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We establish Hardy-type inequalities for the Riemann-Liouville and Weyl transforms as-
sociated with the Jacobi operator by using Hardy-type inequalities for a class of integral
operators.

1. Introduction

It is well known that the Jacobi second-order differential operator is defined on ]0,+∞[
by

∆α,βu(x)= 1
Aα,β(x)

d

dx

(
Aα,β(x)

du

dx

)
+ ρ2u(x), (1.1)

where

(i) Aα,β(x)= 22ρ sinh2α+1(x)cosh2β+1(x),
(ii) α,β ∈R; α≥ β >−1/2,

(iii) ρ = α+β+ 1.

The Riemann-Liouville and Weyl transforms associated with Jacobi operator ∆α,β are,
respectively, defined, for every nonnegative measurable function f , by

Rα,β( f )(x)=
∫ x

0
kα,β(x, y) f (y)dy,

Wα,β( f )(y)=
∫∞
y
kα,β(x, y) f (x)Aα,β(x)dx,

(1.2)

where kα,β is the nonnegative kernel defined, for x > y > 0, by

kα,β(x, y)= 2−α+3/2Γ(α+ 1)
(

cosh(2x)− cosh(2y)
)α−1/2

√
πΓ(α+ 1/2)coshα+β(x)sinh2α(x)

×F
(
α+β,α−β;α+

1
2

;
cosh(x)− cosh(y)

2cosh(x)

) (1.3)

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:3 (2005) 329–348
DOI: 10.1155/IJMMS.2005.329

http://dx.doi.org/10.1155/S0161171205404135


330 Hardy-type inequalities

and F is the Gaussian hypergeometric function. Such integral transforms have many ap-
plications to science and engineering [3, 4].

These operators have been studied on regular spaces of functions. In particular in
[19], the author has proved that the Riemann-Liouville transform Rα,β is an isomorphism
from ξ∗(R) (the space of even infinitely differentiable functions on R) on itself, and that
the Weyl transform Wα,β is an isomorphism from D∗(R) (the space of even infinitely
differentiable functions on R with compact support) on itself. The Weyl transform has
also been studied on Shwartz space S∗(R) [20].

This paper is devoted to the study of the Riemann-Liouville and Weyl transforms on
the spaces

Lp
(
[0,∞[,Aα,β(x)dx

)
1 < p <∞ (1.4)

of measurable functions on [0,∞[ such that

‖ f ‖p,α,β =
(∫∞

0

∣∣ f (x)
∣∣pAα,β(x)dx

)1/p

<∞. (1.5)

The main results of this work are Theorems 4.2 and 4.4 in Section 4.
To obtain those results we use the following integral operators:

Tϕ( f )(x)=
∫ x

0
ϕ
(
t

x

)
f (t)ν(t)dt,

T∗ϕ (g)(x)=
∫∞
x
ϕ
(
x

t

)
g(t)dµ(t),

(1.6)

where

(i) ν is a nonnegative locally integrable function on [0,∞[,
(ii) dµ(t) is a nonnegative measure, locally finite on [0,∞[,

(iii) the following is a measurable function satisfying some properties [10, 12, 18]:

ϕ : ]0,1[−→ ]0,∞[. (1.7)

Both operators Tϕ and T∗ϕ are connected by the following duality relation: for all non-
negative measurable functions f and g we have

∫∞
0
Tϕ( f )(x)g(x)dµ(x)=

∫∞
0

f (y)T∗ϕ (g)(y)ν(y)dy. (1.8)

In this paper, we give some conditions on the functions ϕ, ν and the measure dµ so
that the operator Tϕ and its dual T∗ϕ satisfy the following Hardy inequalities: for all real
numbers p, q satisfying

1 < p ≤ q <∞, (1.9)
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there exists a positive constant Cp,q such that for all nonnegative measurable functions f
and g we have

(∫∞
0

(
Tϕ( f )(x)

)q
dµ(x)

)1/q

≤ Cp,q

(∫∞
0

(
f (x)

)p
ν(x)dx

)1/p

,

(∫∞
0

(
T∗ϕ (g)(x)

)p′
ν(x)dx

)1/p′

≤ Cp,q

(∫∞
0

(
g(x)

)q′
dµ(x)

)1/q′

,

(1.10)

where p′ and q′ are the conjugate exponents, respectively, of p and q.
In [5], we have studied inequalities (1.10), in the case 1 < q < p <∞. The inequalities

obtained below for the operators Tϕ and T∗ϕ will allow us to obtain the main results of
this paper.

This paper is arranged as follows.
In Section 2, we consider a continuous nonincreasing function

ϕ : ]0,1[−→ ]0,∞[ (1.11)

for which there exists a positive constant D satisfying

∀x, y ∈ ]0,1[, ϕ(xy)≤D
(
ϕ(x) +ϕ(y)

)
. (1.12)

Then we give necessary and sufficient conditions such that the operatorsTϕ andT∗ϕ satisfy
the inequalities (1.10).

In Section 3, we suppose only that the function ϕ is nondecreasing and we give the
sufficient conditions such that the precedent inequalities hold.

