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A completely primary finite ring is a ring R with identity 1 �= 0 whose subset of all its zero
divisors forms the unique maximal ideal J . Let R be a commutative completely primary
finite ring with the unique maximal ideal J such that J3 = (0) and J2 �= (0). Then R/J ∼=
GF(pr) and the characteristic of R is pk, where 1≤ k ≤ 3, for some prime p and positive
integer r. Let Ro =GR(pkr , pk) be a Galois subring of R and let the annihilator of J be J2 so
that R= Ro⊕U ⊕V , where U and V are finitely generated Ro-modules. Let nonnegative
integers s and t be numbers of elements in the generating sets for U and V , respectively.
When s= 2, t = 1, and the characteristic of R is p; and when t = s(s+ 1)/2, for any fixed
s, the structure of the group of units R∗ of the ring R and its generators are determined;
these depend on the structural matrices (ai j) and on the parameters p, k, r, and s.

Notations

Throughout this paper, R will denote a finite ring, unless otherwise stated, J will denote
the Jacobson radical of R, and we will denote the Galois ring GR(pnr , pn) of characteristic
pn and order pnr by Ro, for some prime p, and positive integers n, r.

We denote the group of units of R by R∗ and a cyclic group of order π by ε(π). If g is
an element of R∗, then o(g) denotes its order, and 〈g〉 denotes the cyclic group generated
by g. Furthermore, for a subset A of R or R∗, |A|will denote the number of elements in A.
The ring of integers modulo the number n will be denoted by Zn, and the characteristic
of R will be denoted by charR.

1. Introduction

In [6], Fuchs asked for a characterization of abelian groups which could be groups of
units of a ring. This question was noted to be too general for a complete answer [12], and
a natural course is to restrict the classes of groups or rings to be considered.

Let R be a ring and let R∗ denote its multiplicative group of unit elements. All local
rings R with R∗ cyclic were determined by Gilmer [8] and this case was also considered
by Ayoub [1] (also proofs are given in [10, 11]). Pearson and Schneider have found all
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R where R∗ is generated by two elements. Clark [4] has investigated R∗ where the ideals
form a chain and has shown that if p ≥ 3, n ≥ 2, and r ≥ 2, then the units of the Galois
ring GR(pnr , pn) are a direct sum of a cyclic group of order pr − 1 and r cyclic groups of
order pn− 1 (this was also done independently by Raghavendran [11]). In fact, Raghaven-
dran described the structure of the multiplicative group of every Galois ring. Stewart in
[12] considered a related problem to that asked by Fuchs [6] by proving that for a given
finite group G (not necessarily abelian), there are, up to isomorphism, only finitely many
directly indecomposable finite rings having group of units isomorphic to G.

Ganske and McDonald [7] provided a solution for R∗ when the local ring R has Jacob-
son radical J such that J2 = (0) by showing that

R∗ =
(
⊕

nt∑
i=1

ε(p)

)
⊕ ε(|K|− 1

)
, (1.1)

where n= dimK (J/J2), |K| = pt, and ε(π) denotes the cyclic group of order π.
In [5], Dolzan found all nonisomorphic rings with a group of units isomorphic to a

group G with n elements, where n is a power of a prime or any product of prime powers,
not divisible by 4; and also found all groups with n elements which can be groups of units
of a finite ring, a contribution to Stewart’s problem [12]. More recently, X.-D. Hou et al.
gave an algorithmic method for computing the structure of the group of units of a finite
commutative chain ring and further strengthening the known result by listing a set of
linearly independent generators for the group of units.

The present paper focuses on the group of units R∗ of a commutative completely pri-
mary finite ring R with unique maximal ideal J such that R/J ∼= GF(pr), J3 = (0), and
J2 �= (0) so that the characteristic of R is pk, where 1≤ k ≤ 3; and further identifies sets of
generators for R∗.

In particular, let Ro = GR(pkr , pk) be a Galois subring of R and let the annihilator of
J be J2 so that R = Ro ⊕U ⊕V , where U and V are finitely generated Ro-modules. Let
nonnegative integers s and t be numbers of elements in the generating sets for U and V ,
respectively. When s= 2, t = 1, and charR= p, and when t = s(s+ 1)/2, for any fixed s, the
structure of the group of units R∗ of the ring R and its generators have been determined;
these depend on the structural matrices (ai j) and on the parameters p, k, r, and s.

