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We give de Leeuw-type transference theorems for bilinear multipliers. In particular, it is
shown that bilinear multipliers arising from regulated functions m(ξ,η) in R×R can be
transferred to bilinear multipliers acting on T×T and Z×Z. The results follow from the
description of bilinear multipliers on the discrete real line acting on Lp-spaces.

1. Introduction

Let (p1, p2, p3) be such that 0 < p1, p2, p3 ≤ ∞, 1/p1 + 1/p2 = 1/p3 and let m(ξ,η) be a
bounded measurable function on R2. It is said to be a bilinear (p1, p2)-multiplier on
R×R if

�m( f ,g)(x)=
∫
R2
f̂ (ξ)ĝ(η)m(ξ,η)e2πix(ξ+η)dξ dη (1.1)

(defined for Schwarzt test functions f and g in �) extends to a bounded bilinear operator
from Lp1 (R)×Lp2 (R) into Lp3 (R).

The theory of these multipliers has been tremendously developed after the results
proved by Lacey and Thiele (see [16, 18, 17]) which establish that m(ξ,ν)= sign(ξ +αν)
is a (p1, p2)-multiplier for each triple (p1, p2, p3) such that 1 < p1, p2 ≤∞, p3 > 2/3, and
each α∈R \ {0,1}.

The study of such multipliers was started by Coifman and Meyer (see [3, 4, 19]) for
smooth symbols and new results for nonsmooth symbols, extending the ones given by the
bilinear Hilbert transform, have been achieved by Gilbert and Nahmod (see [8, 9, 10])
and also by Muscalu et al. (see [20]).

We refer the reader also to [7, 12, 11, 15] for new results on bilinear multipliers and
related topics.

In a recent paper (see [7]), Fan and Sato have shown certain de Leeuw-type theorems
for transferring multilinear operators on Lebesgue and Hardy spaces fromRn to Tn. Here
we will consider bilinear multipliers on Lebesgue spaces Lp(R) and get a characterization
which allows us to transfer not only to the bilinear multipliers on T but also on Z. Our
approach will follow closely the ideas in the original paper by de Leeuw (see [6]) and will
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provide an alternative proof of some results in [7], whose proof follows, in the multilinear
case, the approach used by Stein and Weiss (see [21, page 260]).

We start by setting up natural analogous versions of bilinear multipliers in the peri-
odic and discrete cases. Let m = (mk,k′) be a bounded sequence and let m̃ be a periodic
function on T×T. Define for θ ∈ [−1/2,1/2],

�m( f ,g)(θ)=
∑
k∈Z

∑
k′∈Z

f̂ (k)ĝ(k′)mk,k′e
2πiθ(k+k′) (1.2)

for functions f , g defined on T, and for k ∈ Z,

�m̃(a,b)(k)=
∫ 1/2

−1/2

∫ 1/2

−1/2
P(t)Q(s)m̃(t,s)e2πik(t+s)dtds (1.3)

for sequences a= (a(n))n∈Z and b = (b(n))n∈Z, where P(t)=∑n∈Z a(n)e2πint and Q(t)=∑
n∈Z b(n)e2πint.
Now we say that m (resp., m̃) is a bilinear (p1, p2)-multiplier on Z×Z (resp., T×T )

if �m (resp., �m̃) defines a bounded bilinear operator from Lp1 (T)× Lp2 (T) into Lp3 (T)
(resp., �p1 (Z)× �p2 (Z) into �p3 (Z)), where 1/p1 + 1/p2 = 1/p3.

Of course we can see these three cases as instances of the general bilinear multiplier
acting on different groups. Let G be a locally compact abelian group and Ĝ its dual group
with Haar measure µ. Let 1≤ p1, p2 ≤∞ and let m be a bounded measurable function on
Ĝ× Ĝ. We say that m is a (p1, p2)-multiplier on Ĝ× Ĝ if the operator

Tm( f ,g)(x)=
∫
Ĝ

∫
Ĝ

� f
(
γ1
)
�g
(
γ2
)
m
(
γ1,γ2

)
γ1(−x)γ2(−x)dµ

(
γ1
)
dµ
(
γ2
)

(1.4)

(defined for simple functions f and g) extends to a bounded bilinear operator from
Lp1 (G)× Lp2 (G) to Lp3 (G), where 1/p1 + 1/p2 = 1/p3. The reader is referred to [14] for
the general theory in the linear case.

