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Singular boundary conditions are formulated for nonselfadjoint Sturm-Liouville oper-
ators with singularities and turning points. For boundary value problems with singular
boundary conditions, properties of the spectrum are studied and the completeness of the
system of root functions is proved.

1. Introduction

We consider a class of singular differential equations of the form

− d

dt

(
p2(t)

dz

dt

)
+ p1(t)z(t)= λp0(t)z(t), t ∈ (a,b). (1.1)

Here λ is the spectral parameter, and the complex-valued functions pk(t) have zeros
or/and singularities at the endpoints of the interval (a,b). More precisely,

pk(t)= (t− a)sk0 (b− t)sk1 pk0(t), (1.2)

where skm are real numbers, pk0(t) ∈ C2[a,b], p00(t)p20(t) �= 0, p00(t)/p20(t) > 0 for t ∈
[a,b]. Let s2m < s0m + 2, s2m ≤ s1m + 2, m = 0,1, that is, we consider the case of so-called
regular singularities. Operators with irregular singularities possess different qualitative
properties and require different investigations.

Since the solutions of (1.1) may have singularities at the endpoints of the interval, and
since in general the values of the solutions and their derivatives at the endpoints are not
defined, an important question is how to introduce singular two-point boundary con-
ditions in the general case under consideration. For some particular cases this problem
has been studied in [4, 5, 6, 15, 21, 23] and other works. For example, in [4] singular
boundary conditions were constructed in the case when the endpoints are of limit-circle
type.

In this paper, we provide a general method for defining two-point singular bound-
ary conditions in the above-mentioned general case. In Section 2, we construct singu-
lar boundary conditions and formulate the corresponding boundary value problems.
In Section 3, properties of the spectrum are studied for boundary value problems with
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singular boundary conditions. In Section 4, the completeness of the system of eigen - and
associated functions (eaf ’s) is proved for this class of boundary value problems.

We mention that the approach presented in this paper can serve as a basis for various
investigations connected with the spectral theory of Sturm-Liouville equations (and also
for higher-order differential equations and systems) with singular boundary conditions.
Further topics connected with problems with singular boundary conditions, like, for ex-
ample, expansion theorems and inverse spectral problems, will be studied elsewhere.

For simplicity, we confine ourselves here to the case when there are no singularities and
turning points inside the interval. We note that spectral problems for ordinary differential
operators without singularities (or with integrable coefficients) were investigated in many
works (see the monographs [10, 12, 13, 16, 17, 19] and the references given therein). Some
aspects of spectral problems for differential equations having singularities and/or turning
points with classical boundary conditions at the endpoints were studied among others in
[1, 3, 7, 9, 11, 14, 18, 22, 24], where further references can be found.

2. Singular boundary conditions

Denote

r(t)= p0(t)
p2(t)

, χ(t)= p1(t)
p2(t)

+
d

dt

(
ṗ2(t)

2p2(t)

)
+

(
ṗ2(t)

2p2(t)

)2

,

R(t)= (r(t))1/2
> 0, T =

∫ b
a
R(ξ)dξ, sm = s0m− s2m, m= 0,1.

(2.1)

Then sm >−2, m= 0,1, and there exist the finite limits

χ0 = lim
t→a+0

(t− a)2χ(t), χ1 = lim
t→b−0

(b− t)2χ(t). (2.2)

Denote

ν= 2
s0 + 2

(
χ0 +

1
4

)1/2

, γ = 2
s1 + 2

(
χ1 +

1
4

)1/2

. (2.3)

For definiteness, let Reν > 0, Reγ > 0, ν, γ /∈N (other cases require minor modifications).
We transform (1.1) by means of the replacement

x =
∫ t
a
R(ξ)dξ, y(x)= (p0(t)p2(t)

)1/4
z(t) (2.4)

to the differential equation

−y′′(x) + q(x)y(x)= λy(x), x ∈ (0,T), (2.5)

where q(x) = r̈(t)(4r2(t))−1 − 5ṙ(t)(16r3(t))−1 + χ(t)(r(t))−1. The function q(x) is con-
tinuous for x ∈ (0,T), and it has second-order singularities at the endpoints of the inter-
val:

q(x)= ω

x2
+ q0(x), x ∈

(
0,
T

2

]
, q(x)= ω1

(T − x)2
+ q0(x), x ∈

(
T

2
,T
)

, (2.6)
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where ω = ν2 − 1/4, ω1 = γ2 − 1/4. We assume that q0(x)x2θ(T − x)2θ1 ∈�(0,T), where
θ := 1/2−Reν, θ1 := 1/2−Reγ.

