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We give de Leeuw-type transference theorems for bilinear multipliers. In particular, it is
shown that bilinear multipliers arising from regulated functions m(&,#) in R X R can be
transferred to bilinear multipliers acting on T X T and Z X Z. The results follow from the
description of bilinear multipliers on the discrete real line acting on LP-spaces.

1. Introduction

Let (p1, p2, p3) be such that 0 < py, pa, ps < 00, 1/p1 +1/p2 = 1/p3 and let m(&,7) be a
bounded measurable function on R2. It is said to be a bilinear (p;, p2)-multiplier on
R x R if

ColF.90) = | FOGUImE M€ dt ay (L1

(defined for Schwarzt test functions f and g in &) extends to a bounded bilinear operator
from LP'(R) x LP2(R) into LP3(R).

The theory of these multipliers has been tremendously developed after the results
proved by Lacey and Thiele (see [16, 18, 17]) which establish that m(&,v) = sign(¢ + av)
is a (p1, p2)-multiplier for each triple (p1, p2, p3) such that 1 < py, ps < o0, p3 >2/3, and
eachae R\ {0,1}.

The study of such multipliers was started by Coifman and Meyer (see [3, 4, 19]) for
smooth symbols and new results for nonsmooth symbols, extending the ones given by the
bilinear Hilbert transform, have been achieved by Gilbert and Nahmod (see [8, 9, 10])
and also by Muscalu et al. (see [20]).

We refer the reader also to [7, 12, 11, 15] for new results on bilinear multipliers and
related topics.

In a recent paper (see [7]), Fan and Sato have shown certain de Leeuw-type theorems
for transferring multilinear operators on Lebesgue and Hardy spaces from R” to T". Here
we will consider bilinear multipliers on Lebesgue spaces LP(R) and get a characterization
which allows us to transfer not only to the bilinear multipliers on T but also on Z. Our
approach will follow closely the ideas in the original paper by de Leeuw (see [6]) and will
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provide an alternative proof of some results in [7], whose proof follows, in the multilinear
case, the approach used by Stein and Weiss (see [21, page 260]).

We start by setting up natural analogous versions of bilinear multipliers in the peri-
odic and discrete cases. Let m = (my ) be a bounded sequence and let 7 be a periodic
function on T X T. Define for 6 € [—1/2,1/2],

Pou(£,0)0) = > S FR)GK ymyp ¥ 00+K) (1.2)

keZ k'ez

for functions f, g defined on T, and for k € Z,

1/2 1/2
Gy, b)( I (H)Qs)F(t, 5)e2 k) 4t ds (1.3)

1/2 1/2

for sequences a = (a(n)),ez and b = (b(n)),cz, where P(t) = >, cza(n)e?™™ and Q(t) =
ez b(n)e?™ ™,

Now we say that m (resp., m) is a bilinear (py, p2)-multiplier on Z X Z (resp., Tx T )
if P, (resp., D) defines a bounded bilinear operator from LP1(T) x LP2(T) into LP*(T)
(resp., €P1(Z) X €P2(Z) into €P3(Z)), where 1/p; +1/p, = 1/ps.

Of course we can see these three cases as instances of the general bilinear multiplier
acting on different groups. Let G be a locally compact abelian group and G its dual group
with Haar measure p. Let 1 < py, po < oo and let m be a bounded measurable function on
Gx G. We say that m is a (pi, p2)-multiplier on G x G if the operator

Tu(f.8)(x) = JG Jé@f(yl)?fg(yz)m(ybVz)yl(—x)n(—x)d#(yl)d#(Yz) (1.4)

(defined for simple functions f and g) extends to a bounded bilinear operator from
LP(G) x LP2(G) to LP*(G), where 1/py +1/p> = 1/p3. The reader is referred to [14] for
the general theory in the linear case.

The first transference results on linear multipliers were given by de Leeuw (see [6]).
He showed, among other things, that if m is regulated (all its points are Lebesgue points)
and m is a p-multiplier on R, then (m(ek))i is a uniformly bounded p-multiplier for all
e>0on Z (see [21, page 264] for the converse of this result for continuous multipliers).
Transference results of similar nature are presented in [1].

A general transference method was considered by [5] (see also the generalization given
by [13]), but we will not consider these approaches in our bilinear generalization in the
paper.

In [7], the multilinear version of the continuous result was shown, namely that for any
continuous function m(&,#), one has that m is a (py, p2)-multiplier on R X R if and only
if m(ek, ek’ ) is a uniformly bounded multiplier on Z X Z for € > 0. An extension of the
result to Lorentz spaces was achieved in [2].
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We will first characterize the boundedness of bilinear multipliers on R X R by the
existence of a constant K such that

> X mt)u(teh) v({sHA(it+s1) | <Kl@ls, 191, 13115, (1.5)

teR seR

for all measures g, v, A of finite supports.

