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We consider an inverse heat conduction problem with convection term which appears
in some applied subjects. This problem is ill posed in the sense that the solution (if it
exists) does not depend continuously on the data. A generalized Tikhonov regularization
method for this problem is given, which realizes the best possible accuracy.

1. Introduction

In many industrial applications one wants to determine the temperature on the surface
of a body, where the surface itself is inaccessible to measurement [2, 4]. In this case it
is necessary to determine surface temperature from a measured temperature history at a
fixed location inside the body. This problem is called an inverse heat conduction prob-
lem (IHCP). In a one-dimensional setting, assuming that the body is large, the following
model problem or the standard sideways heat equation:

ut = uxx, x > 0, t > 0,

u(x,0)= 0, x ≥ 0,

u(1, t)= g(t), t ≥ 0, u(x, t)|x→∞ bounded

(1.1)

has been discussed by many authors [4, 6, 7, 10, 16, 18, 19, 20]. But when a fluid is flowing
through the solid, for example, a gas is travelling from the rear surface, there must be a
convection term in heat conduction equation [1, 17]. A model problem in this case is the
following sideways parabolic equation with nondivergence type in the quarter plane [13]:

ut +ux = uxx, x > 0, t > 0,

u(x,0)= 0, x ≥ 0,

u(1, t)= g(t), t ≥ 0, u(x, t)|x→∞ bounded.

(1.2)

We want to know the solution u(x, t) for 0≤ x < 1. This problem is ill posed in the sense
that the solution (if it exists) does not depend continuously on the data. Some regulariza-
tion methods and error estimates have been given in [12, 13, 23]; we have even obtained
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some results for the following more general sideways parabolic equation:

ut = a(x)uxx + b(x)ux + c(x)u, x > 0, t > 0,

u(x,0)= 0, x ≥ 0,

u(1, t)= g(t), t ≥ 0,

(1.3)

where a, b, and c are known functions which satisfy some specified conditions [9, 11,
14]. Especially, the uniqueness of solution of problem (1.3) was explained in [14]. The
uniqueness of solution of problem (1.2) can also be similarly established according to
[3]. But all the error estimates between the regularized approximate solutions based on
above methods and exact solutions are at most of optimal order.

There are some papers, for example [5, 15], in which the a priori choice of the reg-
ularizing parameters is generally given for the “optimal convergence rate” based on the
conditional stability. But their optimal convergence rate is only the convergence with op-
timal order (cf. Definition 2.1(ii)), but not optimal (cf. Definition 2.1(i)). In addition,
the conditions of “conditional stability” is stronger than our priori assumption (1.6).

Now our interest is to give a new regularization method for problem (1.2), which will
be called generalized Tikhonov regularization method, such that the error estimate of this
method possesses the best possible accuracy, that is, the error estimate of this method is
optimal. It is well known that it is much more difficult to prove results about optimality
instead of just order optimality [8, page 75]. So far, as far as we know, the unique result
about optimality of IHCP is obtained only for the standard sideways heat equation (1.1)
[20, 21].

As we consider the problem (1.2) in L2(R) or Hp(R) with respect to the variable t, we
extend the domain of definition of the functions u(x,·), g(·) := u(1,·), f (·) := u(0,·) and
other functions appearing in the paper to the whole real t-axis by defining them to be zero
for t < 0. The notation ‖ · ‖, (·,·) denotes L2-norm and L2-inner product, respectively,

ĥ(ξ) := 1√
2π

∫∞
−∞

e−iξth(t)dt (1.4)

is the Fourier transform of function h(t), and

‖h‖p :=
(∫∞

−∞

(
1 + ξ2)p∣∣ĥ(ξ)

∣∣2
dξ
)1/2

(1.5)

is the Hp-norm of the function h(t). We assume that there exists a priori bound for
f (t) := u(0, t):

‖ f ‖p ≤ E, p ≥ 0. (1.6)