In Section 4, we use the results obtained below to study and to establish the Hardy
inequalities for Riemann and Weyl operators associated with Jacobi differential operator
∆α,β.

2. Hardy operator Tϕ and its dual T∗ϕ when the function ϕ is nonincreasing on ]0,1[

In this section, we consider a measurable positive and nonincreasing function ϕ defined
on ]0,1[ for which we associate the operator Tϕ and its dual T∗ϕ defined, respectively, for
every nonnegative and measurable function f , by

∀x > 0, Tϕ( f )(x)=
∫ x

0
ϕ
(
t

x

)
f (t)ν(t)dt,

∀x > 0, T∗ϕ ( f )(x)=
∫∞
x
ϕ
(
x

t

)
f (t)dµ(t),

(2.1)

where ν is a measurable nonnegative function on ]0,∞[ such that

∀a > 0,
∫ a

0
ν(t)dt <∞ (2.2)

and dµ(t) is a nonnegative measure on [0,∞[ satisfying

∀0 < a < b,
∫ b

a
dµ(t) <∞. (2.3)
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The main result of this section is Theorem 2.1.

Theorem 2.1. Let p and q be two real numbers such that

1 < p ≤ q < +∞. (2.4)

Let ν be a nonnegative measurable function on ]0,+∞[ satisfying (2.2), and dµ(t) a nonneg-
ative measure on ]0,+∞[ which satisfies the relation (2.3). Lastly, suppose that

ϕ : ]0,1[−→ ]0,+∞[ (2.5)

is a continuous nonincreasing function so that

(i) there exists a positive constant D such that

∀x, y ∈ ]0,1[, ϕ(xy)≤D
(
ϕ(x) +ϕ(y)

)
, (2.6)

(ii) for all a > 0,

∫ a

0
ϕ
(
t

a

)
ν(t)dt < +∞. (2.7)

Then the following assertions are equivalent.

(1) There exists a positive constant Cp,q such that for every nonnegative measurable func-
tion f ,

(∫∞
0

(
Tϕ( f )(t)

)q
dµ(t)

)1/q

≤ Cp,q

(∫∞
0

(
f (t)

)p
ν(t)dt

)1/p

. (2.8)

(2) The functions

r �−→
(∫∞

r
dµ(t)

)1/q(∫ r

0
ϕ
(
t

r

)p′

ν(t)dt
)1/p′

,

r �−→
(∫∞

r
ϕ
(
r

t

)q
dµ(t)

)1/q(∫ r

0
ν(t)dt

)1/p′ (2.9)

are bounded on ]0,+∞[, where

p′ = p

p− 1
. (2.10)

The proof of this theorem uses the idea of [10, 13, 14, 18] and is left to the reader.
To obtain similar inequalities for the dual operator T∗ϕ , we use the following duality

lemma.

Lemma 2.2 [12, 18]. Let p, q, p′, q′ be real numbers such that

1 < p ≤ q < +∞,
1
p

+
1
p′
= 1,

1
q

+
1
q′
= 1 (2.11)
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let µ be a σ-finite measure on ]0,+∞[ and ν a nonnegative locally integrable function on
]0,+∞[. Then the following statements are equivalent.

(1) There exists a positive constant Cp,q such that for every nonnegative measurable func-
tion f

(∫∞
0

(
Tϕ( f )(t)

)q
dµ(t)

)1/q

≤ Cp,q

(∫∞
0

(
f (t)

)p
ν(t)dt

)1/p

. (2.12)

(2) There exists a positive constant Cp,q such that for every nonnegative measurable func-
tion g

(∫∞
0

(
T∗ϕ (g)(t)

)p′
ν(t)dt

)1/p′

≤ Cp,q

(∫∞
0

(
g(t)

)q′
dµ(t)

)1/q′

. (2.13)

A consequence of Theorem 2.1 and Lemma 2.2 is the following.

Theorem 2.3 (dual theorem). Under the hypothesis of Theorem 2.1, the following assump-
tions are equivalent.

(1) There exists a positive constant Cp,q such that for every nonnegative measurable func-
tion g

(∫∞
0

(
T∗ϕ (g)(x)

)q
ν(x)dx

)1/q

≤ Cp,q

(∫∞
0

(
g(x)

)p
dµ(x)

)1/p

. (2.14)

(2) Both functions

r �−→
(∫∞

r
dµ(x)

)1/p′(∫ r

0
ϕ
(
t

r

)q
ν(t)dt

)1/q

,

r �−→
(∫∞

r
ϕ
(
r

x

)p′

dµ(x)
)1/p′(∫ r

0
ν(t)dt

)1/q
(2.15)

are bounded on ]0,+∞[.

3. Integral operator Tϕ and its dual when the function ϕ is nondecreasing

In this section, we suppose only that the function

ϕ : ]0,1[−→ ]0,+∞[ (3.1)

is nondecreasing, we will give a sufficient condition, which permits to prove that the
integral operators Tϕ and T∗ϕ satisfy the Hardy inequalities [1, 8, 15, 16].

