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We establish the characterizations of metric spaces under compact-covering (resp.,
pseudo-sequence-covering, sequence-covering) 7-s-maps by means of cfp-covers (resp.,
sfp-covers, cs-covers) and o-strong networks.

1. Introduction and definitions

In 1966, Michael [11] introduced the concept of compact-covering maps. Since many
important kinds of maps are compact-covering, such as closed maps on paracompact
spaces, much work has been done to seek the characterizations of metric spaces under
various compact-covering maps, for example, compact-covering (open) s-maps, pseudo-
sequence-covering (quotient) s-maps, sequence-covering (quotient) s-maps, and
compact-covering (quotient) s-maps, see [3, 9, 12, 15, 16]. m-map is another impor-
tant map which was introduced by Ponomarev [13] in 1960 and correspondingly, many
spaces, including developable spaces, weak Cauchy spaces, g-developable spaces, and
semimetrizable spaces, were characterized as the images of metric spaces under certain
quotient 7z-maps, see [1, 4, 6, 7].

The purpose of this paper is to establish the characterizations of metric spaces un-
der compact-covering (resp., pseudo-sequence-covering, sequence-covering) 7-s-maps
by means of cfp-covers (resp., sfp-covers, cs-covers) and o-strong networks.

In this paper, all spaces are Hausdroff, and all maps are continuous and surjective. N
denotes the set of all natural numbers. w denotes N U {0}. 7(X) denotes a topology on X.
For a collection P of subsets of a space X and a map f : X — Y, denote { f(P):P € P}
by f(%). For the usual product space [ [;cn Xi, 7 denotes the projective [ [;cn X; onto X;.
For a sequence {x,} in X, denote {x,) = {x,:n € N}.

Definition 1.1. Let f : X — Y be a map.
(1) f is called a compact-covering map [11] if each compact subset of Y is the image
of some compact subset of X.
(2) f is called a sequence-covering map [14] if whenever {y,} is a convergent se-
quence in Y, then there exists a convergent sequence {x,} in X such that each

X0 € f1 (yn)-
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(3) f is called a pseudo-sequence-covering map [3] if each convergent sequence (in-
cluding its limit point) of Y is the image of some compact subset of X.

(4) f is called an s-map, if f~!(y) is separable in X forany y € Y.

(5) fiscalled a m-map [13], if (X, d) is a metric space, and for each y € Y and its open
neighborhood Vin Y, d(f~'(y),M\ f~1(V)) >0.

(6) f is called a m-s-map, if f is both 7-map and s-map.

It is easy to check that compact maps on metric spaces are 77-s-maps.

Definition 1.2. Let {?,} be a sequence of covers of a space X such that P, refines P,
for each n € N.
(1) U{%, : m € N} is called a o-strong network [5] for X if for each x € X, (st(x,
P,)) is a local network of x in X. If every P, satisfies property P, then J{%P,, :
n € N} is called a o-strong network consisting of P-covers.
(2) {%,} is called a weak development for X if for each x € X, (st(x,%P,)) is a weak
neighborhood base of x in X.

Definition 1.3 [2]. Let X be a space.

(1) Let {x,} be a convergent sequence in X, and P C X. {x,} is eventually in P if when-
ever {x,} converges to x, then {x} J{x,:n > m} C P for some m € N.

(2) Let x € P C X. P is called a sequential neighborhood of x in X if whenever a se-
quence {x,} in X converges to X, then {x,} is eventually in P.

(3) Let P C X. P is called a sequentially open subset in X if P is a sequential neighbor-
hood of x in X for any x € P.

(4) X is called a sequential space if each sequentially open subset in X is open.

Definition 1.4 [10]. Let P be a collection of subsets of a space X.

(1) P is called a cfp-cover (i.e., compact-finite-partition cover) of compact subset K
in X if there are a finite collection {K, : « € J} of closed subsets of K and {P, :
ac ]} CcPsuchthat K = U{K,:a €]} and each K, C P,,.

(2) P is called a cfp-cover for X if for any compact subset K of X, there exists a finite
subcollection P* C P such that P * is a cfp-cover of K in X.

(3) P is called an sfp-cover (i.e., sequence-finite-partition cover) for X if for any con-
vergent sequence (including its limit point) K in X, there exists a finite subcollec-
tion #* C P such that P* is a cfp-cover of K in X.

(4) P is called a cs-cover for X, if every convergent sequence in X is eventually in some
element of P.

2. Results

THEOREM 2.1. A space X is the compact-covering m-s-image of a metric spaces if and only if
X has a o-strong network consisting of point-countable cfp-covers.