Let g(t) and gδ(t) denote the exact and measured (noisy) data at x = 1 of solution u(x, t),
respectively, which satisfy

∥∥g(·)− gδ(·)∥∥≤ δ. (1.7)
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For the uniqueness of solution, we require that ‖u(x,·)‖ be bounded [14]. The solution
of problem (1.2) has been given in [12, 13, 17, 23] by

u(x, t)= 1√
2π

∫∞
−∞

eiξte(1−x)θ(ξ)ĝ(ξ)dξ, 0≤ x < 1, (1.8)

or equivalently,

û(x,ξ)= e(1−x)θ(ξ)ĝ(ξ), 0≤ x < 1, (1.9)

where

θ(ξ)=
√
iξ +

1
4
− 1

2
= 1

2

[
4
√

1 + 16ξ2

(
cos

β

2
+ isin

β

2

)
− 1
]

, ξ ∈R, (1.10)

β = arg(1 + 4ξi), tanβ = 4ξ, −π

2
< β <

π

2
, ξ ∈R, (1.11)

cos
β

2
=

√√
1 + 16ξ2 + 1

√
2 4
√

1 + 16ξ2
, ξ ∈R. (1.12)

The following representations will be useful and it is easy to see from (1.9) that

f̂ (ξ)= eθ(ξ)ĝ(ξ), (1.13)

û(x,ξ)= e−xθ(ξ) f̂ (ξ). (1.14)

2. Preliminary

Most facts here are known [8, 21, 22]. We consider arbitrary ill-posed inverse problems

Ax = y, (2.1)

where A ∈�(X ,Y) is a linear injective bounded operator between infinite dimensional
Hilbert spaces X and Y with nonclosed range R(A) of A. We assume that yδ ∈ Y are the
available noisy data with ‖y − yδ‖ ≤ δ. Any operator R : Y → X can be considered as a
special method for solving (2.1), the approximate solution to (2.1) is then given by Ryδ .

Let M ⊂ X be a bounded set. We introduce the worst-case error ∆(δ,R) for identifying
x from yδ ∈ Y under the assumption x ∈M according to

∆(δ,R)= sup
{∥∥Ryδ − x

∥∥ | x ∈M, yδ ∈ Y ,
∥∥Ax− yδ

∥∥≤ δ
}
. (2.2)

This worst-case error characterizes the maximal error of the method R if the solution x
of the problem (2.1) varies in the set M.

Definition 2.1. Parameter-dependent methods R= Rδ are called
(i) optimal on the set M if ∆(δ,Rδ)= infR∆(δ,R) where the infimum is taken over all

methods R : Y → X ,
(ii) order optimal on the set M if ∆(δ,Rδ)≤ C infR∆(δ,R) with C ≥ 1 holds.
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Now we review some optimality results if the set M has been given by

Mϕ,E =
{
x ∈ X | x = [ϕ(A∗A)]1/2

v, ‖v‖ ≤ E
}

, (2.3)

or equivalently,

Mϕ,E =
{
x ∈ X |

∥∥∥[ϕ(A∗A)]−1/2
x
∥∥∥≤ E

}
, (2.4)

where the operator function ϕ(A∗A) is well-defined via the spectral representation

ϕ
(
A∗A

)= ∫ a

0
ϕ(λ)dEλ,

A∗A=
∫ a

0
λdEλ,

(2.5)

is the spectral decomposition of A∗A, {Eλ} denotes the spectral family of operator A∗A,
and a is a constant such that ‖A∗A‖ ≤ a. In the case when A : L2(R)→ L2(R) is a multi-
plication operator, Ax(s)= a(s)x(s), the operator function ϕ(A∗A) takes the form

ϕ
(
A∗A

)
x(s)= ϕ

(∣∣a(s)
∣∣2
)
x(s). (2.6)