Theorem 3.1. Let p and q be two real numbers such that

1 < p ≤ q <∞ (3.2)

and p′ = p/(p− 1), q′ = q/(q− 1). Let ν be a nonnegative function on ]0,+∞[ satisfying
(2.2), and dµ(t) a nonnegative measure on ]0,+∞[ which satisfies the relation (2.3). Finally,
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let

ϕ : ]0,1[−→ ]0,+∞[ (3.3)

be a measurable nondecreasing function.
If there exists β ∈ [0,1] such that the function

r �−→
(∫∞

r
ϕ
(
r

x

)βq
dµ(x)

)1/q(∫ r

0
ϕ
(
x

r

)p′(1−β)

ν(x)dx
)1/p′

(3.4)

is bounded on ]0,+∞[, then there exists a positive constant Cp,q such that for every nonneg-
ative measurable function f ,

(∫∞
0

(
Tϕ( f )(x)

)q
dµ(x)

)1/q

≤ Cp,q

(∫∞
0

(
f (x)

)p
ν(x)dx

)1/p

. (3.5)

Proof of Theorem 3.1. Let h be the function defined by

h(y)=
(∫ y

0
ϕ
(
z

y

)(1−β)p′

ν(z)dz
)1/(p′+q)

. (3.6)

By Hölder’s inequality, we have

Tϕ( f )(x)=
∫ x

0
ϕ
(
y

x

)
f (y)ν(y)dy

≤
(∫ x

0

(
ϕ
(
y

x

)β
h(y) f (y)

)p

ν(y)dy
)1/p

×
(∫ x

0

(
ϕ
(
y

x

)β−1

h(y)
)−p′

ν(y)dy
)1/p′

.

(3.7)

Let

J(x)=
∫ x

0

(
ϕ
(
y

x

)β−1

h(y)
)−p′

ν(y)dy. (3.8)

If we replace h(y) by its value, then we obtain

J(x)=
∫ x

0
ϕ
(
y

x

)p′(1−β)(∫ y

0
ϕ
(
z

y

)(1−β)p′

ν(z)dz
)−p′/(p′+q)

ν(y)dy. (3.9)

Since the function ϕ is nondecreasing and β ∈ [0,1], we have

∀0 < y < x,
(∫ y

0
ϕ
(
z

y

)(1−β)p′

ν(z)dz
)−p′/(p′+q)

≤
(∫ y

0
ϕ
(
z

x

)(1−β)p′

ν(z)dz
)−p′/(p′+q)

.

(3.10)

Therefore

J(x)≤
∫ x

0
ϕ
(
y

x

)(1−β)p′(∫ y

0
ϕ
(
z

x

)(1−β)p′

ν(z)dz
)−p′/(p′+q)

ν(y)dy (3.11)
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and if we put

gx(z)= ϕ
(
z

x

)(1−β)p′

1]0,x[(z) (3.12)

from the hypothesis, the function

z −→ gx(z)ν(z) (3.13)

belongs to L1(]0,+∞[,dz) and

J(x)≤
∫ x

0

(∫ y

0
gx(z)ν(z)dz

)−p′/(p′+q)

gx(y)ν(y)dy. (3.14)

Since

1− p′

p′ + q
= q

p′ + q
> 0, (3.15)

then, from [16, Lemma 1], we deduce that

∫ x

0

(∫ y

0
gx(z)ν(z)dz

)−p′/(p′+q)

gx(y)ν(y)dy =
(
p′ + q

q

)(∫ x

0
gx(z)ν(z)dz

)q/(p′+q)

; (3.16)

therefore inequality (3.14) involves

J(x)≤
(
p′ + q

q

)
h(x)q. (3.17)

From inequalities (3.7) and (3.17), we obtain

(
Tϕ( f )(x)

)q ≤ (
∫ x

0

(
ϕ
(
y

x

)β
h(y) f (y)

)p

ν(y)dy
)q/p

J(x)q/p
′

≤
(
p′ + q

q

)q/p′(∫ x

0

(
ϕ
(
y

x

)β
h(y) f (y)

)p

ν(y)dy
)q/p

h(x)q
2/p′

(3.18)

so, we obtain

I =
(∫∞

0

(
Tϕ( f )(x)

)q
dµ(x)

)1/q

≤
(
p′ + q

q

)1/p′(∫∞
0

[∫ x

0

(
ϕ
(
y

x

)β
h(y) f (y)h(x)q/p

′
)p

ν(y)dy
]q/p

dµ(x)
)1/q

.

(3.19)

Since q/p ≥ 1, then, from Minkowski’s inequality [17], we deduce that

I ≤
(
p′ + q

q

)1/p′

∫∞

0

(∫∞
y

(
ϕ
(
y

x

)β
h(y) f (y)h(x)q/p

′
)q
dµ(x)

)p/q

ν(y)dy




1/p

. (3.20)
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So

I ≤
(
p′ + q

q

)1/p′

×

∫∞

0

(∫∞
y

(
ϕ
(
y

x

)β
h(x)q/p

′
)q
dµ(x)

)p/q (
h(y) f (y)

)p
ν(y)dy




1/p

.