The first transference results on linear multipliers were given by de Leeuw (see [6]).
He showed, among other things, that if m is regulated (all its points are Lebesgue points)
and m is a p-multiplier on R, then (m(εk))k is a uniformly bounded p-multiplier for all
ε > 0 on Z (see [21, page 264] for the converse of this result for continuous multipliers).
Transference results of similar nature are presented in [1].

A general transference method was considered by [5] (see also the generalization given
by [13]), but we will not consider these approaches in our bilinear generalization in the
paper.

In [7], the multilinear version of the continuous result was shown, namely that for any
continuous function m(ξ,η), one has that m is a (p1, p2)-multiplier on R×R if and only
if m(εk,εk′)k,k′ is a uniformly bounded multiplier on Z×Z for ε > 0. An extension of the
result to Lorentz spaces was achieved in [2].
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We will first characterize the boundedness of bilinear multipliers on R×R by the
existence of a constant K such that∣∣∣∣∑

t∈R

∑
s∈R

m(t,s)µ
({t})ν({s})λ({t+ s})∣∣∣∣≤ K‖µ̂‖Bp1

‖ν̂‖Bp2
‖λ̂‖Bp′3 (1.5)

for all measures µ, ν, λ of finite supports.
This allows us to transfer from the continuous �m to the discrete case �m̃ recovering

some of the Fan-Sato results in [7].
We also obtain the transference from the continuous case �m to the periodic case

�m. Our main result establishes that m is a (p1, p2)-multiplier on R×R if and only if
Dεm=mε·,ε·χ[−1/2,1/2]×[−1/2,1/2] (extended by periodicity) are uniformly bounded (p1, p2)-
multipliers on T×T.

The reader should be aware that the results of the paper can be stated for multilin-
ear multipliers, with the condition 1/p =∑n

i=1(1/pi), by considering the corresponding
multilinear notions, for instance, for m(ξ1, . . . ,ξn), one has

�m
(
f1, . . . , fn

)
(x)=

∫
Rn
f̂1
(
ξ1
)··· f̂n(ξn)m(ξ1, . . . ,ξn

)
e2πix(ξ1+···+ξn)dξ1 ···dξn, (1.6)

and similar modifications for �m and �m̃. We simply do the bilinear case for the sake of
simplicity.

Throughout the paper, 1 ≤ p1, p2, p3 ≤∞ and 1/p3 = 1/p1 + 1/p2. For a given finite
Borel measure µ on R, we write µ̂(ξ) = ∫R e−2πiξtdµ(t) and, for an almost periodic func-

tion g, we denote ‖g‖Bp = limT→∞((1/2T)
∫ T
−T |g(t)|pdt)1/p. We will use the notations

Dεm(x, y)=m(εx,εy) and φε(x)= (1/ε)φ(x/ε).

2. Bilinear multipliers onR×R
We start by reformulating the condition of (p1, p2)-multiplier on R×R using duality.
The proof is straightforward and is left to the reader.

Lemma 2.1. Let m(ξ,η) be a bounded measurable function on R×R. Then m is a (p1, p2)-
multiplier on R×R if and only if there exists a constant K so that

∣∣∣∣∫
R2
φ(ξ)ψ(η)ν(ξ +η)m(ξ,η)dξdη

∣∣∣∣≤ K‖φ̂‖p1‖ψ̂‖p2‖ν̂‖p′3 (2.1)

for all φ,ψ,ν∈�.

Now we present some behavior of multipliers on R×R with respect to convolution
and dilation operators to be used later on.

Lemma 2.2. Let m(ξ,η) be a bounded measurable function on R×R. If Φ ∈ L1(R2) and
m is a (p1, p2)-multiplier on R×R, then Φ∗m is a (p1, p2)-multiplier on R×R and
‖�Φ∗m‖ ≤ ‖Φ‖1‖�m‖, where ‖�m‖ stands for the norm of the corresponding bilinear map
from Lp1 (R)×Lp2 (R) into Lp3 (R).
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Proof. Let fs(x)= f (x+ s) for any s∈R and function f . Then for any s, t ∈R and φ,ψ,ν∈
� with ‖φ̂‖p1 = ‖ψ̂‖p2 = ‖ν̂‖p′3 = 1, we have

∣∣∣∣∫
R2
φs(ξ)ψt(η)νt+s(ξ +η)m(ξ,η)dξ dη

∣∣∣∣≤ K. (2.2)

Now

∫
R2
φ(ξ)ψ(η)ν(ξ +η)Φ∗m(ξ,η)dξ dη

=
∫
R2
φ(ξ)ψ(η)ν(ξ +η)

(∫
R2
m(ξ − s,η− t)Φ(s, t)dsdt

)
dξ dη

=
∫
R2

∫
R2
φ(ξ + s)ψ(η+ t)ν(ξ +η+ s+ t)m(ξ,η)Φ(s, t)dξdηdsdt.