A generalized Tikhonov regularized approximation xδα is determined by solving the
minimization problem

min
x∈X

Jα(x), Jα(x)= ∥∥Ax− yδ
∥∥2

+α
∥∥∥[ϕ(A∗A)]−1/2

x
∥∥∥2

, (2.7)

or equivalently, by solving the Euler equation

(
A∗A+α

[
ϕ(A∗A)

]−1
)
xδα = A∗yδ. (2.8)

When ϕ(A∗A)= I , (2.7) and (2.8) are identical with classical Tikhonov regularization.
In order to obtain optimality result, we assume as in [22] that the function ϕ in (2.3)

and (2.4) satisfies the following assumption.

Assumption 2.2. The function ϕ(λ) : (0,a] → (0,∞) (where a is a constant such that
‖A∗A‖ ≤ a) is continuous and satisfies the following properties:

(i) limλ→0ϕ(λ)= 0;
(ii) ϕ(λ) is strictly monotonically increasing on (0,a];

(iii) ρ(λ) := λϕ−1(λ) : (0,ϕ(a)]→ (0,aϕ(a)] is convex.

The next theorem gives us a formula for the best possible worst-case error infR∆(δ,R),
which can be found also in [22].
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Theorem 2.3. Let Mϕ,E be given by (2.3), let Assumption 2.2 be satisfied, and let δ2/E2 ∈
σ(A∗Aϕ(A∗A)) where σ(A∗A) denotes the spectrum of the operator A∗A, then

inf
R
∆(δ,R)= E

√
ρ−1

(
δ2

E2

)
. (2.9)

The general Tikhonov regularization method appears to be optimal on the set Mϕ,E

given by (2.3) provided the regularization parameter α is chosen properly. For this method
there holds [22, Theorem 5.1] the following.

Theorem 2.4. Let Mϕ,E be given by (2.3), let Assumption 2.2 be satisfied, let ϕ(λ) : [0,a]→
R be two times differentiable, let ρ(λ) be strictly convex on (0,ϕ(a)], and let δ2/E2 ≤ aϕ(a).
If the regularization parameter α is chosen optimally by

α= λ0

ϕ−1
(
λ0
)
ϕ′
(
ϕ−1
(
λ0
))( δ

E

)2

with λ0 = ρ−1
(
δ2

E2

)
, (2.10)

then for the general Tikhonov regularized solution xδα = Rαyδ defined by (2.8), there holds
the optimal error estimate

∆
(
δ,Rα

)≤ E

√
ρ−1

(
δ2

E2

)
. (2.11)

3. Optimal Tikhonov approximation for the problem (1.2)

In this section, we consider the generalized Tikhonov regularization method (2.8) for
problem (1.2), and based on Theorems 2.3 and 2.4 show how to choose the regularization
parameter such that it is optimal.

We introduce the Sobolev scale (Hp), p ∈ R+ of positive real order p according to
H0 = L2(R), Hp = {v(t)∈ L2(R) | ‖v‖p <∞} where ‖v‖p is given by (1.5). For problem
(1.2) we require a priori smoothness condition concerning the unknown solution u(x, t)
according to

u(x, t)∈Mp,E := {u(x,·)∈ L2(R) | ∥∥u(0,·)∥∥p = ∥∥ f (·)∥∥p ≤ E for some p ≥ 0
}
. (3.1)

Denote the best possible worst-case error as

ω(δ,x) := inf
R(x)

∆
(
δ,R(x)

)
, (3.2)

where R(x) : gδ(·)→ uδ(x,·) and

∆
(
δ,R(x)

)= sup
∥∥R(x)uδ(1,·)−u(x,·)∥∥= sup

∥∥R(x)gδ(·)−u(x,·)∥∥ (3.3)

with gδ(t) = uδ(1, t) and g(t) = u(1, t) satisfy (1.7), and the supremum is taken over
u(x, t)∈Mp,E given by (3.1).
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Firstly, we formulate the problem (1.2) of identifying u(x, t) from (unperturbed) data
u(1, t)= g(t) as an operator equation