2. Preliminaries

We refer the reader to [2] for the general background of completely primary finite rings
R with maximal ideals J such that J3 = {0} and J2 �= {0}. Let R be a completely primary
finite ring with maximal ideal J such that J3 = (0) and J2 �= (0). Then R is of order pnr

and the residue field R/J is a finite field GF(pr), for some prime p and positive integers n,
r. The characteristic of R is pk, where k is an integer such that 1≤ k ≤ 3. Let GR(pkr , pk)
be the Galois ring of characteristic pk and order pkr , that is, GR(pkr , pk) = Zpk [x]/( f ),
where f ∈ Zpk [x] is a monic polynomial of degree r whose image in Zp[x] is irreducible.
Then, it can be deduced from the main theorem in [4] that R has a coefficient subring Ro

of the form GR(pkr , pk) which is clearly a maximal Galois subring of R. Moreover, there
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exist elements m1,m2, . . . ,mh ∈ J and automorphisms σ1, . . . ,σh ∈ Aut(Ro) such that

R= Ro⊕
h∑
i=1

Romi (2.1)

(as Ro-modules), mir = rσimi, for every r ∈ Ro and any i= 1, . . . ,h. Further, σ1, . . . ,σh are
uniquely determined by R and Ro. The maximal ideal of R is

J = pRo⊕
h∑
i=1

Romi. (2.2)

It is worth noting that R contains an element b of multiplicative order pr − 1 and that
Ro = Zpk [b] (see, e.g., [2, Result 1.3]).

The following results will be useful.

Proposition 2.1. Let R be a completely primary finite ring (not necessarily commutative).
Then the group of units R∗ of R contains a cyclic subgroup 〈b〉 of order pr − 1, and R∗ is a
semidirect product of 1 + J and 〈b〉.
Proof. Obviously, the group of units R∗ of R is R− J , |R∗| = p(n−1)r(pr − 1), and φ :
R→ R/J induces a surjective multiplicative group homomorphism ϕ : R∗ → (R/J)∗. Since
kerφ = J , we have kerϕ= 1 + J . In particular, 1 + J is a normal subgroup of R∗.

Let 〈β〉 = (R/J)∗, and let bo ∈ ϕ−1(β). Then, the multiplicative order of bo is a multiple
of pr − 1 and a divisor of |R− J| = pnr − p(n−1)r = p(n−1)r(pr − 1); hence, of the form

ps(pr − 1). But then b= b
ps
o has multiplicative order pr − 1 and ϕ(b

ps
o )= βps , which is still

a generator of (R/J)∗, since (ps, pr − 1)= 1.
Finally, since |R∗| = |1 + J| · |〈b〉|, and (1 + J)∩ 〈b〉 = 1, we have R∗ = (1 + J) · 〈b〉,

hence, R∗ = (1 + J)×θ 〈b〉, a semidirect product. �

Proposition 2.2. Let R be a completely primary finite ring (not necessarily commutative).
Then the group of units R∗ is solvable.

Proof. That R∗ is a solvable group follows from the fact that 1 + J is a normal p-subgroup
of R∗, and R∗/(1 + J) is cyclic. �

Lemma 2.3. Let R be a completely primary finite ring (not necessarily commutative). If G is
a subgroup of R∗ of order pr − 1, then G is conjugate to 〈b〉 in R∗.

Proof. This follows from key properties of p-solvable groups contained in the variation
of Sylow’s theorem, due to Philip Hall, since the order of G is prime to its index in R∗(see,
e.g., [9, Theorem 8.2 page 25]). �

Proposition 2.4. Let R be a completely primary finite ring (not necessarily commutative).
If R∗ contains a normal subgroup of order pr − 1, then the set Ko = 〈b〉∪ {0} is contained
in the center of the ring R.

Proof. By Lemma 2.3, 〈b〉 is normal in R∗ and since 1 + J is a normal subgroup of R∗

with |〈b〉∩ (1 + J)| = 1, it follows that 〈b〉 and 1 + J commute elementwise. Hence, b lies
in the center of R. �
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Proposition 2.5. Let R be a completely primary finite ring. Then, (1 + J i)/(1 + J i+1) ∼=
J i/J i+1 (the left-hand side as a multiplicative group and the right-hand side as an additive
group).