(3.21)

On the other hand, from the hypothesis, the function

r −→
(∫∞

r
ϕ
(
r

x

)βq
dµ(x)

)1/q(∫ r

0
ϕ
(
x

r

)p′(1−β)

ν(x)dx
)1/p′

(3.22)

is bounded on ]0,+∞[, we denote

Mp,q = sup
r>0

(∫∞
r
ϕ
(
r

x

)βq
dµ(x)

)1/q(∫ r

0
ϕ
(
x

r

)p′(1−β)

ν(x)dx
)1/p′

, (3.23)

then

(∫ x

0
ϕ
(
z

x

)(1−β)p′

ν(z)dz
)1/(p′+q)

≤M
p′/(p′+q)
p,q

(∫∞
x
ϕ
(
x

z

)βq
dµ(z)

)−p′/(q(p′+q))

(3.24)

which means that

h(x)≤M
p′/(p′+q)
p,q

(∫∞
x
ϕ
(
x

z

)βq
dµ(z)

)−p′/(q(p′+q))

. (3.25)

From inequalities (3.21) and (3.25) we obtain

I ≤
(
p′ + q

q

)1/p′

M
q/(p′+q)
p,q

×
[∫∞

0

(
f (y)h(y)

)p(∫∞
y
ϕ
(
y

x

)βq(∫∞
x
ϕ
(
x

z

)βq
dµ(z)

)−q/(p′+q)

dµ(x)
)p/q

ν(y)dy
]1/p

.

(3.26)

Since ϕ is nondecreasing, we have

I ≤
(
p′ + q

q

)1/p′

M
q/(p′+q)
p,q

×

∫∞

0

(
f (y)h(y)

)p(∫∞
y
ϕ
(
y

x

)βq(∫∞
x
ϕ
(
y

z

)βq
dµ(z)

)−q/(p′+q)

dµ(x)

)p/q

ν(y)dy




1/p

.

(3.27)
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From [16, Lemma 1], we have again

∫∞
y
ϕ
(
y

x

)βq(∫∞
x
ϕ
(
y

z

)βq
dµ(z)

)−q/(p′+q)

dµ(x)= p′ + q

p′

(∫∞
y
ϕ
(
y

z

)βq
dµ(z)

)p′/(p′+q)

,

(3.28)

so, we get

I ≤
(
p′ + q

q

)1/p′( p′ + q

p′

)1/q

M
q/(p′+q)
p,q

×
[∫∞

0

(
f (y)h(y)

)p(∫∞
y
ϕ
(
y

z

)βq
dµ(z)

)pp′/(p′+q)q

ν(y)dy

]1/p

.

(3.29)

On the other hand, from the relation (3.23), we deduce that

∫∞
y
ϕ
(
y

z

)βq
dµ(z)≤M

q
p,q

(∫ y

0
ϕ
(
z

y

)p′(1−β)

ν(z)dz
)−q/p′

; (3.30)

consequently

(∫∞
y
ϕ
(
y

z

)βq
dµ(z)

)pp′/((p′+q)q)

≤M
pp′/p′+q
p,q

(
h(y)

)−p
. (3.31)

From inequalities (3.29) and (3.31), we deduce that for every nonnegative measurable
function f , we have

(∫∞
0

(
Tϕ( f )(x)

)q
dµ(x)

)1/q

≤ Cp,q

(∫∞
0

(
f (y)

)p
ν(y)dy

)1/p

, (3.32)

where

Cp,q =
(
p′ + q

q

)1/p′( p′ + q

p′

)1/q

Mp,q (3.33)

and Mp,q is the constant given by (3.23).
This completes the proof of Theorem 3.1. �

From Lemma 2.2 and Theorem 3.1 we obtain the following result.

Theorem 3.2 (dual theorem). Under the hypothesis of Theorem 3.1 if there exists β ∈ [0,1]
such that the function

r �−→
(∫∞

r
ϕ
(
r

x

)βp′
dµ(x)

)1/p′(∫ r

0
ϕ
(
x

r

)q(1−β)

ν(x)dx
)1/q

(3.34)

is bounded on ]0,+∞[, then there exists a positive constant Cp,q such that for every nonneg-
ative measurable function g

(∫∞
0

(
T∗ϕ (g)(x)

)q
ν(x)dx

)1/q

≤ Cp,q

(∫∞
0

(
g(x)

)p
dµ(x)

)1/p

. (3.35)
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4. Riemann-Liouville and Weyl transforms associated with Jacobi operator

The Jacobi operator stated in the introduction has been studied by many authors [2, 6, 7,
19, 20]. In particular, we know that, for every complex number λ, the differential equation

∆α,βu(x)=−λ2u(x),

u(0)= 1, u′(0)= 0
(4.1)

admits a unique solution ϕ
α,β
λ (x) given by

ϕ
α,β
λ (x)= F

(
1
2

(ρ+ iλ),
1
2

(ρ− iλ);α+ 1;−sinh2(x)
)

, (4.2)

where F is the Gaussian hypergeometric function [9, 11]. Furthermore the function ϕ
α,β
λ

has the following Mehler integral representation:

∀x > 0, ϕ
α,β
λ (x)=

∫ x

0
kα,β(x, y)cos(λy)dy, (4.3)

where kα,β is the nonnegative kernel given by the relation (1.3).
Many properties of harmonic analysis associated with the operator ∆α,β have been

studied and established (convolution product, Fourier-transform, inversion formula,
Plancherel and Paley-Wiener theorems).