A(x)u(x, t)= g(t), 0≤ x < 1 (3.4)

with a linear operator A(x)∈�(L2(R),L2(R)).
It is easy to know that (3.4) is equivalent to the following operator equation [12]:

Â(x)û(x,ξ)= ĝ(ξ) with Â(x)=�A(x)�−1, (3.5)

where � : L2(R)→ L2(R) is the (unitary) Fourier operator that maps any L2(R) function

h(t) into its Fourier transform ĥ(ξ) given by (1.4), and we know from (1.9) that

Â(x)= e−θ(ξ)(1−x) = e−(1/2)[ 4
√

1+16ξ2(cos(β/2)+isin(β/2))−1](1−x), (3.6)

where Â(x) : L2(R)→ L2(R) is a linear normal operator (multiplication operator) and

Â∗(x)= e−θ(ξ)(1−x) = e−(1/2)[ 4
√

1+16ξ2(cos(β/2)−isin(β/2))−1](1−x), (3.7)

which is the conjugated operator of Â(x), so

Â∗(x)Â(x)= e−(θ(ξ)+θ(ξ))(1−x) = e−[ 4
√

1+16ξ2 cos(β/2)−1](1−x). (3.8)

The a priori smoothness condition (3.1) and the general source set (2.3) can be trans-
formed into their equivalent condition in the frequency domain as follows:

û(x,ξ)∈ M̂p,E =
{
û(x,ξ)∈ L2(R) |

∥∥∥(1 + ξ2)p/2û(0,ξ)
∥∥∥

=
∥∥∥(1 + ξ2)p/2 f̂ (ξ)

∥∥∥≤ E, for some p ≥ 0
}

,
(3.9)

M̂ϕ,E =
{
û(x,·)∈ L2(R) |

∥∥∥[ϕ(Â∗(x)Â(x)
)]−1/2

û(x,·)
∥∥∥≤ E

}
. (3.10)

By their equivalence, it is easy to know that the representation of ϕ(λ) is given (in param-
eter representation) by

λ(r)= e−(
√

(1+r2)/2−1)(1−x),

ϕ(r)=
(

1 +
r4− 1

16

)−p
e−(
√

(1+r2)/2−1)x, 1≤ r <∞.
(3.11)



Chu-Li Fu et al. 1227

In fact, let r = 4
√

1 + 16ξ2, ξ ∈R, then r ≥ 1, ξ2 = (r4− 1)/16 and from (1.12) we know

cos
β

2
=
√

1 + r2√
2r

. (3.12)

Due to (3.8) there holds

Â∗(x)Â(x)= e−(
√

(1+r2)/2−1)(1−x), (3.13)

that is,

λ(r)= e−(
√

(1+r2)/2−1)(1−x). (3.14)

Note that from (1.14), we know that the condition in (3.9),∥∥∥(1 + ξ2)p/2 f̂ (ξ)
∥∥∥≤ E, (3.15)

is equivalent to ∥∥∥(1 + ξ2)p/2exθ(ξ)û(x,ξ)
∥∥∥≤ E. (3.16)

Comparing this with (3.10), it is easy to see that

ϕ
(
Â∗(x)Â(x)

)= (1 + ξ2)−pe−x(θ(ξ)+θ(ξ))

= (1 + ξ2)−pe−x( 4
√

1+16ξ2 cos(β/2)−1)

=
(

1 +
r4− 1

16

)−p
e−(
√

(1+r2)/2−1)x,

(3.17)

that is, ϕ(r)= (1 + (r4− 1)/16)−pe−(
√

(1+r2)/2−1)x.

Note 3.1. Here and following, we always denote by λ the independent variable and r the
parameter.

In [12], we have proved the following propositions and obtained the best possible
worst-case error ω(δ,x) for problem (1.2).