This allows us to transfer from the continuous 6,, to the discrete case % recovering
some of the Fan-Sato results in [7].

We also obtain the transference from the continuous case 6,, to the periodic case
P . Our main result establishes that m is a (p;, p2)-multiplier on R X R if and only if
Dem = mg. ¢ X[-1/2,1/21x[-1/2,1/2] (extended by periodicity) are uniformly bounded (p1, p,)-
multipliers on T x T.

The reader should be aware that the results of the paper can be stated for multilin-
ear multipliers, with the condition 1/p = >/, (1/p;), by considering the corresponding
multilinear notions, for instance, for m(¢,...,&,), one has

Colfirrrs )0 = [ FiE) - foE)m(nr )26 500 o, (16)

and similar modifications for ?,, and 9. We simply do the bilinear case for the sake of
simplicity.

Throughout the paper, 1 < py, ps, p3 < o and 1/p3 = 1/p; + 1/p,. For a given finite
Borel measure y on R, we write i(§) = [ e~ ?"**du(t) and, for an almost periodic func-
tion g, we denote [|gllp, = limy_«((1/27T) f,TT lg(t)17dt)VP. We will use the notations
D,m(x,y) = m(ex,ey) and ¢.(x) = (1/e)$(x/e).

2. Bilinear multipliers on R X R

We start by reformulating the condition of (pi, p,)-multiplier on R X R using duality.
The proof is straightforward and is left to the reader.

LemMma 2.1. Let m(&,1) be a bounded measurable function on R X R. Then m is a (p1, p2)-
multiplier on R X R if and only if there exists a constant K so that

[ $©w &+ mm(E ndgdn| < KNG 191,151 @)

forall p,y,ve .

Now we present some behavior of multipliers on R X R with respect to convolution
and dilation operators to be used later on.

Lemma 2.2. Let m(&,n) be a bounded measurable function on R X R. If ® € L'(R?) and
m is a (p1, p2)-multiplier on R X R, then @ *x m is a (py, po)-multiplier on R X R and
1Cpsmll < D116 I, where |6,,1| stands for the norm of the corresponding bilinear map
from LP*(R) x LP2(R) into LP3(R).
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Proof. Let fi(x)= f(x+s) foranys € R and function f. Then foranys,t € Rand ¢,y,v €
S with [|¢llp, = l1¥llp, = 7], = 1, we have

|| @+ mmEmdgdn| <K 22)
Now

[ o+ 0 s me. g dn
- J Py (mv(&+n) (J m(€ —s,n— t)CD(s,t)dsdt) dédn (2.3)
R2 R2
= JRZ JRZ d(E+5)y(n+t)v(E+n+s+t)ym(En)D(s,t)dEdn dsdt.

And the result follows by Lemma 2.1. O

LemMa 2.3. Let ¢ >0 and m(&,n) be a (p1, p2)-multiplier on R X R. Then m(e,en) is also
a (p1, p2)-multiplier on R X R and [|€m(e.e) | < 1€l

Proof. For ¢,y,v € ¥ and |I$Hp1 = ||1/A/||p2 = |I$|Ip3 =1, we have

| 9@y &+ mim(et.endg dn

- anaz 81}1’1 ¢<§) gl}pé W(g) 51}1’3 V(%)'ﬂ(f,ﬂ)dgdq.

The proof is finished invoking Lemma 2.1 again. O

(2.4)

Tueorem 2.4. Let m(&,n) be a bounded continuous function on R X R. The following are
equivalent:

(1) mis a (p1, p2)-multiplier on R X R;

(i) there exists a constant K so that

S S mt (i) v(sHA((t+s}) | < Klills,, 19115, 13115, (2.5)

teR seR

for all measures y, v, A supported on a finite number of points.

Proof. (i)=(ii). Assume that m is a (p1, p2)-multiplier on R X R. Denote by ¢ the Gauss-
ian function ¢(x) = e *"/2. Then for any a >0 and a € R,

(1) e (529) = 0% (g0 2.6)



Oscar Blasco 549

Now choose 0 < a, 3,y such thata++y = 2,and p = 8,, v = §p, and A = §, fora,b,c € R.
It is easily checked that

ng slz‘pa(ta)w"(";b)¢y(£+z_6)m(£,n)d£dn
= [ oo g0+
= JRZ# s (8e) “(E)v s (de) A 5 () (€ + )m(E,)dE dy.

