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We study a new family of functions Q(X ,Y), research its properties, and get some fixed
point theorems about this family.

1. Introduction and preliminaries

Kuratowski [6] showed that a continuous compact map f : X → X defined on a closed
convex subset X of a Banach space has a fixed point. This theorem has enormous influ-
ence on fixed point theory, variational inequalities, and equilibrium problems. In 1968,
Goebel [5] established the well-known coincidence theorem, and then there had been a
lot of generalization and application (see, [1, 2, 5]).

Let X be a subset of a Hausdorff topological vector space E and Y a Hausdorff topo-
logical vector space, we define a new class Q(X ,Y) of set-valued maps from X into Y as
follows. T ∈Q(X ,Y) implies that for any compact convex subset K of X and any contin-
uous function f : T(K)→ K , the composition f (T|K ) : K → 2K has a fixed point.

Subclasses of Q(X ,Y) are the class of continuous functions C(X ,Y), the class of the
Kakutani maps K(X ,Y) (with convex values and codomains being convex spaces), the
class of the acyclic maps V(X ,Y) (with acyclic values), and the class of the approachable
maps �0(X ,Y) (whose domains and codomains are subsets of topological vector spaces),
and so forth.

A nonempty subset X of a Hausdorff topological vector space E is said to be nearly
convex (see Wu [7]) if for every compact subset A of X and every neighborhood V of
the origin 0 of E, there is a continuous mapping h : A→ X such that x− h(x)∈ V for all
x ∈ A and h(A) is contained in some convex subset of X .

Remark 1.1. It is clear that every convex set is nearly convex, but the converse is not true
in general.

For a counterexample, let (M,d) be a metric space, where M = R2 and the metric
d : M ×M → R+ is denoted by d(x, y) = max{|x1 − y1|, |x2 − y2|} for all x = (x1,x2),
y = (y1, y2) ∈M. Then the set B(0) = {x ∈M : d(x,0) < 1} ∪ {x = (x1,x2) ∈M : |x1| =
|x2| = 1} is a nearly convex subset of M, but it is not convex.
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Let E and F be topological vector spaces, let X be a nonempty subset of E, and let Y be
a subset of F. We denote by 2Y the class of all nonempty subsets of Y , and 〈X〉 denotes
the class of all nonempty finite subsets of X . For a set-valued function T : X → 2Y , the
following notations are used.

(i) Tx = {y ∈ Y | y ∈ Tx}.
(ii) TA=∪x∈ATx.

(iii) T−1y = {x ∈ X | y ∈ Tx}.
(iv) T−1B = {x ∈ X | Tx∩B �= φ}.
(v) T is said to be compact if the image TX of X under T is contained in a compact

subset of Y .
(vi) T is said to be closed if its graph �T = {(x, y)∈ X ×Y | y ∈ Tx, for all x ∈ X} is

a closed subset of X ×Y .
(vii) T is upper semicontinuous (usc) if T−1B is closed in X for each closed subset B

of Y , it is well known that if Y is compact and T is closed, then T is usc.
(viii) C(X ,Y) denotes the class of all continuous single-valued functions from X to Y .
The authors Chang and Yen (see [4]) introduced the following concept of KKM prop-

erty. Let X be a nonempty convex subset of a linear space and Y a topological space. If
T : X → 2Y , and F : X → 2Y are two multifunctions satisfying T(co(A)) ⊂ F(A) for any
A∈ 〈X〉, where co(A) denotes the convex hull of A, then F is called a generalized KKM
mapping with respect to T . If the multifunction T : X → 2Y satisfies that for any general-
ized KKM mapping F with respect to T , the family {F(x) : x ∈ X} has the finite intersec-
tion property, then T is said to have the KKM property. The class KKM(X ,Y) is defined
to be the set {T : X → 2Y |T has the KKM property}.

In general, Q(X ,Y) and KKM(X ,Y) may not be comparable, we conclude the differ-
ences as follows.

Proposition 1.2. Let X be a convex subset of a Hausdorff topological vector space and Y a
normal space. Then Q(X ,Y)⊂ KKM(X ,Y).

Proof. By [4, Proposition 3(ii), (iii)] of Chang and Yen, we complete the proof. �
Proposition 1.3. Let X be a convex subset of a locally convex space and T ∈ KKM(X ,Y)
is closed. Then T ∈Q(X ,Y).