Proposition 3.2 [12]. The function ϕ(λ) defined by (3.11) is continuous and has the fol-
lowing properties:

(i) limλ→0ϕ(λ)= 0,
(ii) ϕ(λ) is strictly monotonically increasing,

(iii) ρ(λ) := λϕ−1(λ) is strictly monotonically increasing and admits the parameter repre-
sentation

λ(r)=
(

1 +
r4− 1

16

)−p
e−(
√

(1+r2)/2−1)x,

ρ(r)=
(

1 +
r4− 1

16

)−p
e−(
√

(1+r2)/2−1), 1≤ r <∞,

(3.18)
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(iv) ρ−1(λ) is strictly monotonically increasing and admits the parameter representation

λ(r)=
(

1 +
r4− 1

16

)−p
e−(
√

(1+r2)/2−1),

ρ−1(r)=
(

1 +
r4− 1

16

)−p
e−(
√

(1+r2)/2−1)x, 1≤ r <∞,

(3.19)

(v) for the inverse function ρ−1(λ) of ρ(λ), there holds

ρ−1(λ)= λx
[

1√
2

ln
1
λ

]−4p(1−x)(
1 + o(1)

)
for λ−→ 0. (3.20)

Proposition 3.3 [12]. The function ρ(λ) defined by (3.18) is strictly convex if and only if
the following inequality holds:

(
pΨ(r) +

1√
2
Φ(r)

)(
pΨ(r) +

x√
2
Φ(r)

)
Φ(r) + p

(
Ψ̇(r)Φ(r)−Ψ(r)Φ̇(r)

)
> 0, r ≥ 1,

(3.21)

where

Ψ(r) := 4r3

r4 + 15
, Φ(r) := r√

1 + r2
, r ≥ 1. (3.22)

In particular, the function ρ(λ) defined by (3.18) is strictly convex if p = 0, x > 0 or p > 0,
x ≥ 0.

Due to Theorem 2.3, Propositions 3.2 and 3.3 we have proved in [12] the following
optimal error bounds for problem (1.2), that is, the best possible worst-case error ω(δ,x)
defined by (3.2) for identifying the solution u(x, t) of the problem (1.2) from noisy data
uδ(1, t)= gδ(t)∈ L2(R) under the condition (1.7) and u(x, t)∈Mp,E given by (3.1).

Theorem 3.4 [12]. Let δ2/E2 ≤ 1, then the following stability results hold:
(i) in case p = 0 and 0 < x < 1, there holds

ω(δ,x)= E1−xδx (3.23)

(Hölder stability),
(ii) in case p > 0 and 0≤ x < 1, there holds

ω(δ,x)= E1−xδx
(√

2ln
E

δ

)−2p(1−x)(
1 + o(1)

)
for δ −→ 0. (3.24)

Now we consider the method of generalized Tikhonov regularization, apply it to prob-
lem (1.2), and show how to choose the regularization parameter such that it guarantees
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the optimal error bounds given by (3.23) and (3.24). This optimality result will be ob-
tained by applying Theorem 2.4 to our transformed problem (3.5), it yields an optimal
regularized approximation ûδα(x,ξ) in the frequency domain. Due to Parseval formula

∥∥ûδα(x,·)− û(x,·)∥∥= ∥∥uδα(x,·)−u(x,·)∥∥, (3.25)

it follows that uδα(x, t)=�−1(ûδα(x,ξ)) is optimal regularized approximations in the orig-
inal domain.