Proof. Consider the map

η :
(
1 + J i

)
/
(
1 + J i+1)−→ J i/J i+1 (2.3)

defined by

(1 + x)
(
1 + J i+1)−→ x+ J i+1. (2.4)

Then it is easy to see that η is an isomorphism. �
Remark 2.6 (see [3, Result 2.7]). Let R be a completely primary finite ring of characteristic
pk and with Jacobson radical J . Let Ro be a Galois subring of R. If m ∈ J and pt is the
additive order of m, for some positive integer t, then |Rom| = ptr .

Proof. Apply the fact that

Rom∼= Ro/p
tRo. (2.5)

�

Now let R be a commutative completely primary finite ring with maximal ideal J such
that J3 = (0) and J2 �= (0). In [2], the author gave constructions describing these rings for
each characteristic and for details, we refer the reader to [2, Sections 4 and 6].

If R is a commutative completely primary finite ring with maximal ideal J such that
J3 = (0) and J2 �= (0), then from Constructions A and B [2],

R= Ro⊕U ⊕V ⊕W , (2.6)

J = pRo⊕U ⊕V ⊕W , (2.7)

where the Ro-modules U , V , and W are finitely generated. The structure of R is charac-
terized by the invariants p, n, r, d, s, t, and λ; and the linearly independent matrices (aki j)
defined in the multiplication. Let ann(J) denote the two-sided annihilator of J in R. No-
tice that since J2 ⊆ ann(J), we can write R = Ro ⊕U ⊕M, and hence, J = pRo ⊕U ⊕M,
where M =V ⊕W , and the multiplication in R may be written accordingly. It is therefore
easy to see that the description of rings of this type reduces to the case where ann(J) co-
incides with J2. Therefore, when investigating the structure of the group of units of this
type of rings for a given order, say pnr , where ann(J) does not coincide with J2, we will
first write all the rings of this type of order ≤ pnr , where ann(J) coincides with J2.

In what follows, we assume that ann(J)= J2.
Let Ro =GR(pkr , pk)(1≤ k ≤ 3) and let nonnegative integers s and t be numbers of ele-

ments in the generating sets {u1, . . . ,us} and {v1, . . . ,vt} for finitely generated Ro-modules
U and V , respectively, where t ≤ s(s + 1)/2. Assume that u1,u2, . . . ,us and v1, . . . ,vt are
commuting indeterminates. Then R= Ro⊕U ⊕V .

By Proposition 2.1, and since R is commutative,

R∗ = 〈b〉 · (1 + J)∼= 〈b〉× (1 + J), (2.8)

a direct product.
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Again, notice that since R is of order pnr and R∗ = R− J , it is easy to see that |R∗| =
p(n−1)r(pr − 1) and |1 + J| = p(n−1)r , so that 1 + J is an abelian p-group. Thus, R∗ ∼=
(abelian p-group)× (cyclic group of order |R/J|− 1).

Our goal is to determine the structure and identify a set of generators of the multi-
plicative abelian p-group 1 + J .

3. The group 1 + J

Now let R be a commutative completely primary finite ring with maximal ideal J such
that J3 = (0) and J2 �= (0). Let 1 + J be the abelian p-subgroup of the unit group R∗.

The group 1 + J has a filtration 1 + J ⊃ 1 + J2 ⊃ 1 + J3 = {1} with filtration quotients
(1 + J)/(1 + J2) and (1 + J2)/{1} = 1 + J2 isomorphic to the additive groups J/J2 and J2,
respectively.

Remark 3.1. Notice that 1 + J2 is a normal subgroup of 1 + J . But, in general, 1 + J does not
have a subgroup which is isomorphic to the quotient (1 + J)/(1 + J2) as may be illustrated
by the following example.

Example 3.2. Let R = Zp3 , where p is an odd prime. Then J = pZp3 , ann(J) = J2, and
1 + J ∼= Zp2 , 1 + J2 ∼= Zp, (1 + J)/(1 + J2)∼= Zp.

Remark 3.3. In view of the above remark and example, we investigate the structure of
1 + J by considering various subgroups of 1 + J .