Proof. To prove the only if part, suppose f : (M,d) — X is a compact-covering 7-s-map,
where (M, d) is a metric space. For each n € N, put &, = { f(B(z,1/n)) : z € M}, where
B(z,1/n) = {y € M : d(z,y) < 1/n}. Obviously, %, refines &,. We claim that J{%F, :
n € N} is a o-strong network for X. In fact, for each x € X, and its open neighborhood
U, since f is a m-map, then there exists n € N such that d(f~(x),M \ f~1(U)) > 1/n.
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We can pick m € N such that m > 2n. If z € M with x € f(B(z,1/m)), then
fx)(\B(z,1/m) + @. (2.1)

If B(z,1/m) ¢ f~'(U), then

2

d(f1(x),M\ fL(U)) < -

IA

1 (2.2)
n

which is a contradiction. Thus B(z,1/m) C f~1(U), so f(B(z,1/m)) C U.Hence st(x, F,,)
C U. Therefore J{F, : n € N} is a o-strong network for X.

For each n € N, let 3B, be a locally finite open refinement of {B(z,1/n) : z € M}. Since
locally finite collections are closed under finite intersections, we can assume that B,
refines B, for each n € N. Put P, = f(B,,). Obviously, P, refines P,. Since f is an
s-map, each P, is point-countable in X. Because P, refines F, for each n € N, then
U{P, : n e N} is also a o-strong network for X.

We now show that each P, is a cfp-cover for X. Suppose K is compact in X, since
f is compact-covering, then f(L) = K for some compact subset L of M. Since %, is an
open cover of L in M, 3B, have a finite subcover %BL. Thus %L can be precisely refined
by some finite cover of L consisting of closed subsets of L, denoted by {L, : @ € J,}. Put

= f(BL), since PK is precisely refined by closed cover { f (L) : « € ]} of K, then PX
is a cfp-cover of K in X. Hence each %, is a cfp-cover for X.

To prove the if part, suppose [J{P; :i € N} is a o-strong network for X consisting of
point-countable cfp-covers. For each i € N, P; is a point-countable cfp-cover for X. Let
P; = {Py:a € A;}, endow A; with the discrete topology, then A; is a metric space. Put

M={a-

and endow M with the subspace topology induced from the usual product topology of the
collection {A;: i € N} of metric spaces, then M is a metric space. Since X is Hausdroff, x,
is unique in X. For each o € M, we define f : M — X by f(«) = x,. For each x € X and
i € N, there exists a; € A; such that x € Py,. Since [J{P; : i € N} is a 0-strong network for
X, then {Py, : i € N} is a local network of x in X. Put & = («;), then « € M and f(«a) = x.
Thus f is surjective. Suppose o = («;)) € M and f(a) = x € U € 7(X), then there exists
n € N such that P,, C U. Put

€ 1_[ A;: (P,,) forms a local network at some point x, in X }, (2.3)
ieN

V = {B € M : the nth coordinate of 8 is a,, }, (2.4)

then V is an open neighborhood of « in M, and f(V) c P,, C U. Hence f is continuous.
For each a, § € M, we define

0, a=p,
d(@f) = {max{l/k me(a) # ()}, a#p (23)

then d is a distance on M. Because the topology of M is the subspace topology induced
from the usual product topology of the collection {A;:i € N} of discrete spaces, thus d
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is a metric on M. For each x € U € 7(X), there exists n € N such that st(x,%?,) c U. For
ac f7l(x), B €M, if d(a,B) < 1/n, then m;(«) = m;(B) whenever i < n. So x € Py (o) =
Pnn(ﬁ)~ Thus,

f(/.;) S ﬂpm(/j) C Pn,,(/i) cU. (2.6)
ieN
Hence
A(f M fHO)) = (2.7)

Therefore f is a 7-map.
For each x € X, it follows from the point-countable property of %; that {a € A;: x €
P,} is countable. Put

L=<ﬂ{(xeA,~:xePa}>ﬂM, (2.8)

ieN

then L is a hereditarily separable subspace of M, and f~!(x) C L. Thus f~!(x) is separable
in M, that s, f is an s-map.

We will prove that f is compact-covering. Suppose K is compact in X. Since each
P, is a cfp-cover for X, there exists finite subcollection PX such that it is a cfp-cover
of K in X. Thus there are a finite collection {K, : « € J,} of closed subsets of K and
{Py:a €]} C PKsuch that K = U{K,: « € J,} and each K,, C P,. Obviously, each K, is
compact in X. Put

L:{(o‘i):aieji)ﬂKai?é@}) (29)
ieN
then
(i) L is compact in M.
In fact, for all (a;) & L, Nien Ky, = D. From ey Ky, = 9, there exists 1y € N such
that N, Ky, = @. Put

W=1{(Bi):Bi€i, fi =i, 1 <i<nyg}, (2.10)

then W is an open neighborhood of («;) in [];enJi, and WL = &. Thus L is closed in
[TienJi- Since [ T;en Ji is compact in [ [;en As, L is compact in M.

(i))Lc M, f(L) =K.

In fact, for all (a;) € L, Nien Ky, # D. Pick x € ey Ky, then (P,,) is a local network
of x in X, so («;) € M. This implies L C M.

For all x € K, for each i € N, pick a; € J; such that x € K,,. Thus f((a;)) =x,s0 K C
f(L). Obviously, f(L) c K. Hence f(L) = K.