The method of generalized Tikhonov regularization (2.7) applied to our problem (3.5)
in the frequency domain consists in the determination of a regularized approximation
ûδα(x,ξ) by solving the minimization problem

min
v̂(x,·)∈L2(R)

Jα
(
v̂(x,·)),

Jα
(
v̂(x,·))= ∥∥Â(x)v̂(x,ξ)− ĝδ(ξ)

∥∥2
+α
∥∥∥[ϕ(Â∗(x)Â(x)

)]−1/2
v̂(x,ξ)

∥∥∥2

= ∥∥e−θ(ξ)(1−x)v̂(x,ξ)− ĝδ(ξ)
∥∥2

+α
∥∥∥(1 + ξ2)p/2e(x/2)(θ(ξ)+θ̄(ξ))v̂(x,ξ)

∥∥∥2
,

(3.26)

where θ(ξ) is given by (1.10), and

ϕ
(
Â∗(x)Â(x)

)= (1 + ξ2)−pe−x( 4
√

1+16ξ2 cos(β/2)−1). (3.27)

Hence, ûδα(x,ξ) is the solution of Euler equation (comparing with (2.8)):

(
e−(θ(ξ)+θ̄(ξ))(1−x) +α(1 + ξ2)pe(θ(ξ)+θ̄(ξ))x

)
ûδα(x,ξ)= e−θ̄(ξ)(1−x)ĝδ(ξ). (3.28)

From (3.28) we conclude that the Tikhonov regularized solution ûδα(x,ξ) can be writ-
ten in the form

ûδα(x,ξ)= e−θ̄(ξ)(1−x)

e−(θ(ξ)+θ̄(ξ))(1−x) +α
(
1 + ξ2

)p
e(θ(ξ)+θ̄(ξ))x

ĝδ(ξ)

= eθ(ξ)(1−x)

1 +α
(
1 + ξ2

)p
e(θ(ξ)+θ̄(ξ))

ĝδ(ξ).

(3.29)

The following theorem is the main result of this paper and will answer the question
how to choose the regularization parameter α= α(x,δ) in (3.29), such that the Tikhonov
regularized solution uδα(x, t)=�−1(ûδα(x,ξ)) is optimal on the set Mp,E given by (3.1).

Theorem 3.5. Let p = 0, x > 0 or p > 0, x ≥ 0, and δ2/E2 ≤ 1 hold, then the Tikhonov
regularized solution uδα(x, t) = �−1(ûδα(x,ξ)) with ûδα(x,ξ) given by (3.29) is optimal on
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the set Mp,E provided the regularization parameter α is chosen optimally by

α0 = (1− x)
(
r4

0 + 15
)

x
(
r4

0 + 15
)

+ 4
√

2pr2
0

√
1 + r2

0

(
δ

E

)2

, (3.30)

where r0 is the (unique) solution of the equation

λ(r)ϕ(r)=
(

1 +
r4− 1

16

)−p
e−(
√

(1+r2)/2−1) =
(
δ

E

)2

. (3.31)

In the case x = 0 and p > 0 there holds

α0 = 1
2p

(
ln

E

δ

)(
δ

E

)2(
1 + o(1)

)
for δ −→ 0, (3.32)

and in the case 0 < x < 1, p ≥ 0, there holds

α0 = 1− x

x

(
δ

E

)2(
1 + o(1)

)
for δ −→ 0. (3.33)

Furthermore, the optimal error estimate ‖uδα0
(x, t)− u(x, t)‖ ≤ ω(δ,x) holds true where

ω(δ,x) is given by (3.23) and (3.24), respectively.

Proof. From Theorem 2.4 it follows that the optimal regularization parameter α is given
by (2.10) with ϕ(λ) given by (3.11), which is equivalent to

α0 = ϕ
(
λ0
)

λ0ϕ′
(
λ0
)( δ

E

)2

with ϕ
(
λ0
)= ρ−1

(
δ2

E2

)
. (3.34)

Note that ϕ(λ0)= ρ−1((δ/E)2) can be rewritten as ρ(ϕ(λ0))= (δ/E)2, that is,

ϕ
(
λ0
)
λ0 =

(
δ

E

)2

. (3.35)

Its parameter representation is just (3.31), so r0 should be the solution of (3.31). More-
over, because of the strict monotonicity of functions λ(r) and ϕ(r), r0 should be the
unique solution of (3.31).