On the other hand, the following integral transforms are defined for the Jacobi opera-
tor.

Definition 4.1. (1) The Riemann-Liouville transform associated with Jacobi operator is
the integral transform defined, for every nonnegative measurable function f , by

Rα,β( f )(x)=
∫ x

0
kα,β(x, y) f (y)dy. (4.4)

(2) The Weyl transform associated with Jacobi operator is defined, for every nonneg-
ative measurable function f , by

Wα,β( f )(x)=
∫∞
x
kα,β(y,x) f (y)Aα,β(y)dy, (4.5)

where kα,β is the kernel given by the relation (1.3).
Those integral operators are linked by the following duality relation: for all nonnega-

tive measurable functions f and g,

∫∞
0
Rα,β( f )(x)g(x)Aα,β(x)dx =

∫∞
0
Wα,β(g)(x) f (x)dx. (4.6)

As mentioned in the introduction, those integral transforms have been studied on
spaces of regular functions.

Our purpose in this section is to study those operators on the spaces Lp([0,∞[,
Aα,β(x)dx), 1 < p <∞.
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Theorem 4.2. For −1/2 < β ≤ α, α ≥ 1/2, and p > 2α+ 2, there exists a positive constant
Cp,α,β such that

(1) for all f ∈ Lp([0,∞[,Aα,β(x)dx),
∥∥Rα,β( f )

∥∥
p,α,β ≤ Cp,α,β‖ f ‖p,α,β, (4.7)

(2) for all g ∈ Lp′([0,∞[,Aα,β(x)dx
)
,

∥∥∥∥ 1
Aα,β(x)

Wα,β(g)
∥∥∥∥
p′,α,β

≤ Cp,α,β‖g‖p′,α,β, (4.8)

where

p′ = p

p− 1
. (4.9)

The proof of this theorem needs the following lemma.

Lemma 4.3. For α≥ 1/2 and −1/2 < β ≤ α, there exists a positive constant aα,β such that

∀x > y > 0, 0≤ kα,β(x, y)≤ aα,β(x− y)α−1/2 1√
Aα,β(x)

. (4.10)

Proof of Lemma 4.3. (i) It is clear that kα,β(x, y)≥ 0.
(ii) From mean value’s theorem we deduce that

(
cosh(2x)− cosh(2y)

)α−1/2 ≤ 2α−1/2(x− y)α−1/2 sinhα−1/2(2x). (4.11)

Therefore from the relation (1.3) and the facts that β ≤ α and

sinh(2x)= 2sinh(x)cosh(x), (4.12)

we have

kα,β(x, y)≤ 2α+1/2Mα,βΓ(α+ 1)sinh−α−1/2(x)cosh−β−1/2(x)
(x− y)α−1/2

Γ(α+ 1/2)
√
π

, (4.13)

where

Mα,β = max
0≤t≤1/2

∣∣∣∣F
(
α+β,α−β;α+

1
2

, t
)∣∣∣∣; (4.14)

hence

0≤ kα,β(x, y)≤ 22α+β+3/2Mα,βΓ(α+ 1)
(x− y)α−1/2√

Aα,β(x)Γ(α+ 1/2)
√
π
. (4.15)

We obtain the result by setting

aα,β =
22α+β+3/2Mα,βΓ(α+ 1)

Γ(α+ 1/2)
√
π

. (4.16)

�
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Proof of Theorem 4.2. Let Tϕ and T∗ϕ be the Hardy-type operators defined, respectively,
by

Tϕ( f )(x)=
∫ x

0
ϕ
(
t

x

)
f (t)ν(t)dt,

T∗ϕ ( f )(x)=
∫∞
x
ϕ
(
x

t

)
f (t)dµ(t),

(4.17)

where

ϕ(t)= (1− t)α−1/2,

ν(t)= A
1−p′
α,β (t),

dµ(t)= tp(α−1/2)A
1−p/2
α,β (t)dt.

(4.18)

(i) Since α ≥ 1/2, the function ϕ is continuous and nonincreasing on ]0,1[. Further-
more for all a,b ∈ ]0,1[ we have

1− ab≤ (1− a) + (1− b), (4.19)

then by using the inequality

(u+ v)p ≤max(1,2p−1)(up + vp), u,v ≥ 0, (4.20)

we deduce that

(1− ab)α−1/2 ≤D
(
(1− a)α−1/2 + (1− b)α−1/2), (4.21)

where D =max(1,2α−3/2). That is,

ϕ(ab)≤D
(
ϕ(a) +ϕ(b)

)
. (4.22)

(ii) The function ν is locally integrable on [0,+∞[. In fact we have

ν(t)=A
1−p′
α,β (t)� 22ρ(1−p′)t(2α+1)(1−p′) (t −→ 0). (4.23)

Since p > 2α+ 2, then for all a > 0,

∫ a

0
ν(t)dt <∞,∫ a

0
ϕ
(
t

a

)
ν(t)dt ≤

∫ a

0
ν(t)dt <∞.