3.1. The case when s= 2, t = 1, and charR= p. Suppose s= 2, t = 1, and charR= p. Let
Ro = Fq =GF(pr), the Galois field of q = pr elements. Then

R= Fq⊕Fqu1⊕Fqu2⊕Fqv, (3.1)

the Jacobson radical

J = Fqu1⊕Fqu2⊕Fqv, (3.2)

J2 = Fqv. (3.3)

The multiplication in R is given by

u2
1 = a11v, u1u2 = u2u1 = a12v, u2

2 = a22v, (3.4)

where ai j ∈ Fq. The elements ai j form a nonzero symmetric matrix

(
a11 a12

a21 a22

)
(3.5)

since J2 �= (0).
Since R∗ is a direct product of the cyclic group 〈b〉 of order pr − 1 and the group 1 + J

of order p3r , it suffices to determine the structure of 1 + J .
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In this case,

1 + J = 1 +Fqu1⊕Fqu2⊕Fqv, (3.6)

and since s and t are fixed, the structure of 1 + J now depends on the prime p, the integer
r, and the structural matrix

(a11 a12
a21 a22

)
. We investigate this by considering cases depending

on the type of the structural matrix.
Let ε1,ε2, . . . ,εr be elements of Fq with ε1 = 1 so that ε1,ε2, . . . ,εr form a basis for Fq

regarded as a vector space over its prime subfield Fp.

Case (i). Suppose that
(a11 a12
a21 a22

)= (a 0
0 0

)
, with a �= 0. Then

1 + J ∼=

Z

r
4×Zr2, if charR= 2,

Zrp×Zrp×Zrp, if charR= p �= 2.
(3.7)

To see this, we consider the two cases separetely. So, suppose that p = 2. We first note
the following results:

1 + εiu1 ∈ 1 + J ,
(
1 + εiu1

)4 = 1,
(
1 + εiu2

)2 = 1, g4 = 1, ∀g ∈ 1 + J. (3.8)

For positive integers ki, li, with ki ≤ 4, li ≤ 2, we assert that

r∏
i=1

{(
1 + εiu1

)ki} · r∏
i=1

{(
1 + εiu2

)li}= 1 (3.9)

will imply ki = 4 for all i= 1, . . . ,r; and li = 2 for all i= 1, . . . ,r.
If we set Fi = {(1 + εiu1)k|k = 1, . . . ,4} for all i= 1, . . . ,r; and Gi = {(1 + εiu2)l|l = 1,2}

for all i = 1, . . . ,r, we see that Fi, Gi are all cyclic subgroups of the group 1 + J and that
these are of the precise orders indicated by their definition. The argument above will
show that the product of 2r subgroups Fi and Gi is direct. So, their product will exhaust
the group 1 + J .

When p is an odd prime, we have to consider the equation

r∏
i=1

{(
1 + εiu1

)ki} · r∏
i=1

{(
1 + εiu2

)li} · r∏
i=1

{(
1 + εiv

)mi
}
= 1 (3.10)

and as each element in 1 + J raised to the power p equals 1, we see that 1 + J will be an
elementary abelian group.

Case (ii). Suppose that
(a11 a12
a21 a22

)= ( 0 a
a 0

)
, with a �= 0. Then

1 + J ∼= Zrp×Zrp×Zrp, (3.11)
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for every p = charR. In this case, we consider the equation

r∏
i=1

{(
1 + εiu1

)ki} · r∏
i=1

{(
1 + εiu2

)li} · r∏
i=1

{(
1 + εiv

)mi
}
= 1 (3.12)

and the integers ki, li, mi will imply ki = li =mi = p for all i= 1, . . . ,r.
If we set Fi = {(1 + εiu1)k|k = 1, . . . , p} for all i= 1, . . . ,r; Gi = {(1 + εiu2)l|l = 1, . . . , p}

for all i= 1, . . . ,r; and Hi = {(1 + εiv)m|m= 1, . . . , p} for all i= 1, . . . ,r, we see that Fi, Gi,
and Hi are all cyclic subgroups of the group 1 + J and that these are all of order p. The
product of the 3r subgroups Fi, Gi, and Hi is direct. So, their product will exhaust the
group 1 + J .

Case (iii). Suppose now that
(a11 a12
a21 a22

)= ( a b
b 0

)
, with a and b being nonzero. Then

1 + J ∼=

Z

r
4×Zr2, if charR= 2,

Zrp×Zrp×Zrp, if charR= p �= 2.
(3.13)

The argument is similar to that in Case (i).

Case (iv). Suppose
(a11 a12
a21 a22

)= (a 0
0 b

)
, with a and b being nonzero. Then u2

1 = av, u2
2 = bv,

and u1u2 = u2u1 = 0.
If charR = p �= 2, then o(1 + εiu1) = o(1 + εiu2) = p(i = 1, . . . ,r). Moreover, for every

i= 1, . . . ,r, 〈1 + εiu1〉∩ 〈1 + εiu2〉 = {1}. Also, o(1 + εiv)= p, and the element 1 + εiv (i=
1, . . . ,r) generates a cyclic subgroup of order p.

