(X,10,1]y) such that f(x) =0, f(y)(t) =1-0if y& Aand 0 <t < 1. Let

G:{ueu@;;D(f(x),u)(%> _ (%) >1—e}. (5.9)
Then
No(G) > 1 —iggD(f(x),u)(%> >0, (5.10)

Since f is 7,-continuous, we have that N7 (f ~1(G)) = 0. But f~1(G) C A since, for y & A,
we have that f(y)(1/2) =1 — 6. Thus NJ2(A) = 0. This proves that N2 (A) = NI (A), for
every subset A of X, and so 7, > 7. This clearly proves that 7; = 7. Conversely, assume
that 71 = 7. If 0 is the usual fuzzifying topology of Ry, then

r=n=\  f o). (5.11)

FECX,[0,1]4)

Since o is completely regular, each f~!(0) is completely regular, and so 7 is completely
regular. This completes the proof. O
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