_C>m(a+sf,b+s;1)dfdi1 (2.7)

Since

£i£1(}¢“(f)¢ﬁ(17)¢7 <f+11+ arv- C)m(a+sf,b+sr;)

(2.8)
= 8c(a+b)p* (§)¢F ()¢ (& +n)m(a,b),
the Lebesgue convergence theorem implies that
. 1 o (&—a\ sz(n—b E+n—c
lslg)l R: €2 ¢ ( € )¢ ( € >¢y( £ )m(f,q)d{dﬂ (2.9)
= Cm(a,b)0c(a+b) = Cm(a,b)u({a})v({b})A({a+b}),
where C = [p. %(§)¢P ()" (& +1)dEdn.
Therefore we have
1333 k() (E)vx (¢e) (A5 (¢e)” (& +m)m(E, n)dE dn
(2.10)
=CY > mt)u({t})v({sHA({(t+5)})
teR seR
for all measures g, v, A having their supports on finite sets of points.
On the other hand, from (i) and Lemma 2.1, we have
i ($) (v (9 (DA ()7 (E+mym(E pddn
R? (2.11)

g’

< kllalgo" I, (g0

P

We now choose a= l/pl, B=1/p3, and y = 1/p3. Since ( ng )¢ = e/ a2 Pep12, we get
(¢e f _ Cael/Ple*5252/2“ (¢ ﬁ(f) Cﬁsl/pzefﬁfl/zﬁ and ¢€ y(f) _ C el/psp— £282/2y for
some constants Cy, Cg, and C,.

Now taking into account that [ e=¢'P1¢/22d¢ = Cle™!, we have

l

oo ( J A | "e P‘fzfz/mdf) , (2.12)

a(s)|| =

for A(e) = [ e ¢'P1¥7/24d¢. Hence Cl|fillp, = lim_o A% p, -
Applymg a similar procedure for v and A, we finish this implication.
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(if)=(i). From (ii) we can get that the inequality holds for all finite measures y, », A,
with countable supports. We take ¢, v, and p such that ¢, §/, and 5 have compact support
contained in [—N/2,N/2] for N big enough. Now consider yy, vy, and Ay the measures
with support in (1/N)Z whose Fourier transform coincides with the periodic extensions
of (E, 1?, and ﬁ In particular, we have

(i) -we) AR -wv() WD -welR)

(2.13)
Therefore we have
lim N > m(t,s)un ({1 wn ({sH) A ({t+5})
(t,s)ERXR
. n m n m n+m\ 1
tm 5w )e(5)v(%)e (") v (2.14)

(n,m)eZXZ

= | mENSOWp(E i dn,

Now observe that [|iylls, = ((1/2N) [Ny 1$(€)1PdE)VP = (1/2N)VP1||$]l, and the
same for the others. R

Using that || iy I8, - 1PN 15, IAN ”Bp; = 1/2N and passing to the limit, we get the result.

O

Remark 2.5. We point out that condition (ii) in Theorem 2.4 is simply a way to say that
m defines a multiplier on D X D where D is the group R with the discrete topology (see

[6]).

Recall that a function m is called regulated if

ISIE%EJ I m(x —s,y —t)dsdt = m(x, y) (2.15)

forall (x,y) € R2.

TueOREM 2.6. Let m(&,1) be a bounded regulated function on R X R. Then mis a (p1, p2)-
multiplier on R X R if and only if there exists a constant K so that

S5 mts)u({th) v({sHA({t+s})

teR seR

< Kllglls,, 1915, 85, (2.16)

for all measures y, v, A having their supports on finite sets of points.

Proof. Assume that m is a (p1, po)-multiplier. Let O(s,t) = (1/4)x1-1,11(s)x1-1,17(¢) and
O.(&,n) = (1/62)D(E/e,n/e) for €>0. Now Lemma 2.2, Theorem 2.4, and the fact that
m(x, y) =lim,_om * Og(x, y) give the direct implication.
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Conversely, assume (2.16) for y, v, A having finite supports. Then

D > (mx @) (L)u({t))v({sh)A({t+5})

teR seR

J (ZZ (t—u,s—v) ({t})v({s})/\({t-f-S}))q)s(u,V)dudV (2.17)

teR seR

J (Z z p({t+ul)y ({5+v}))t({t+s+u+v}))CDs(u,v)dudv.

teR seR

This shows that m * @, verifies (2.16) with a uniform constant for all ¢ > 0. Now apply
Theorem 2.4 to get that m * @, are (p;, p»)-multipliers with uniform norm.
Finally we have that for ¢,y,v € &,

IR GG

lim | @E)Y()v(E -+ ) (m+ ) (& n)dE dn (2.18)

e—0 JR
< Cligllp, 191l p, 1911 -

The result now follows from Lemma 2.1. O

3. Transference theorems

We mention the formulations for (p;, p,)-multipliers on the groups T and Z which follow
directly from duality.

Lemma 3.1. Let m(t,s) be a bounded measurable function on T X T. Then m is a (p1, p2)-
multiplier on T X T if and only if there exists a constant K so that

1/2 1/2
Hmjm (DPy ()Pt + )it )dtds| < Kllallp I1blplcly;  (3.1)

for all finite sequences (a(n))u, (b(n)), (e(n)), where Po() = 3, a(n)e>m.