First of all, we construct fundamental systems of solutions (FSSs) for (2.5) having
power-type behavior near the endpoints of the interval (0,T). Let λ = ρ2, argρ ∈
(−π/2,π/2]. Consider the functions

Cj(x,λ)= xµj
∞∑
k=0

cjk(ρx)2k, j = 1,2, (2.7)

where

µj = (−1) jν +
1
2

, c10c20 = (2ν)−1,

cjk = (−1)kc j0

( k∏
s=1

((
2s+µj

)(
2s+µj − 1

)−ω)
)−1

.
(2.8)

Here and in the sequel, zµ = exp(µ(ln|z|+ iargz)), argz ∈ (−π,π]. It can be easily verified
that the functions Cj(x,λ), j = 1,2, are solutions of the equation −y′′ +ωx−2y = λy.

Let Sj(x,λ), j = 1,2, be solutions of the following integral equations:

Sj(x,λ)= Cj(x,λ) +
∫ x

0
g(x, t,λ)

(
q(t)−ωt−2)Sj(t,λ)dt, 0 < x < T , (2.9)

where g(x, t,λ)=C1(t,λ)C2(x,λ)−C1(x,λ)C2(t,λ). The properties of the functions Sj(x,λ)
and of the corresponding Stokes multipliers were studied in [20]. In particular, the func-
tions Sj(x,λ) are entire in λ of order 1/2, and form an FSS of (2.5). Moreover,

〈
S1(x,λ),S2(x,λ)

〉≡ 1, (2.10)

where 〈y(x), ỹ(x)〉 := y(x) ỹ′(x)− y′(x) ỹ(x) is the Wronskian, furthermore,

∣∣Sj(x,λ)
∣∣≤ C∣∣xµj∣∣ for |ρx| ≤ 1. (2.11)

Here and below, one and the same symbol C denote various positive constants in the
estimates. We will call Sj(x,λ), j = 1,2, the Bessel-type solutions for (2.5) related to x = 0.
Let Sj1(x,λ), j = 1,2, 0 < x < T , be the Bessel-type solutions for the equation

−y′′1 (x) + q(T − x)y1(x)= λy1(x) (2.12)

related to x = 0. Then the functions S+
j (x,λ) := (−1) j−1Sj1(T − x,λ), j = 1,2, are solutions

of (2.5). They are called the Bessel-type solutions for (2.5) related to x = T . Clearly,

〈
S+

1 (x,λ),S+
2 (x,λ)

〉≡ 1, (2.13)∣∣S+
j (x,λ)

∣∣≤ C∣∣(T − x)µ
+
j
∣∣ for

∣∣ρ(T − x)
∣∣≤ 1, (2.14)

where µ+
j = (−1) jγ+ 1/2.
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We introduce the linear forms

σk(y) :=(−1)k−1〈y(x),S3−k(x,λ)
〉
|x=0, σ+

k (y) :=(−1)k−1〈y(x),S+
3−k(x,λ)

〉
|x=T , k=1,2.

(2.15)
It follows from (2.10) and (2.13) that

σk
(
Sj
)= σ+

k

(
S+
j

)= δjk, j,k = 1,2, (2.16)

where δjk is the Kronecker symbol.
Obviously, the Cauchy-type problem for (2.5) with the initial conditions σk(y) = ck,

k=1,2, has a unique solution, namely, y(x)=c1S1(x,λ)+c2S2(x,λ). Similarly, the Cauchy-
type problem for (2.5) with the initial conditions σ+

k (y)= ck, k = 1,2, has a unique solu-
tion, namely, y(x)= c1S

+
1 (x,λ) + c2S

+
2 (x,λ).