(2.3)

And the result follows by Lemma 2.1. �

Lemma 2.3. Let ε > 0 and m(ξ,η) be a (p1, p2)-multiplier on R×R. Then m(εξ,εη) is also
a (p1, p2)-multiplier on R×R and ‖�m(ε·,ε·)‖ ≤ ‖�m‖.

Proof. For φ,ψ,ν∈� and ‖φ̂‖p1 = ‖ψ̂‖p2 = ‖ν̂‖p′3 = 1, we have

∫
R2
φ(ξ)ψ(η)ν(ξ +η)m(εξ,εη)dξ dη

=
∫
R2

1
ε1/p′1

φ
(
ξ

ε

)
1

ε1/p′2
ψ
(
η

ε

)
1

ε1/p3
ν
(
ξ +η
ε

)
m(ξ,η)dξ dη.

(2.4)

The proof is finished invoking Lemma 2.1 again. �

Theorem 2.4. Let m(ξ,η) be a bounded continuous function on R×R. The following are
equivalent:

(i) m is a (p1, p2)-multiplier on R×R;
(ii) there exists a constant K so that

∣∣∣∣∣∑
t∈R

∑
s∈R

m(t,s)µ
({t})ν({s})λ({t+ s})∣∣∣∣∣≤ K‖µ̂‖Bp1

‖ν̂‖Bp2
‖λ̂‖Bp′3 (2.5)

for all measures µ, ν, λ supported on a finite number of points.

Proof. (i)⇒(ii). Assume that m is a (p1, p2)-multiplier on R×R. Denote by φ the Gauss-
ian function φ(x)= e−x2/2. Then for any α > 0 and a∈R,

(
1
ε

)α
φα
(
ξ − a
ε

)
= δa∗

(
φε
)α

(ξ). (2.6)
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Now choose 0 < α,β,γ such that α+β+ γ = 2, and µ= δa, ν= δb, and λ= δc for a,b,c ∈R.
It is easily checked that∫

R2

1
ε2
φα
(
ξ − a
ε

)
φβ
(
η− b
ε

)
φγ
(
ξ +η− c

ε

)
m(ξ,η)dξ dη

=
∫
R2
φα(ξ)φβ(η)φγ

(
ξ +η+

a+ b− c
ε

)
m(a+ εξ,b+ εη)dξ dη

=
∫
R2
µ∗ (φε)α(ξ)ν∗ (φε)β(η)λ∗ (φε)γ(ξ +η)m(ξ,η)dξ dη.

(2.7)

Since

lim
ε→0

φα(ξ)φβ(η)φγ
(
ξ +η+

a+ b− c
ε

)
m(a+ εξ,b+ εη)

= δc(a+ b)φα(ξ)φβ(η)φγ(ξ +η)m(a,b),
(2.8)

the Lebesgue convergence theorem implies that

lim
ε→0

∫
R2

1
ε2
φα
(
ξ − a
ε

)
φβ
(
η− b
ε

)
φγ
(
ξ +η− c

ε

)
m(ξ,η)dξ dη

= Cm(a,b)δc(a+ b)= Cm(a,b)µ
({a})ν({b})λ({a+ b}), (2.9)

where C = ∫R2 φα(ξ)φβ(η)φγ(ξ +η)dξdη.
Therefore we have

lim
ε→0

∫
R2
µ∗ (φε)α(ξ)ν∗ (φε

)β
(η)λ∗ (φε)γ(ξ +η)m(ξ,η)dξ dη

= C
∑
t∈R

∑
s∈R

m(t,s)µ
({t})ν({s})λ({(t+ s)

}) (2.10)

for all measures µ, ν, λ having their supports on finite sets of points.
On the other hand, from (i) and Lemma 2.1, we have∣∣∣∣∫

R2
µ∗ (φε)α(ξ)ν∗ (φε)β(η)λ∗ (φε)γ(ξ +η)m(ξ,η)dξ dη

∣∣∣∣
≤ K∥∥µ̂(̂φε)α∥∥p1

∥∥∥ν̂
(̂
φε
)β∥∥∥

p2

∥∥∥λ̂(̂φε)γ∥∥∥
p′3
.