In a word, f is compact-covering. O

CoROLLARY 2.2. A space X is the compact-covering, quotient, and m-s-image of a metric
space if and only if X has a weak-development consisting of point-countable cfp-covers.
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Proof. To prove the only if part, suppose X is the compact-covering, quotient, and 7-
s-image of a metric space M. From Theorem 2.1, X has a ¢-strong network consisting
of point-countable cfp-covers J{P, : n € N}. For each x € X, st(x,?,) is a sequential
neighborhood of x in X. Obviously, X is a sequential space. Thus st(x,%?,) is a weak
neighborhood base of x in X. Hence {%,} is a weak-development for X.

To prove the if part, suppose X has a weak development consisting of point-countable
cfp-covers. From Theorem 2.1, X is the image of a metric space under a compact-covering
n-s-map f. Obviously, X is sequential. By [8, Proposition 2.1.16], f is quotient. O

Similar to the proofs of Theorem 2.1 and Corollary 2.2, we have the following theo-
rem.

THEOREM 2.3. A space X is the pseudo-sequence-covering ni-s-image of a metric space if and
only if X has a o-strong network consisting of point-countable sfp-covers.

COROLLARY 2.4. A space X is the pseudo-sequence-covering, quotient, and m-s-image of
a metric space if and only if X has a weak-development consisting of point-countable stp-
covers.

THEOREM 2.5. A space X is the sequence-covering n-s-image of a metric space if and only if
X has a o-strong network consisting of point-countable cs-covers.

Proof. To prove the only if part, suppose f : (M,d) — X is a sequence-covering 7-s-map,
where (M,d) is a metric space. Similar to the proof of Theorem 2.1, we can show that
U{P, : n € N} is a o-strong network consisting of point-countable covers. It suffices to
show that each %, is a cs-cover for X. Suppose {x,} converges to x € X in X. Since f
is sequence-covering, then there exists a convergent sequence {z;} such that each z; €
f71(x;). Suppose {z;} — z, then z € f~!(x) and z € B for some B € B,. Thus {z;} is
eventually in B, so {x;} is eventually in f(B) € ?,. Hence each P, is a cs-cover for X.

To prove the if part, suppose [J{P; : i € N} is a o-strong network consisting of point-
countable cs-covers for X. For each i € N, %; is a point-countable cs-cover for X. Let
P; = {Py:a € A;}. Similar to the proof of Theorem 2.1, we can show that f is a 77-s-map.
It suffices to show that f is sequence-covering. Suppose {x,} converges to x in X. For each
i € N, since %; is a cs-cover for X, then there exists P,, € %; such that {x,} is eventually in
P,,. For each n € N, if x,, € Py, let ayy = a3 if x4, & Py, pick aiy € A; such that x,, € Py,
Thus there exists n; € N such that a;, = «; for all n > n;. So {a;,} converges to «;. For each
n € N, put

Bn= (i) €[] A, (2.11)
ieN
then (8,) € f~'(x,) and {B,} converges to x. Thus f is sequence-covering. O

Similar to the proof of Corollary 2.2, we have the following corollary.

COROLLARY 2.6. A space X is the sequence-covering, quotient, and m-s-image of a metric
space if and only if X has a weak-development consisting of point-countable cs-covers.

We give examples to illustrate the theorems of this paper.
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Example 2.7. Let Z be the topological sum of the unit interval [0,1], and the collection
{S(x) : x € [0,1]} of 2¢ convergent sequence S(x). Let X be the space obtained from Z
by identifying the limit point of S(x) with x € [0,1], for each x € [0,1]. Then, from [8,
Example 2.9.27], or see [3, Example 9.8], we have the following facts.

(1) X is the compact-covering, quotient compact image of a locally compact metric

space.

(2) X has no point-countable cs-network.

The above facts together with [9, Theorem 1] yield the following conclusion: compact-
covering (quotient) 7-s-images of metric spaces are not sequence-covering (quotient)
7-s-images of metric spaces.

Example 2.8. Let X be a sequential fan S, (see [8, Example 1.8.7]), then X is a Fréchet
and Ro-space. So X is the sequence-covering s-image of a metric space. Because X is
not g-first countable, thus X is not the pseudo-sequence-covering mr-image of a metric
space. Hence the following holds: sequence-covering (resp., pseudo-sequence-covering)
s-images of metric spaces are not sequence-covering (resp., pseudo-sequence-covering)
7-s-images of metric spaces.

Example 2.9. Let X be a Gillman-Jerison space y(N) (see [8, Example 1.8.4]). Since X is
developable, then X is the sequence-covering, quotient 7-image of a metric space by [10,
Corollary 3.1.12]. But X has no point-countable cs*-networks. Then, it follows from [8,
Theorem 2.7.5] that X is not the pseudo-sequence-covering s-image of a metric space.
Thus,
(1) sequence-covering (quotient) m-images of metric spaces are not sequence-
covering (quotient) 7-s-images of metric spaces,
(2) pseudo-sequence-covering (quotient) -images of metric spaces are not pseudo-
sequence-covering (quotient) 7-s-images of metric spaces.
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