LEmMMA 3.2. Let (my ) be a bounded sequence on Z X Z. Then m is a (p1, p2)-multiplier on
Z X Z if and only if there exists a constant K so that

> > mer PU)QUK)R(k+K) | < KIIPIL, QI IR (3.2)

keZ k' ez

for all trigonometric polynomials P, Q, and R.

TueoOREM 3.3 (see [7, Theorem 1]). Let m(&,n) be a regulated bounded function on R X R.
If m(&,n) is a (p1, p2)-multiplier on R X R, then (m(k,k'))ix is a (p1, p2)-multiplier on
7 XZ.
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Proof. According to Lemma 3.2, we have to show that there exists a constant K so that

S N m PUOQK)R(k+K') | < KIIPllp, I1Qllp, IRIl 5 (3.3)

keZ k' ez

for all trigonometric polynomials P, Q, and R.
This follows by selecting the measures p, ¥, A in Theorem 2.6 such that i =P, 7% = Q,
and A = R. O

TueoreMm 3.4. Let m(&,1) be a bounded regulated function on R X R. The following are
equivalent:
m(&,n) is a (p1, p2)-multiplier on R X R;
(ii) m(e-,e-)X[=1/26,1/26] X[-1/2¢,1/2¢] (extended by periodicity) are uniformly bounded
(p1, p2)-multipliers on T X T.

Proof. (i)=(ii). Using Lemma 3.1, it suffices to show that for any finite sequences (a(n)),,
(b(n))n, and (c(n)), with [lall,, = bll,, = licllp; = 1, there exists a constant K > 0 such
that

12 12
] mEmPa@PuPag + mddn| <K, (4)
1/2)-112
where P,(§) = 3, a(n)e¥ "t

Since Pa(x)x(- 172121 (x) = Pa(x), where ¢a(x) = 3, a(n)(sin(mr(x — n))/m(x - n)), and
P (x)x1-11](x) = Ye(x), where ye(x) = 3., c(n)(sin(2m(x — n))/n(x — n)), we can write

172 172
J j m(&,1)Pa(€)Py(m)Pe(& +n)dE dyy
12J)-172 (3.5)

B J[R J[R m(&,1n)a(E)o ()P (& +1)dE dn.

Using now the assumption and Shanon’s sampling theorem, one gets [|y,llzrr) <
Cillgallew) < Callalle, < CsllyallLe(r) for some constants C; for i = 1,2,3. Hence the de-
sired inequality follows.

Now we apply Lemma 2.3 to get the result for each «.

(ii)=(i). We take ¢ and v such that supp ¢ and suppy are contained in [—1/4,1/4].
For a fixed u € [—1/2,1/2], consider the periodic extensions of the functions $(f )e2miug
¥(n)e 1 t0 be denoted P, and Q,,, respectively.

If at(n) = [, B, (&)e2™EdE, b (n) = [, Qu(&)e2™E dE for all n € Z, we have that
ifx=k+uforsomekeZanduec |- 1/2 1/2),

JRJ m(&,n)$(E)F(n)e ™ dE dn

1/2 1/2
J J Q (11) 2mk (&+n) dfdi’]

1/2 1/2

(3.6)

Let m(&,17) = m(&,n)x1-1/21/21(E)x1-1/2,1/2) (7). Hence for x = u +k,
Cm($,v)(x) = Dy (a®,b%) (k). (3.7)
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Now

f{R |Con (6, 9) () | " dx
1/2

_ ZJ |G (6, 9) (k+10) | P s
k

-1/2
1/2

=| D |Da(a"b") (k)| " du

1727
1/2 ps/pr ps/pa
<!l (z |a“<k)|"l) (z |b“(k>|"2) du (3.8)
-1/2 k k
<l 1" (fm 3 |a“(k)|"1du>p3/pl ( [ S |P2du)
—1/27 -2

o [V N LAY ”
= [|Da| (JI/Z%|¢(u+k)| du) (J1/2%|w(u+k)| du>

= [1al 1119115 1w l5-

p3/pa

p3/pa

In the general case if ¢, y are such that gg, ¥ have compact support, then there exists
€ >0 so that ¢, ¥ have their support in [—1/4,1/4]. Now observe that

cgm(ﬁl):‘//)(x) = ezcm(s-,s-)((bs:l//s)(sx)- (3.9)

Applying the previous case and the assumption, we obtain

||(6m(¢’1//)||p3 = 7P| G- ) (ﬁbs)‘//e)HPS
< Ke VP ||ge], [vell,,
= K VP |l e VP [y e VP
=Kligllp Nyl 0

(3.10)
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