If charR = 2, then in 1 + J , we see that o(1 + εiu1) = 4 and for each εi, by considering
the element 1 + εiu1 + εiu2 + εiv of order 2, one obtains the direct product

1 + J =
r∏

i=1

〈
1 + εiu1

〉× r∏
i=1

〈
1 + εiu1 + εiu2 + εiv

〉
. (3.14)

Hence,

1 + J ∼=

Z

r
4×Zr2, if charR= 2,

Zrp×Zrp×Zrp, if charR= p �= 2.
(3.15)

Case (v). Finally, suppose that
(a11 a12
a21 a22

) = ( a b
b c

)
, with a, b, and c being nonzero. Then

u2
1 = av, u2

2 = cv, and u1u2 = u2u1 = bv. In this case, it is easy to verify that

1 + J ∼=

Z

r
4×Zr2, if charR= 2,

Zrp×Zrp×Zrp, if charR= p �= 2.
(3.16)

The number of cases involved in determining the structure of 1 + J for larger values of
s and for t < s(s+ 1)/2 compels us to investigate the problem by considering the extreme
case when the invariant t = s(s+ 1)/2, and to leave the other cases for subsequent work.
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3.2. The case when t = s(s+ 1)/2, for s fixed. Suppose that t = s(s+ 1)/2 for a fixed non-
negative integer s. Let u1,u2, . . . ,us be commuting indeterminates over the Galois ring
Ro =GR(pkr , pk), where 1≤ k ≤ 3. Then it is easy to verify that

R= Ro⊕
s∑

i=1

Roui⊕
s∑

i, j=1

Rouiuj , (3.17)

where

uiuj = ujui, u3
i = u2

i u j = uiu
2
j = 0, for every i, j = 1, . . . ,s, (3.18)

is a commutative completely primary finite ring with Jacobson radical

J = pRo⊕
s∑

i=1

Roui⊕
s∑

i, j=1

Rouiuj ; (3.19)

J2 = pRo⊕
s∑

i, j=1

Rouiuj or J2 = p2Ro⊕
s∑

i, j=1

Rouiuj ; J3 = (0). (3.20)

In this case, the linearly independent matrices (aki j) defined in the multiplication of R
are the t = s(s+ 1)/2, s× s symmetric matrices with 1’s in the (i, j)th and ( j, i)th positions,
and zeros elsewhere.

It follows clearly that

1 + J = 1 + pRo⊕
s∑

i=1

Roui⊕
s∑

i, j=1

Rouiuj , (3.21)

and it can easily be deduced that every element x of 1 + J has a unique expression of the
form

x = 1 + pao +
s∑

i=1

aiui +
s∑

i, j=1

ai juiuj , (3.22)

where ao, ai, ai j = aji are in K = Ro/pRo.
Let s be a fixed nonnegative integer and suppose that t = s(s+ 1)/2. If charR= p, then

|R| = p((s2+3s+2)/2)r , |J| = p((s2+3s)/2)r (3.23)

because |Roui| = pr (for each i= 1, . . . ,s) and |Rouiuj| = pr (for i, j = 1, . . . ,s); thus

|1 + J| = p((s2+3s)/2)r . (3.24)

If charR= p2, then

|R| = p((s2+5s+4)/2)r , |J| = p((s2+5s+2)/2)r (3.25)
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because |Ro| = p2r , |pRo| = pr , |Roui| = p2r , if pui �= 0 (for each i= 1, . . . ,s) and |Rouiuj|
= pr (for i, j = 1, . . . ,s) (see Remark 2.6), and thus

|1 + J| = p((s2+5s+2)/2)r . (3.26)

Finally, if charR= p3, then

|R| = p((s2+5s+6)/2)r , |J| = p((s2+5s+4)/2)r (3.27)

because |Ro| = p3r , |pRo| = p2r and if pui �= 0, |Roui| = p2r (because p2ui = 0) (for each
i=1, . . . ,s) and |Rouiuj|= pr (for i, j=1, . . . ,s) (see Remark 2.6 and also because puiuj=0),
and hence,

|1 + J| = p((s2+5s+4)/2)r . (3.28)

Proposition 3.4. If charR= pk, where k = 2 or 3, then 1 + J contains 1 + pRo as its sub-
group.