Proof. By [4, Proposition 3(i), (ii) and Theorem 2] of Chang and Yen, we complete the
proof. �

2. Main results

The following is our new fixed point theorems for the class Q.

Theorem 2.1. Let X be a nonempty nearly convex subset of a Hausdorff topological vector
space E, let T ∈ Q(X ,X) be closed, and let TX ⊂ X be compact. Then T has a fixed point
in X .

Proof. Let N = {Uβ|β ∈ Λ} be a local base of E such that Uβ is symmetric and open for
each β ∈ Λ, and let V ∈ N. Since TX is a compact subset of the nearly convex set X ,
there exists a continuous mapping h : TX → X such that x−h(x)∈V for all x ∈ TX and
h(TX) is contained in some convex subset of X .
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Let Z = co(h(TX)), then h(TX) ⊂ Z ⊂ X and Z is compact and convex. Note that
h : TX → Z and T|Z : Z → 2TX . Since T ∈Q(X ,X), Z is compact and convex, and h|T(Z) :
T(Z)→ Z is continuous, the composition h|T(Z) ◦T|Z : Z → 2Z has a fixed point, say xV ,
then xV ∈ h(T(xV )). Let xV = h(yV ) for some yV ∈ T(xV ) ⊂ T(Z) ⊂ TX . Then we have
yV − xV = yV −h(yV )∈V . Since TX is compact, we may assume that {yV} converges to
x and then {xV} also converges to x. The closedness of T implies that x ∈ T(x). �

Corollary 2.2. Let X be a nonempty convex subset of a Hausdorff topological vector space
E, let T ∈Q(X ,X) be closed, and let TX ⊂ X be compact. Then T has a fixed point in X .

Let R+ be the set of all nonnegative real numbers. A mapping Φ : B(E)→R+ is called
a measure of noncompactness (see [6]) provided that the following conditions hold.

(i) Φ(co(Ω)) = Φ(Ω) for each Ω ∈ B(E), where co(Ω) denotes the closure of the
convex hull of Ω.

(ii) Φ(Ω)= 0 if and only if Ω is precompact.
(iii) Φ(A∪B)=max{Φ(A),Φ(B)}, for each A,B ∈ B(E).
(iv) Φ(λΩ)= λΦ(Ω), for each λ≥ 0, Ω∈ B(E).

If X is a nonempty subset of E and T : X → 2E, then T is called Φ-condensing mapping
provided that Φ(D)= 0 for any D ⊂ X with Φ(D)≤Φ(T(D)).

The following Lemma is well known by many authors.

Lemma 2.3. Let X be a nonempty closed convex subset of a topological vector space E and
T : X → 2X a Φ-condensing mapping. Then there exists a nonempty compact convex subset
K of X such that T(K)⊂ K .

From Corollary 2.2 and Lemma 2.3, we have the following theorem.

Theorem 2.4. Let X be a nonempty convex subset of a Hausdorff topological vector space E,
let T ∈Q(X ,X) be a closed Φ-condensing mapping. Then T has a fixed point in X .

Proof. By Lemma 2.3, there exists a nonempty compact convex subset K of X such that
T(K) ⊂ K . It is easy to show that T|K ∈ Q(K ,K). Hence, by Corollary 2.2, we have that
T|K has a fixed point in K . This completes the proof. �

Let X , Y be subsets of topological vector spaces E and F, respectively, and let T : X →
2Y . NE(x) will denote a filter of neighborhoods of a given point x ∈ E. Given U ∈NE(0)
and V ∈ NF(0), a function s : X → Y is said to be a (U ,V)-selection of T if for any
x ∈ X , s(x)∈ (T[(x+U)∩X] +V)∩Y . T is said to be approachable if it has a continu-
ous (U ,V)-selection for any U ∈NE(0) and any V ∈NF(0). The classes of approachable
mappings are defined as

(i) �0(X ,Y)= {T : X → 2Y | T is approachable},
(ii) �(X ,Y)= {T ∈�0| T is usc and compact-valued},

(iii) �c(X ,Y)= {T = Tm ◦Tm−1 ◦ ··· ◦T1|Ti ∈�(X ,Y) for i= 1,2, . . . ,m}.
Lemma 2.5. Let X be a subset of a Hausdorff topological vector space, and let Y , Z be two
topological spaces. If T ∈Q(X ,Y) and f ∈ C(Y ,Z), then f T ∈Q(X ,Z).