(4.24)

(iii) It is clear that the function

t −→ tp(α−1/2)A
1−p/2
α,β (t) (4.25)

is continuous on ]0,∞[. Consequently the measure dµ(t) is locally finite on ]0,∞[.
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(1) Now we will prove that the operator Tϕ defined latterly satisfies the sufficient con-
dition of Theorem 2.1. Then we must show that the functions

F(r)=
(∫∞

r
dµ(t)

)1/p(∫ r

0

(
ϕ
(
t

r

))p′

ν(t)dt
)1/p′

,

G(r)=
(∫∞

r

(
ϕ
(
r

t

))p

dµ(t)
)1/p(∫ r

0
ν(t)dt

)1/p′ (4.26)

are bounded on ]0,∞[. We put

I(r)=
(∫∞

r
dµ(t)

)1/p

=
(∫∞

r
tp(α−1/2)A

1−p/2
α,β (t)dt

)1/p

,

J(r)=
(∫ r

0
ν(t)dt

)1/p′

.

(4.27)

Since

∀t ∈ ]0,1[, ϕ(t)≤ 1, (4.28)

then

∀r > 0, F(r)≤ I(r)J(r),

∀r > 0, G(r)≤ I(r)J(r).
(4.29)

Now, we have

tp(α−1/2)A
1−p/2
α,β (t)= 2ρ(2−p)t2α+1−p cosh(2β+1)(t)(1−p/2)(t)

×
(

t

sinh(t)

)(2α+1)(p/2−1) (4.30)

and since p > 2α+ 2 > 2, we deduce that

∀t > 0, tp(α−1/2)A
1−p/2
α,β (t)≤ t2α+1−p (4.31)

and consequently

∀r > 0, I(r)≤
(

1
p− 2α− 2

)1/p

r(2α+2−p)/p. (4.32)

Furthermore, we have

J(r)=
(∫ r

0
ν(t)dt

)1/p′

=
(∫ r

0
A

1−p′
α,β (t)dt

)1/p′

. (4.33)

Since

A
1−p′
α,β (t)= 22ρ(1−p′)t(2α+1)(1−p′)

(
t

sinh(t)

)(2α+1)(1−p′)
cosh(2β+1)(1−p′)(t), (4.34)
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then

A
1−p′
α,β (t)≤ t(2α+1)(1−p′). (4.35)

Thus, we deduce that

∀r > 0, J(r)≤
(

1
(2α+ 1)(p′ − 1) + 1

)1/p′

r((2α+1)(1−p′)+1)/p′ . (4.36)

From the relations (4.32) and (4.36), we obtain

∀r > 0,
(∫∞

r
dµ(t)

)1/p(∫ r

0
ν(t)dt

)1/p′

= I(r)J(r)

≤
(

1
p− 2α− 2

)1/p( 1
(2α+ 1)(p′ − 1) + 1

)1/p′

(4.37)

and from the relations (4.29), it follows that both functions F and G are bounded on
]0,∞[. Therefore from Theorem 2.1, there exists a positive constant Dp,α,β such that, for
every nonnegative measurable function g, we have

(∫∞
0

(
Tϕ(g)(x)

)p
dµ(x)

)1/p

≤Dp,α,β

(∫∞
0

(
g(x)

)p
ν(x)dx

)1/p

. (4.38)

Let Tα,β be the operator defined, for every nonnegative measurable function f , by

∀x > 0, Tα,β( f )(x)= 1√
Aα,β(x)

∫ x

0
(x− y)α−1/2 f (y)dy. (4.39)

Then the operators Tα,β and Tϕ are connected by the following relation: for every non-
negative measurable function f , we have

∀x > 0, Tϕ(g)(x)= x1/2−α
√
Aα,β(x)Tα,β( f )(x), (4.40)

where

g(x)= f (x)
(
Aα,β(x)

)p′−1
. (4.41)

So the relation (4.38) implies that

(∫∞
0

(
Tα,β( f )(x)

)p
Aα,β(x)dx

)1/p

≤Dp,α,β

(∫∞
0

(
f (x)

)p
Aα,β(x)dx

)1/p

(4.42)

and from Lemma 4.3 we deduce that there exists a positive constant Cp,α,β such that for
every nonnegative measurable function f , we have

(∫∞
0

(
Rα,β( f )(x)

)p
Aα,β(x)dx

)1/p

≤ Cp,α,β

(∫∞
0

(
f (x)

)p
Aα,β(x)dt

)1/p

. (4.43)
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Now we consider f ∈ Lp([0,∞[,Aα,β(x)dx); then from the relation (4.43) we have

(∫∞
0

(
Rα,β

(| f |)(x)
)p
Aα,β(x)dx

)1/p

≤ Cp,α,β

(∫∞
0

(∣∣ f (x)
∣∣)pAα,β(x)dx

)1/p

<∞.