(2.11)

We now choose α=1/p′1, β=1/p′2, and γ = 1/p3. Since (φε)α = ε1−α/α1/2φεα−1/2 , we get

(̂φε)α(ξ) = Cαε1/p1e−ε2ξ2/2α, (̂φε)β(ξ) = Cβε1/p2e−ε2ξ2/2β, and (̂φε)γ(ξ)=Cγε1/p3e−ε2ξ2/2γ for
some constants Cα, Cβ, and Cγ.

Now taking into account that
∫
R e

−ε2p1ξ2/2αdξ = C′αε−1, we have

∥∥∥µ̂(̂φε)α∥∥∥
p1
= C

(
1

A(ε)

∫
R

∣∣µ̂(ξ)
∣∣p1ε−p1ε2ξ2/2αdξ

)1/p1

, (2.12)

for A(ε)= ∫R e−ε2p1ξ2/2αdξ. Hence C‖µ̂‖Bp1
= limε→0‖µ̂φ̂αε ‖p1 .

Applying a similar procedure for ν and λ, we finish this implication.
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(ii)⇒(i). From (ii) we can get that the inequality holds for all finite measures µ, ν, λ,
with countable supports. We take φ, ψ, and ρ such that φ̂, ψ̂, and ρ̂ have compact support
contained in [−N/2,N/2] for N big enough. Now consider µN , νN , and λN the measures
with support in (1/N)Z whose Fourier transform coincides with the periodic extensions
of φ̂, ψ̂, and ρ̂. In particular, we have

µN

({
n

N

})
= 1
N
φ
(
n

N

)
, νN

({
n

N

})
= 1
N
ψ
(
n

N

)
, λN

({
n

N

})
= 1
N
ρ
(
n

N

)
.

(2.13)

Therefore we have

lim
N→∞

N
∑

(t,s)∈R×R
m(t,s)µN

({t})νN({s})λN({t+ s})
= lim

N→∞

∑
(n,m)∈Z×Z

m
(
n

N
,
m

N

)
φ
(
n

N

)
ψ
(
m

N

)
ρ
(
n+m
N

)
1
N2

=
∫
R2
m(ξ,ν)φ(ξ)ψ(η)ρ(ξ +η)dξ dη.

(2.14)

Now observe that ‖µ̂N‖Bp1
= ((1/2N)

∫N
−N |φ̂(ξ)|p1dξ)1/p1 = (1/2N)1/p1‖φ̂‖p1 and the

same for the others.
Using that ‖µ̂N‖Bp1

· ‖ν̂N‖Bp2
‖λ̂N‖Bp′3 = 1/2N and passing to the limit, we get the result.

�

Remark 2.5. We point out that condition (ii) in Theorem 2.4 is simply a way to say that
m defines a multiplier on D×D where D is the group R with the discrete topology (see
[6]).

Recall that a function m is called regulated if

lim
ε→0

1
4ε2

∫ ε
−ε

∫ ε
−ε
m(x− s, y− t)dsdt =m(x, y) (2.15)

for all (x, y)∈R2.

Theorem 2.6. Let m(ξ,η) be a bounded regulated function on R×R. Then m is a (p1, p2)-
multiplier on R×R if and only if there exists a constant K so that

∣∣∣∣∣∑
t∈R

∑
s∈R

m(t,s)µ
({t})ν({s})λ({t+ s})∣∣∣∣∣≤ K‖µ̂‖Bp1

‖ν̂‖Bp2
‖λ̂‖Bp′3 (2.16)

for all measures µ, ν, λ having their supports on finite sets of points.