Note that from (3.11), we know that

ϕ̇(r)=−
(

p
(
r3/4

)
1 +
(
r4− 1

)
/16

+
x√
2

r√
1 + r2

)
ϕ(r),

λ̇(r)=−1− x√
2

r√
1 + r2

λ(r).

(3.36)
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So,

ϕ′(λ)= ϕ̇(r)

λ̇(r)
=
(
p
(
r3/4

)
/
(
1 +
(
r4− 1

)
/16
)

+
(
x/
√

2
)(
r/
√

1 + r2
))
ϕ(r)(

(1− x)/
√

2
)(
r/
√

1 + r2
)
λ(r)

, (3.37)

and α0 in (3.34) can be rewritten as

α0 = ϕ(r0)

λ
(
r0
)(
ϕ̇
(
r0
)
/λ̇
(
r0
))( δ

E

)2

= (1− x)
(
r4

0 + 15
)

x
(
r4

0 + 15
)

+ 4
√

2pr2
0

(
δ

E

)2

, (3.38)

where r0 is the solution of (3.31), this is just the representation formula (3.30). In addi-
tion, due to (3.31), we have

−p ln
(

1 +
r4

0 − 1
16

)
−
(√

1 + r2
0

2
− 1

)
= 2ln

δ

E
. (3.39)

Note that for r0 → +∞ when δ→ 0, there holds

r0√
2

(
1 + o(1)

)= 2ln
E

δ
for δ −→ 0, (3.40)

that is,

r0 = 2
√

2ln
E

δ

(
1 + o(1)

)
for δ −→ 0. (3.41)

The asymptotical representation of α0 can be given as follows.
(i) x = 0, p > 0. From (3.30), (3.41), and note that r0 →∞ for δ→ 0, we have

α0 = r4
0 + 15

4
√

2pr2
0

√
1 + r2

0

(
δ

E

)2

= r4
0

(
1 +
(
15/r4

0

))
4
√

2pr3
0

√
1 + 1/r2

0

(
δ

E

)2

= r0

4
√

2p

(
δ

E

)2(
1 + o(1)

)
for δ −→ 0

= 1
4
√

2p
2
√

2
(

ln
E

δ

)(
δ

E

)2(
1 + o(1)

)
for δ −→ 0

= 1
2p

(
ln

E

δ

)(
δ

E

)2(
1 + o(1)

)
for δ −→ 0.

(3.42)

This is just the formula (3.32).
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(ii) 0 < x < 1, p ≥ 0. In this case, from (3.30) we have

α0 = r4
0 (1− x)

(
1 + 15/r4

0

)
r4

0

(
x
(
1 + 15/r4

0

)
+ 4
√

2p
(√

1 + r2
0 /r

2
0

))( δ
E

)2

= 1− x

x

(
δ

E

)2(
1 + o(1)

)
for δ −→ 0.

(3.43)

This is just the formula (3.33). It is the conclusion of Theorem 2.4 that the optimal
error estimates (3.23) and (3.24) hold for α0 given by (3.32) and (3.33), respectively.

The proof of Theorem 3.5 is complete. �

4. A numerical example

It is easy to verify that the function

u(x, t)=

x+ 1
t3/2

exp
{
− (x+ 1− t)2

4t

}
, t > 0, 0≤ x < 1,

0, t ≤ 0,
(4.1)

is the exact solution of problem (1.2) with data

g(t)=


2
t3/2

exp
{
− (2− t)2

4t

}
, t > 0,

0, t ≤ 0,
g(t)∈ L2(R),

f (t) := u(0, t)=


1
t3/2

exp
{
− (1− t)2

4t

}
, t > 0,

0, t ≤ 0,
f (t)∈ L2(R).