Proof. Let K be any compact convex subset of X and h : f (T(K))→ K any continuous
function. Let h′ = h f : T(K)→ K , then h′ is continuous, and since T ∈Q(X ,Y), we have
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that the composition h′(T|K ) : K → 2K has a fixed point x ∈ h′(T(x)) = h f (T(x)). This
implies that the composition h( f T|K ) : K → 2K has a fixed point. So f T ∈Q(X ,Z). �

By using a result of Ben-El-Mechaiekh and Deguire (see [3]), we get some fixed point
theorems and a generalized Fan’s matching theorem.

Theorem 2.6. Let X be a nonempty nearly convex subset of a Hausdorff topological vector
space E, and let Y be a compact subset of a topological vector space F. Suppose that T ∈
Q(X ,Y) is closed. Then for any G∈�c(Y ,X), TG has a fixed point in Y .

Proof. Since T ∈ Q(X ,Y), for any f ∈ C(Y ,X), by Lemma 2.5, f T ∈ Q(X ,X). By using
the fact that f T is compact and closed, we conclude via Theorem 2.1 that f T has a fixed
point in X . Hence � f ∩�T−1 �= φ, and thus, by Ben-El-Mechaiekh and Deguire [3, Corol-
lary 7.5], we have �G∩�T−1 �= φ for each G∈�c(Y ,X). Therefore, TG has a fixed point
in Y . �

A family 
 of subsets of a topological space is locally finite if and only if each point
of the space has a neighborhood which intersects only finitely many members of 
. It
follows immediately from the definition that a point is an accumulation point of the
union

⋃{A : A∈
} if and only if it is an accumulation point of some member of 
, and
hence the closure of the union is the union of the closures. It is also evident that the family
of all closures of members of 
 is locally finite.

We now deduce a matching theorem for a covering by using the results in the previous
theorem.

Theorem 2.7. Let X be a nonempty compact convex subset of a Hausdorff topological vector
space E, and let {Ai : i ∈ I} be a locally finite family of closed subsets of X such that X =⋃

i∈I Ai. If T ∈Q(X ,X) is closed, then for any subset {xi : i∈ I} of X indexed by the same set
I , there exists a nonempty subset J of I such that

T
(

co
{
xi : i∈ J

})∩
(⋂

i∈J
Ai

)
�= φ. (2.1)

Proof. For any x ∈ X , since {Ai : i∈ I} is a locally finite family of closed subsets of X , by
Zorn’s lemma, we may choose a maximal neighborhood N(x) of x which intersects only
finitely many members of {Ai : i∈ I}. Now we let I(x)= {i∈ I : x ∈Ai}. Since {Ai : i∈ I}
covers X , I(x) �= φ for each x ∈ X , and since {Ai : i∈ I} is a locally finite family of closed
subsets of X , so I(x) is a finite subset of I .

Next, we define a multifunction G : X → 2X by G(x)= co{xi : i∈ I(x)} for x ∈ X , then
each Gx is a nonempty compact convex subset of X . Also, if z ∈ N(x), then I(z) ⊂ I(x)
which implies that G(z)⊂ G(x). This shows that G is upper semicontinuous. Therefore,
by [3, Proposition 4.1], G∈�(X ,X)⊂�c(X ,X), and so, in view of Theorem 2.6, TG has
a fixed point x0 in X . Hence, x0 ∈ T(co{xi : i∈ I(x0)})∩ (∩i∈I(x0)Ai). This completes the
proof. �

The above matching theorem can reduce to the following results of Ky Fan’s matching
theorem.
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Corollary 2.8. Let X be a nonempty compact convex subset of a Hausdorff topological
vector space E. Assume that T ∈Q(X ,X) is closed and G : X → 2X satisfies that

(i) for each x ∈ X , Gx is open,
(ii) for any {x1,x2, . . . ,xn} ∈ 〈X〉, T(co{x1,x2, . . . ,xn})⊂

⋃n
i=1Gxi.

Then the family {Gx : x ∈ X} has the finite intersection property.