Proof. Assume that m is a (p1, p2)-multiplier. Let Φ(s, t) = (1/4)χ[−1,1](s)χ[−1,1](t) and
Φε(ξ,η) = (1/ε2)Φ(ξ/ε,η/ε) for ε > 0. Now Lemma 2.2, Theorem 2.4, and the fact that
m(x, y)= limε→0m∗Φε(x, y) give the direct implication.
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Conversely, assume (2.16) for µ, ν, λ having finite supports. Then

∑
t∈R

∑
s∈R

(
m∗Φε

)
(t,s)µ

({t})ν({s})λ({t+ s})
=
∫
R2

(∑
t∈R

∑
s∈R

m(t−u,s− v)µ
({t})ν({s})λ({t+ s}))Φε(u,v)dudv

=
∫
R2

(∑
t∈R

∑
s∈R

m(t,s)µ
({t+u})ν({s+ v})λ({t+ s+u+ v}))Φε(u,v)dudv.

(2.17)

This shows that m∗Φε verifies (2.16) with a uniform constant for all ε > 0. Now apply
Theorem 2.4 to get that m∗Φε are (p1, p2)-multipliers with uniform norm.

Finally we have that for φ,ψ,ν∈�,

∣∣∣∣∫
R2
φ(ξ)ψ(η)ν(ξ +η)m(ξ,η)dξ dη

∣∣∣∣
=
∣∣∣∣ lim
ε→0

∫
R2
φ(ξ)ψ(η)ν(ξ +η)

(
m∗Φε

)
(ξ,η)dξ dη

∣∣∣∣
≤ C‖φ̂‖p1‖ψ̂‖p2‖ν̂‖p′3 .

(2.18)

The result now follows from Lemma 2.1. �

3. Transference theorems

We mention the formulations for (p1, p2)-multipliers on the groups T and Zwhich follow
directly from duality.

Lemma 3.1. Let m̃(t,s) be a bounded measurable function on T×T. Then m is a (p1, p2)-
multiplier on T×T if and only if there exists a constant K so that

∣∣∣∣∫ 1/2

−1/2

∫ 1/2

−1/2
Pa(t)Pb(s)Pc(t+ s)m̃(t,s)dtds

∣∣∣∣≤ K‖a‖p1‖b‖p2‖c‖p′3 (3.1)

for all finite sequences (a(n))n, (b(n))n, (c(n))n, where Pa(t)=
∑

n a(n)e2πint.

Lemma 3.2. Let (mk,k′) be a bounded sequence on Z×Z. Then m is a (p1, p2)-multiplier on
Z×Z if and only if there exists a constant K so that

∣∣∣∣∑
k∈Z

∑
k′∈Z

mk,k′ P̂(k)Q̂
(
k′
)
R̂
(
k+ k′

)∣∣∣∣≤ K‖P‖p1‖Q‖p2‖R‖p′3 (3.2)

for all trigonometric polynomials P, Q, and R.

Theorem 3.3 (see [7, Theorem 1]). Let m(ξ,η) be a regulated bounded function onR×R.
If m(ξ,η) is a (p1, p2)-multiplier on R×R, then (m(k,k′))k,k′ is a (p1, p2)-multiplier on
Z×Z.
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Proof. According to Lemma 3.2, we have to show that there exists a constant K so that∣∣∣∣∣∑
k∈Z

∑
k′∈Z

m
(
k,k′

)
P̂(k)Q̂

(
k′
)
R̂
(
k+ k′

)∣∣∣∣∣≤ K‖P‖p1‖Q‖p2‖R‖p′3 (3.3)

for all trigonometric polynomials P, Q, and R.
This follows by selecting the measures µ, ν, λ in Theorem 2.6 such that µ̂ = P, ν̂= Q,

and λ̂= R. �

Theorem 3.4. Let m(ξ,η) be a bounded regulated function on R×R. The following are
equivalent:

(i) m(ξ,η) is a (p1, p2)-multiplier on R×R;
(ii) m(ε·,ε·)χ[−1/2ε,1/2ε]χ[−1/2ε,1/2ε] (extended by periodicity) are uniformly bounded

(p1, p2)-multipliers on T×T.