(4.2)

Figures 4.1, 4.2, and 4.3 give the comparison of the approximation solution with exact
solution at x = 0,0.1, and 0.9, respectively. The tests were performed in the following way:
first, we add a normally distributed perturbation of variance 10−4 to each function, giving

vectors {g(m)
δ }100

m=1, then we use the formula

uδα(x, t)= 1√
2π

∫∞
−∞

eiξt
eθ(ξ)(1−x)

1 +α
(
1 + ξ2

)p
e(θ(ξ)+θ(ξ))

ĝδ(ξ)dξ (4.3)

to compute the Tikhonov approximation solution, the data δ is given according to (1.7).
It can be seen from these figures that the computational effect of the optimal Tikhonov

regularization method is fairly satisfactory.

Remark 4.1. In our numerical experiment, if E is considered as a function of p, we can
find the relation between E(p) and p in Table 4.1. From the latter, we conclude that the
function f (·) belongs to Hp(R), where p satisfies 0≤ p ≤ 2. The function E(p) is plotted
as in Figure 4.4.
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u
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3

4

5

6

Approximate solution
Exact solution

Figure 4.1. x = 0, p = 1/3, δ
.= 0.002, E = ‖ f ‖1/3

.= 4.39, α0
.= 2.5× 10−6 (by formula (3.32)).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5
2

2.5

3

3.5
4

4.5

t

u

Approximate solution
Exact solution

Figure 4.2. x = 0.1, p = 0, δ
.= 0.002, E = ‖ f ‖ .= 3, α0

.= 4.0× 10−6 (by formula (3.33)).

For fixed δ and x, we take δ = 0.1 and x = 0, then the best possible worst error (3.24)
becomes

ω(p,0.1,0)= E(p)
(√

2ln
(
E(p)
0.1

))−2p

for 0≤ p ≤ 2. (4.4)

We can plot the figure of ω(p,0.1,0)=: ω(p) as in Figure 4.5.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

t

u

Approximate solution
Exact solution

Figure 4.3. x = 0.9, p = 0, δ
.= 0.002, E = ‖ f ‖ .= 3,α0

.= 4.0× 10−8 (by formula (3.33)).

Table 4.1

p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E(p) 2.97 3.28 3.67 4.18 4.86 5.75 6.95 8.57 10.75 13.75 17.86

p 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

E(p) 23.57 31.54 42.79 58.75 81.59 114.55 162.47 232.68 336.30 490.38

p 3 4 5 6 7

E(p) 3.2225∗ 104 3.85886∗ 106 7.32224∗ 108 2.01914∗ 1011 7.62738∗ 1013

In this experiment, we can conclude that ω(p) is a decreasing function in respect of p.
The same result can be found when the various data δ is given. In theory, the monotony
of the function ω(p,ω,x)= δx[E(p)(

√
2lnE(p)/δ)−2p]1−x depends on δ and E(p).

We define 2-norm of a vector V = (vi)mi=1,

|V |2 :=
√√√√ 1
m

m∑
i=1

vi. (4.5)

Hence we can compute the error between the exact solution and approximation

∆e =
∣∣(u(0, ti

))m
i=1−

(
uδα
(
0, ti
))m

i=1

∣∣
2. (4.6)
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Figure 4.4. E(p).
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Figure 4.5. ω(p).

Now we use noise data (gδ)i = (g)i + ε, where (g)i is the discretized exact data. Hence

δ :=
√√√√ 1
m

m∑
i=1

((
gδ
)
i− (g)i

)=
√√√√ 1
m

m∑
i=1

ε = ε. (4.7)

The results of fixing δ = ε = 0.10, x = 0 are presented in Table 4.2, which shows that our
theoretical optimal error estimate is decreasing with the index p.
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Table 4.2

p 0.1 0.3 0.5 0.8 1.0 1.5 2.0

∆e(p) 0.6257 0.5244 0.5175 0.5142 0.5046 0.4576 0.3994
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