Proof. On the contrary, we assume that there exists a finite subset {x1,x2, . . . ,xn} of X such
that

⋂n
i=1Gxi = φ. Define F : X → 2X by Fx = Gcx for x ∈ X , then each Fx is closed, and

hence {Fxi}ni=1 is a family of closed subsets ofX with
⋃n

i=1Fxi = X . Therefore, by Theorem
2.7, there is a subset {xi1 ,xi2 , . . . ,xim} of {x1,x2, . . . ,xn} such that T(co{xi1 ,xi2 , . . . ,xim})

⋂
(
⋂m

j=1Fxij ) �= φ. It follows that T(co{xi1 ,xi2 , . . . ,xim}) �
⋃m

j=1Gxij , and we have a contra-
diction. This completes the proof. �

Let X be a compact Hausdoff space and let {A1,A2, . . . ,An} be a finite family of open
subsets of X such that X =⋃n

i=1Ai. Then there exist continuous functions λ1,λ2, . . . ,λn on
X satisfying the following:

(i) 0 � λi(x) � 1 for all i, 1 � i� n, and for each x ∈ X ,
(ii) Σn

i=1λi(x)= 1, for all x ∈ X ,
(iii) λi(x)= 0 if x /∈Ai.

We call the family {λ1,λ2, . . . ,λn} a partition of unity corresponding to {A1,A2, . . . ,An}.
We now have the following coincidence theorem.

Theorem 2.9. Let X be a nonempty convex subset of a Hausdorff topological vector space E,
and let T ,G : X → 2X be two set-valued mappings satisfying

(i) T ∈Q(X ,X) and TX is a compact subset of X ,
(ii) for each y ∈ T(X), G−1y is convex,

(iii) {intGx : x ∈ X} covers TX .
Then there exists an x0 ∈ X such that Tx0

⋂
Gx0 �= φ.

Proof. Since TX is a compact subset of X and TX ⊂ ⋃x∈X intGx, there exists a finite
subset {x1,x2, . . . ,xn} of X such that TX ⊂ ⋃n

i=1 intGxi. Let {λi}ni=1 be the partition of
the unity subordinated to {intGxi : i = 1,2, . . . ,n} and let P = co{x1,x2, . . . ,xn}. Define
f : TX → P by f (y) = Σn

i=1λi(y)xi = Σi∈Nyλi(y)xi, for each y ∈ TX , where i ∈ Ny if and
only if λi(y) �= 0 if and only if y ∈ intGxi ⊂Gxi. Then xi ∈G−1y for each i∈Ny . Clearly, f
is continuous, and by (ii), we have f (y)∈ co{xi : i∈Ny} ⊂G−1y for each y ∈ TX . Since
P is a compact convex subset of X and T ∈ Q(X ,X), ( f |T(P))(T|P) : P → P has a fixed
point x0 ∈ P ⊂ X . So x0 ∈ f Tx0 and f −1(x0)⊂Gx0, and we have Tx0∩Gx0 �= φ. �

Using the above theorems, we have the following fixed point theorem of Leray-
Schauder type.

Theorem 2.10. Let X be a convex subset of a Hausdorff topological vector space E with
0∈ X , U a neighborhood of 0, and let T ∈Q(X ,X) such that T|U∩X is compact and closed.
If T satisfies

(LS)

Tx∩{λx : λ > 1} = φ for each x ∈ BdXU , (2.2)

then T has a fixed point in U ∩X .
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Proof. Let p be a Minkowski function of U . Since 0 ∈ U , P is continuous. We define
r : E→U by

r(x)=



x, x ∈U ,

x

p(x)
, x /∈U ,

(2.3)

that is,

r(x)= x

max
{

1, p(x)
} . (2.4)

Then r is a continuous retraction of E on U . Let f be the retraction on r to X . Since X is
convex and 0∈ X , f (x)∈U ∩X and so f ∈ C(X ,U ∩X). Hence f T ∈Q(U ∩X ,U ∩X),
and f T is compact and closed. It follows from Corollary 2.2 that f T has a fixed point in
U ∩X , that is, there exists a z ∈ U ∩X such that z ∈ f T(z). Choose y ∈ T(z) such that
z = f (y). We have either z ∈U or z ∈ BdX(U).

Case 1. If z ∈ U , then 1 > p(z)= p( f (y))= p(y)/max{1, p(y)}, and so p(y) < 1, which
implies that y = f (y). Thus z = f (y)= y ∈ T(z).

Case 2. If z ∈ BdX(U), then 1= p(z)= p( f (y))= p(y)/max{1, p(y)}, from which we see
that p(y)≥ 1. If p(y) > 1, we have z = f (y)= y/p(y), and then y = p(y)z, which contra-
dicts the condition (LS). So p(y)= 1, and thus z = f (y)= y ∈ T(z). This completes the
proof. �
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