Proof. We only show the case for charR= p2, the other case follows easily from this. Now,
each element of 1 + pRo is of the form 1 + pr, for every r ∈ Ro, and for any two elements
1 + pr1 and 1 + pr2, we have

(
1 + pr1

)(
1 + pr2

)= 1 + p
(
r1 + r2

)
(3.29)

which is clearly an element of 1 + pRo. �

Proposition 3.5. For each pair ui, uj with i �= j and uiuj = ujui, 1 +Rouiuj is a subgroup
of 1 + J .

Proof. It is easy to see that 1 +Rouiuj is a subgroup of 1 + J because for any two elements
1 + r1uiuj and 1 + r2uiuj in 1 +Rouiuj , we have

(
1 + r1uiuj

)(
1 + r2uiuj

)= 1 +
(
r1 + r2

)
uiuj ∈ 1 +Rouiuj (3.30)

since (uiuj)2 = 0. �

Proposition 3.6. For every i= 1, . . . ,s, 1 +Roui +Rou
2
i is a subgroup of 1 + J .

Proof. Obviously,

(
1 + r1ui + r2u

2
i

)(
1 + s2ui + s2u

2
i

)= 1 +
(
r1 + s1

)
ui +

(
r1s1 + r2 + s2

)
u2
i (3.31)

lies in 1 +Roui +Rou
2
i , for any pair 1 + r1ui + r2u

2
i and 1 + s2ui + s2u

2
i of elements in 1 +

Roui +Rou
2
i . �

In view of Remark 2.6 and Propositions 3.4, 3.5, and 3.6, we may now state the
following.
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Proposition 3.7. Let 1 + pRo, 1 +Roui +Rou
2
i , and 1 +Rouiuj be the subgroups of 1 + J

defined above. Then

∣∣1 + pRo

∣∣=

p

r , if charR= p2,

p2r , if charR= p3,
(3.32)

∣∣1 +Roui +Rou
2
i

∣∣=


p2r , if charR= p,

p3r , if charR= p2,

p3r , if charR= p3,

(3.33)

∣∣1 +Rouiuj

∣∣= pr , (3.34)

for every characteristic of R.

Proposition 3.8. The group 1 + J is a direct product of the subgroup 1 + pRo, s subgroups
1 +Roui +Rou

2
i , and s(s− 1)/2 subgroups 1 +Rouiuj , where i �= j and uiuj = ujui.

Proof. This follows from the fact that 1 + pRo, 1 +Roui +Rou
2
i , and 1 +Rouiuj are sub-

groups of 1 + J , intersection of any pair of these subgroups is trivial (for every i, j =
1, . . . ,s), and by Proposition 3.7,

|1 + J| = ∣∣1 + pRo

∣∣× s∏
i=1

∣∣1 +Roui +Rou
2
i

∣∣× s∏
i �= j=1

∣∣1 +Rouiuj

∣∣. (3.35)

�

3.2.1. The structure of 1 + pRo. The structure of 1 + pRo is completely determined by
Raghavendran in [11]. For convenience of the reader, we state here the results useful for
our purpose. For detailed proofs, refer to [11, Theorem 9].

We take r elements ε1, . . . ,εr in Ro with ε1 = 1 such that the set {ε1, . . . ,εr} is a basis of
the quotient ring Ro/pRo regarded as a vector space over its prime subfield GF(p). Then
we have the following.

Proposition 3.9 [11, Theorem 9]. If charRo = p2, then 1 + pRo is a direct product of r
cyclic groups 〈1 + pεj〉, each of order p, for any prime p.

Proposition 3.10 [11, Theorem 9]. Let charRo = p3. If p = 2, then 1 + pRo is a direct
product of 2 cyclic groups 〈−1 + 4ε1〉 and 〈1 + 4ε1〉, each of order 2, and (r− 1) cyclic groups
〈1 + 2εj〉( j = 2, . . . ,r), each of order 4. If p �= 2, then 1 + pRo is a direct product of r cyclic
groups 〈1 + pεj〉( j = 1, . . . ,r), each of order p2.

3.2.2. The structure of 1 +Roui +Rou
2
i . We now consider the structure of the subgroup

1 +Roui +Rou
2
i of the p-group 1 + J . We first note that if charRo = p, then Ro = GF(pr)

the field of pr elements, if charRo = p2, then Ro is the Galois ring GR(p2r , p2) of order
p2r , and if charRo = p3, Ro =GR(p3r , p3) the Galois ring of order p3r .