(4.44)

Hence the function

x −→ Rα,β
(| f |)(x) (4.45)

is finite almost everywhere. Then the function

x −→ Rα,β( f )(x) (4.46)

is defined almost everywhere, and

∣∣Rα,β( f )(x)
∣∣≤ Rα,β

(| f |)(x); (4.47)

therefore

(∫∞
0

∣∣Rα,β( f )(x)
∣∣pAα,β(x)dx

)1/p

≤ Cp,α,β

(∫∞
0

(∣∣ f (x)
∣∣)pAα,β(x)dx

)1/p

. (4.48)

This completes the proof of Theorem 4.2(1).
(2) From Theorem 2.3, we deduce that there exists a positive constant Dp,α,β such that

for every nonnegative measurable function h, we have

(∫∞
0

(
T∗ϕ (h)(x)

)p′
ν(x)dx

)1/p′

≤Dp,α,β

(∫∞
0

(
h(x)

)p′
dµ(x)

)1/p′

. (4.49)

Let g be a nonnegative measurable function, by setting

h(t)= t(p−1)(1/2−α)A
(1/2)(p−1)
α,β (t)g(t) (4.50)

and using the inequality (4.49), we deduce that

(∫∞
0

(
1

Aα,β(x)
T∗α,β(g)(x)

)p′

Aα,β(x)dx
)1/p′

≤Dp,α,β

(∫∞
0

(
g(x)

)p′
Aα,β(x)dx

)1/p′

,

(4.51)

where

T∗α,β(g)(x)=
∫∞
x

(t− x)α−1/2g(t)A1/2
α,β(t)dt (4.52)

is the dual operator of Tα,β.
Furthermore for every nonnegative measurable function g, we have

Wα,β(g)(x)≤ aα,βT
∗
α,β(g)(x), (4.53)
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where aα,β is the constant given by Lemma 4.3. Hence both inequalities (4.51) and (4.53)
involve that there exists a positive constant Cp,α,β such that, for every nonnegative mea-
surable function g, we have

(∫∞
0

(
1

Aα,β(x)
Wα,β(g)(x)

)p′

Aα,β(x)dx
)1/p′

≤ Cp,α,β

(∫∞
0

(
g(x)

)p′
Aα,β(x)dx

)1/p′

.

(4.54)

For g ∈ Lp′([0,∞[,Aα,β(x)dx), we complete the proof as the first assertion. �

Theorem 4.4. For −1/2 < β ≤ α < 1/2, α+β > 0, and p > max(2α+ 2,(4α+ 4β+ 4)/(4α+
2β+ 1)), there exists a positive constant Cp,α,β such that

(1) for every function f ∈ Lp(]0,∞[,Aα,β(x)dx),

∥∥Rα,β( f )
∥∥
p,α,β ≤ Cp,α,β‖ f ‖p,α,β, (4.55)

(2) for every function g ∈ Lp′(]0,∞[,Aα,β(x)dx),

∥∥∥∥ 1
Aα,β(x)

Wα,β(g)
∥∥∥∥
p′,α,β

≤ Cp,α,β‖g‖p′,α,β, (4.56)

where

p′ = p

p− 1
. (4.57)

The proof of this theorem needs the following lemma.

Lemma 4.5. For all −1/2 < β ≤ α < 1/2, and α+β > 0,

∀x > y > 0, 0≤ kα,β(x, y)≤ bα,β(x− y)α−1/2 1

coshα+β(x)sinhα+1/2(x)
, (4.58)

where

bα,β = 2Mα,β
Γ(α+ 1)

Γ(α+ 1/2)
√
π

,

Mα,β = max
0≤t≤1/2

∣∣∣∣F
(
α+β,α−β;α+

1
2

; t
)∣∣∣∣.

(4.59)

Proof of Lemma 4.5. from relation (1.3) and the fact that β ≤ α we deduce that

∀x > y > 0, 0≤ kα,β(x, y)

≤ 2−α+3/2Mα,βΓ(α+ 1)

Γ
(
α+ 1/2

)√
π

× (cosh2x− cosh2y)α−1/2 1

coshα+β(x)sinh2α(x)
.

(4.60)
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On the other hand

cosh(2x)− cosh(2y)= 2
(

sinh(x)− sinh(y)
)(

sinh(x) + sinh(y)
)

≥ 2sinh(x)
(

sinh(x)− sinh(y)
)
.

(4.61)

From mean value’s theorem and the fact that α < 1/2, we have

(
sinh(x)− sinh(y)

)α−1/2 ≤ (x− y)α−1/2; (4.62)

by using the inequalities (4.60), (4.61), and (4.62) we deduce that

kα,β(x, y)≤ 2Mα,β
Γ(α+ 1)

Γ
(
α+ 1/2

)√
π

(x− y)α−1/2 1

coshα+β(x)sinhα+1/2(x)

= bα,β(x− y)α−1/2 1

coshα+β(x)sinhα+1/2(x)

(4.63)

which proves the Lemma 4.5. �

Proof of Theorem 4.4. In this proof, we consider the functions ϕ, ν and the measure dµ
defined, respectively, by

ϕ(t)= (1− t)α−1/2,

ν(t)= A
1−p′
α,β (t),

dµ(t)= tp(α−1/2) sinh2α+1−p(α+1/2)(t)cosh2β+1−p(α+β)(t)dt.