Proof. (i)⇒(ii). Using Lemma 3.1, it suffices to show that for any finite sequences (a(n))n,
(b(n))n, and (c(n))n with ‖a‖p1 = ‖b‖p2 = ‖c‖p′3 = 1, there exists a constant K > 0 such
that ∣∣∣∣∫ 1/2

−1/2

∫ 1/2

−1/2
m(ξ,η)Pa(ξ)Pb(η)Pc(ξ +η)dξ dη

∣∣∣∣≤ K , (3.4)

where Pa(ξ)=∑n a(n)e2πinξ .
Since Pa(x)χ[−1/2,1/2](x)= φ̂a(x), where φa(x) =∑n a(n)(sin(π(x−n))/π(x−n)), and

Pc(x)χ[−1,1](x)= ψ̂c(x), where ψc(x)=∑n c(n)(sin(2π(x−n))/π(x−n)), we can write∫ 1/2

−1/2

∫ 1/2

−1/2
m(ξ,η)Pa(ξ)Pb(η)Pc(ξ +η)dξ dη

=
∫
R

∫
R
m(ξ,η)φ̂a(ξ)φ̂b(η)ψ̂c(ξ +η)dξ dη.

(3.5)

Using now the assumption and Shanon’s sampling theorem, one gets ‖ψa‖Lp(R) ≤
C1‖φa‖Lp(R) ≤ C2‖a‖�p ≤ C3‖ψa‖Lp(R) for some constants Ci for i= 1,2,3. Hence the de-
sired inequality follows.

Now we apply Lemma 2.3 to get the result for each ε.
(ii)⇒(i). We take φ and ψ such that suppφ and suppψ are contained in [−1/4,1/4].

For a fixed u ∈ [−1/2,1/2], consider the periodic extensions of the functions φ̂(ξ)e2πiuξ ,
ψ̂(η)e2πiuη to be denoted P̃u and Q̃u, respectively.

If au(n)= ∫ 1/2
−1/2 P̃u(ξ)e−i2πnξdξ, bu(n)= ∫ 1/2

−1/2 Q̃u(ξ)e−i2πnξdξ for all n∈ Z, we have that
if x = k+u for some k ∈ Z and u∈ [−1/2,1/2),∫

R

∫
R
m(ξ,η)φ̂(ξ)ψ̂(η)e2πix(ξ+η)dξ dη

=
∫ 1/2

−1/2

∫ 1/2

−1/2
m(ξ,η)P̃u(ξ)Q̃u(η)e2πik(ξ+η)dξ dη.

(3.6)

Let m̃(ξ,η)=m(ξ,η)χ[−1/2,1/2](ξ)χ[−1/2,1/2](η). Hence for x = u+ k,

�m(φ,ψ)(x)=�m̃
(
au,bu

)
(k). (3.7)
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Now∫
R

∣∣�m(φ,ψ)(x)
∣∣p3dx

=
∑
k

∫ 1/2

−1/2

∣∣�m(φ,ψ)(k+u)
∣∣p3du

=
∫ 1/2

−1/2

∑
k

∣∣�m̃
(
au,bu

)
(k)
∣∣p3du

≤ ∥∥�m̃

∥∥p3

∫ 1/2

−1/2

(∑
k

∣∣au(k)
∣∣p1

)p3/p1(∑
k

∣∣bu(k)
∣∣p2

)p3/p2

du

≤ ∥∥�m̃

∥∥p3

(∫ 1/2

−1/2

∑
k

∣∣au(k)
∣∣p1du

)p3/p1(∫ 1/2

−1/2

∑
k

∣∣bu(k)
∣∣p2du

)p3/p2

= ∥∥�m̃

∥∥p3

(∫ 1/2

−1/2

∑
k

∣∣φ(u+ k)
∣∣p1du

)p3/p1(∫ 1/2

−1/2

∑
k

∣∣ψ(u+ k)
∣∣p2du

)p3/p2

= ∥∥�m̃

∥∥p3
∥∥φ∥∥p3

p1

∥∥ψ∥∥p3

p2
.

(3.8)

In the general case if φ, ψ are such that φ̂, ψ̂ have compact support, then there exists
ε > 0 so that φ̂ε, ψ̂ε have their support in [−1/4,1/4]. Now observe that

�m(φ,ψ)(x)= ε2Cm(ε·,ε·)
(
φε,ψε

)
(εx). (3.9)

Applying the previous case and the assumption, we obtain∥∥�m(φ,ψ)
∥∥
p3
= ε2−1/p3

∥∥Cm(ε·,ε·)
(
φε,ψε

)∥∥
p3

≤ Kε2−1/p3
∥∥φε∥∥p1

∥∥ψε∥∥p2

= Kε2−1/p3‖φ‖p1ε
−1/p′1‖ψ‖p1ε

−1/p′2

= K‖φ‖p1‖ψ‖p1 .

(3.10)

�
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