We choose r elements ε1, . . . ,εr in Ro with ε1 = 1 such that the set {ε1, . . . ,εr} is a basis of
the quotient ring Ro/pRo regarded as a vector space over its prime subfield GF(p). Then
we have the following.
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Proposition 3.11. Let charRo = p. If p = 2, then 1 +Roui +Rou
2
i is a direct product of r

cyclic groups 〈1 + εjui〉( j = 1, . . . ,r), each of order 4. If p �= 2, then 1 +Roui +Rou
2
i is a direct

product of 2r cyclic groups 〈1 + εjui〉 and 〈1 + 2εjui〉( j = 1, . . . ,r), each of order p.

Proof. If charRo = 2, then 〈1 + εjui〉 is of order 4, for every j = 1, . . . ,r and for any i =
1, . . . ,s, and hence

r∏
j=1

∣∣〈1 + εjui
〉∣∣= 4r = 22r = ∣∣1 +Roui +Rou

2
i

∣∣. (3.36)

Therefore, the product
∏r

j=1〈1 + εjui〉 is direct.
Similarly, if charRo = p �= 2, the elements 1 + εjui and 1 + 2εjui are each of order p,

〈
1 + εjui

〉∩ 〈1 + 2εjui
〉= {1}, (3.37)

for every j = 1, . . . ,r, and

r∏
j=1

∣∣〈1 + εjui
〉∣∣ · r∏

j=1

∣∣〈1 + 2εjui
〉∣∣= pr · pr = p2r = ∣∣1 +Roui +Rou

2
i

∣∣, (3.38)

hence

1 +Roui +Rou
2
i =

r∏
j=1

〈
1 + εjui

〉× r∏
j=1

〈
1 + 2εjui

〉
, (3.39)

a direct product. �

Proposition 3.12. Let charRo = p2. If p = 2, then 1 +Roui +Rou
2
i is a direct product of r

cyclic groups 〈1 + 2εjui〉, each of order 2, and r cyclic groups 〈1 + 3εjui〉( j = 1, . . . ,r), each of
order 4. If p �= 2, then 1 +Roui +Rou

2
i is a direct product of r cyclic groups 〈1 + pεjui〉, each

of order p, and r cyclic groups 〈1 + εjui〉( j = 1, . . . ,r), each of order p2.

Proof. Suppose charRo = p2. If p = 2, 〈1 + 2εjui〉 is of order 2 and 〈1 + 3εjui〉 is of order 4,

〈
1 + 2εjui

〉∩ 〈1 + 3εjui
〉= {1}, (3.40)

for every j = 1, . . . ,r and any i= 1, . . . ,s. Since

r∏
j=1

∣∣〈1 + 2εjui
〉∣∣ · r∏

j=1

∣∣〈1 + 3εjui
〉∣∣= 2r · 4r = 23r = ∣∣1 +Roui +Rou

2
i

∣∣, (3.41)

it follows that

1 +Roui +Rou
2
i =

r∏
j=1

〈
1 + 2εjui

〉× r∏
j=1

〈
1 + 3εjui

〉
(3.42)

is a direct product.
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If p �= 2, it is easy to check that |〈1 + pεjui〉| = p, |〈1 + εjui〉| = p2 and

〈
1 + pεjui

〉∩ 〈1 + εjui
〉= {1}, (3.43)

for every j = 1, . . . ,r and any i= 1, . . . ,s. Since

r∏
j=1

∣∣〈1 + pεjui
〉∣∣ · r∏

j=1

∣∣〈1 + εjui
〉∣∣= pr · (p2)r = p3r = ∣∣1 +Roui +Rou

2
i

∣∣, (3.44)

it follows that the product

1 +Roui +Rou
2
i =

r∏
j=1

〈
1 + 2εjui

〉× r∏
j=1

〈
1 + 3εjui

〉
(3.45)

is direct. �

Proposition 3.13. Let charRo = p3. If p = 2, then 1 +Roui +Rou
2
i is a direct product of r

cyclic groups 〈1 + εju
2
i 〉, each of order 2, and r cyclic groups 〈1 + εjui〉( j = 1, . . . ,r), each of

order 4. If p �= 2, then 1 +Roui +Rou
2
i is a direct product of r cyclic groups 〈1 + εju

2
i 〉, each

of order p, and r cyclic groups 〈1 + εjui〉 ( j = 1, . . . ,r), each of order p2.