(4.64)

(i) Since −1/2 < α < 1/2, the function ϕ is increasing on ]0,1[.
(ii) For p > 2α+ 2,

∫ a
0 ν(t)dt <∞ for all a > 0.

(iii)
∫ b
a dµ(t) <∞ for 0 < a < b <∞.

We will prove that the operator Tϕ satisfies the sufficient conditions of Theorem 3.1,
that is, there exists λ∈ [0,1] such that the function

F(r)=
(∫∞

r
ϕ
(
r

x

)λp
dµ(x)

)1/p(∫ r

0
ϕ
(
x

r

)p′(1−λ)

ν(x)dx
)1/p′

(4.65)

is bounded on ]0,∞[. In fact we denote

I(r)=
(∫∞

r
ϕ
(
r

x

)λp
dµ(x)

)1/p

,

J(r)=
(∫ r

0
ϕ
(
x

r

)p′(1−λ)

ν(x)dx
)1/p′

.

(4.66)

Since α < 1/2 and p > max(2α+ 2,(4α+ 4β+ 4)/(4α+ 2β+ 1)), we deduce that

(
I(r)

)p ≤Mα,β,p

∫∞
r
h(x)dx, (4.67)
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where

Mα,β,p =max

[
sup
[0,1]

((
sinh(x)

x

)2α+1−p(α+1/2)

cosh2β+1−p(α+β)(x)
)

,

sup
[1,∞[

(
cosh2β+1−p(α+β)(x)sinh2α+1−p(α+1/2)(x)e(p(2α+β+1/2)−(2α+2β+2))x

)]
,

h(x)=




(
1− r

x

)(α−1/2)λp

x2α+1−p, 0 < x ≤ 1,

(
1− r

x

)(α−1/2)λp

e(2α+2β+2−p(2α+β+1/2))x, 1 < x.

(4.68)

So if we pick λ in ]max(0,(1− p(1/2 +α))/p(1/2−α));min(1,1/p(1/2−α))], we can
prove that there exist C1(α,β, p) > 0 and C2(α,β, p) > 0 such that

I(r)≤ C1(α,β, p)r(2α+2−p)/p,

J(r)≤ C2(α,β, p)r((2α+1)(1−p′)+1)/p′ .
(4.69)

This involves that the function F is bounded on ]0,∞[. Then from Theorems 3.1 and
3.2, we know that there exists a positive constant C′p,α,β such that for every nonnegative
measurable function g, we have

(∫∞
0

(
Tϕ(g)(x)

)p
dµ(x)

)1/p

≤ C′p,α,β

(∫∞
0

(
g(x)

)p
ν(x)dt

)1/p

,

(∫∞
0

(
T∗ϕ (g)(x)

)p′
ν(x)dx

)1/p′

≤ C′p,α,β

(∫∞
0

(
g(x)

)p′
dµ(x)

)1/p′

.

(4.70)

Let Kα,β be the integral operator defined by

∀x > 0, Kα,β( f )(x)= 1

coshα+β(x)sinhα+1/2(x)

∫ x

0
(x− y)α−1/2 f (y)dy (4.71)

and its dual defined by

∀x > 0, K∗α,β( f )(x)=
∫∞
x

(t− x)α−1/2 f (t)sinh(1/2+α)(t)cosh(β−α+1)(t)dt. (4.72)

The operators Tϕ and Kα,β, respectively, T∗ϕ and K∗α,β are connected by the relation

∀x > 0, Tϕ
(
g1
)
(x)= x1/2−α coshα+β(x)sinhα+1/2(x)Kα,β( f )(x), (4.73)

where

∀x > 0, g1(x)= f (x)
(
Aα,β(x)

)p′−1
, (4.74)
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respectively,

∀x > 0, T∗ϕ
(
g2
)
(x)= K∗α,β( f )(x), (4.75)

where

g2(x)= f (x)x(p−1)(1/2−α) sinh(p−1)(1/2+α)(x)cosh(p−1)(α+β)(x). (4.76)

The relations (4.70), (4.73), and (4.75) imply that for every nonnegative measurable func-
tion f , we have

(∫∞
0

(
Kα,β( f )(x)

)p
Aα,β(x)dx

)1/p

≤Dp,α,β

(∫∞
0

(
f (x)

)p
Aα,β(x)dx

)1/p

,

(∫∞
0

(
1

Aα,β(x)
K∗α,β( f )(x)

)p′

Aα,β(x)dx
)1/p′

≤Dp,α,β

(∫∞
0

(
f (x)

)p′
Aα,β(x)dx

)1/p′

.

(4.77)

We complete the proof of Theorem 4.4 by the same way as Theorem 4.2 and using
Lemma 4.5. �
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