Proof. Similar to the proofs of Propositions 3.11 and 3.12. �

3.2.3. The structure of 1 +Rouiuj . Choose r elements ε1, . . . ,εr in Ro with ε1 = 1 such that
the elements ε1, . . . ,εr form a basis of the quotient ring Ro/pRo regarded as a vector space
over its prime subfield GF(p). Then we have the following.

Proposition 3.14. The group 1 +Rouiuj is a direct product of r cyclic groups 〈1 + εluiuj〉(l
= 1, . . . ,r), each of order p, for any characteristic pk(1≤ k ≤ 3) of R.

Proof. We first note that if the characteristic of R is pk, where 1≤ k ≤ 3, then puiuj = 0.
Hence, |1 +Rouiuj| = pr . Also, for any x ∈ 1 +Rouiuj , xp = 1.

Now, for r elements ε1, . . . ,εr ∈ Ro defined above, since for any ν �= µ,

〈
1 + ενuiuj

〉∩ 〈1 + εµuiuj
〉= 1, (3.46)

the result follows. �

We now state the main results of this section.

Theorem 3.15. Let charR= p. If p = 2, then 1 + J is a direct product of (s(s− 1)/2)r cyclic
groups, each of order 2, and sr cyclic groups, each of order 4. If p �= 2, then 1 + J is a direct
product of ((s2 + 3s)/2)r cyclic groups, each of order p.

Proof. This follows from Propositions 3.11 and 3.14 and by the fact that the order of 1 + J
is p((s2+3s)/2)r . �

Theorem 3.16. Let charR = p2. Then 1 + J is a direct product of ((s2 + s + 2)/2)r cyclic
groups, each of order p, and sr cyclic groups, each of order p2, for any prime p.
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Proof. This follows from Propositions 3.9, 3.12, and 3.14 and from the fact that the order
of 1 + J is p((s2+5s+2)/2)r . �

Theorem 3.17. Let charR= p3. If p = 2, then 1 + J is a direct product of 2 + ((s2 + s)/2)r
cyclic groups, each of order 2, and r− 1 + sr cyclic groups, each of order 4. If p �= 2, then 1 + J
is a direct product of ((s2 + s)/2)r cyclic groups, each of order p, and (s+ 1)r cyclic groups,
each of order p2.

Proof. First observe that the order of 1 + J is p((s2+5s+4)/2)r . By Propositions 3.10, 3.13, and
3.14, the result follows. �

4. The Main theorem

By Proposition 2.1, the group of units R∗ of R contains a cyclic subgroup 〈b〉 of order
pr − 1, and R∗ is a direct product of 1 + J and 〈b〉. Moreover, the structure of 1 + J has
been determined in Section 3 (Theorems 3.15, 3.16, and 3.17). We thus have the following
result.

Theorem 4.1. The group of units R∗, of a commutative completely primary finite ring R
with maximal ideal J such that J3 = (0) and J2 �= (0), and with invariants p, k, r, s, and t,
where t = s(s+ 1)/2, is a direct product of cyclic groups as follows:

(i) if charR= p, then

R∗ ∼=

Z2r−1×

(
Zr4
)s× (Zr2)γ, if p = 2,

Zpr−1×
(
Zrp
)s× (Zrp)s× (Zrp)γ, if p �= 2,

(4.1)

(ii) if charR= p2, then

R∗ ∼=

Z2r−1×Zr2×

(
Zr2
)s× (Zr2)s× (Zr2)γ, if p = 2,

Zpr−1×Zrp×
(
Zrp
)s× (Zrp2

)s× (Zrp)γ, if p �= 2,
(4.2)

(iii) if charR= p3, then

R∗ ∼=

Z2r−1×Z2×Z2×Zr−1

4 × (Zr2)s× (Zr4)s× (Zr2)γ, if p = 2,

Zpr−1×Zrp2 × (Zrp)s× (Zrp2

)s× (Zrp)γ, if p �= 2,
(4.3)

where γ = (s2− s)/2.

Proof. Follows from Propositions 2.1 and 3.9 through 3.14 and Theorems 3.15, 3.16, and
3.17. �

Remark 4.2. The structure of the multiplicative groups of commutative completely pri-
mary finite rings R with maximal ideals J such that J3 = (0) and J2 �= (0), for which
t < s(s+ 1)/2 for a fixed nonnegative integer s, will be considered in subsequent work.
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