Remark 2.1. For the classical Sturm-Liouville equation, one has ν = γ = 1/2 (i.e., ω =
ω1 = 0); hence σk(y)= y(k−1)(0), σ+

k (y)= y(k−1)(T), k = 1,2.
If Reν,Reγ ∈ (0,1), we have the limit-circle case at both endpoints of the interval

(0,T). This case was treated in [4]; here we study the general case.

The linear forms σk(y) and σ+
k (y) allow one to introduce singular two-point boundary

conditions of the following general form for (2.5):

ak1σ1(y) + ak2σ2(y) + a+
k1σ

+
1 (y) + a+

k2σ
+
2 (y)= 0, k = 1,2, (2.17)

where

rank

[
a11 a12 a+

11 a+
12

a21 a22 a+
21 a+

22

]
= 2. (2.18)

It is natural and convenient to normalize the boundary conditions (2.17) (compare the
similar procedure in [13] for classical boundary value problems without singularities).
This normalization procedure gives us 3 classes of the boundary conditions (2.17).

Case 1. Let rank[ak2,a+
k2]k=1,2 = 2. Then solving (2.17) with respect to σ2(y) and σ+

2 (y),
we arrive at the equivalent boundary conditions of the form

U1(y) := σ2(y) + a1σ1(y) + a+
1σ

+
1 (y)= 0,

U2(y) := σ+
2 (y) + a2σ1(y) + a+

2σ
+
1 (y)= 0.

(2.19)

Case 2. Let rank[ak2,a+
k2]k=1,2 = 1. Then the boundary conditions (2.17) can be reduced

to the form

a11σ1(y) + a12σ2(y) + a+
11σ

+
1 (y) + a+

12σ
+
2 (y)=a01σ1(y) + a+

01σ
+
1 (y)= 0,

∣∣a12
∣∣+
∣∣a+

11

∣∣ > 0.
(2.20)

Case 3. Let rank[ak2,a+
k2]k=1,2 = 0, that is, ak2 = a+

k2 = 0, k = 1,2. Then (2.17) can be
reduced to the separated boundary conditions of the form σ1(y)= σ+

1 (y)= 0.

For definiteness, we will consider below the boundary conditions of the form (2.19).
All other cases are treated analogously.
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Remark 2.2. Similarly, one can introduce singular boundary conditions also for (1.1).
Denote

{
z(t), z̃(t)

}
:= p2(t)

(
z(t)

dz̃(t)
dt

− z̃(t)
dz(t)
dt

)
. (2.21)

Then

{
z(t), z̃(t)

}= 〈y(x), ỹ(x)
〉

, (2.22)

where y(x) = (p0(t)p2(t))1/4z(t), ỹ(x) = (p0(t)p2(t))1/4z̃(t), x = ∫ ta R(ξ)dξ. Moreover, if
z(t) and z̃(t) are solutions of (1.1), then the expression {z(t), z̃(t)} does not depend on t.
Let

s j(t,λ) := (p0(t)p2(t)
)1/4

Sj(x,λ), s+j (t,λ) := (p0(t)p2(t)
)1/4

S+
j (x,λ), x =

∫ t
a
R(ξ)dξ,

τk(z) :=(−1)k−1{z(t),s3−k(t,λ)
}
|t=a, τ+

k (z) :=(−1)k−1{z(t),s+3−k(t,λ)
}
|t=b, k = 1,2.

(2.23)

Then the functions s j(t,λ) and s+j (t,λ) are solutions of (1.1) and τk(z) = σk(y), τ+
k (z) =

σ+
k (y), k = 1,2. Hence, the linear forms τk(z) and τ+

k (z) allow one to introduce singular
two-point boundary conditions of the general form for (1.1):

ak1τ1(z) + ak2τ2(z) + a+
k1τ

+
1 (z) + a+

k2τ
+
2 (z)= 0, k = 1,2. (2.24)

3. Asymptotics of the spectrum

We consider the boundary value problem L for (2.5) with the boundary conditions (2.19).
The main result of this section is the following theorem.

Theorem 3.1. The boundary value problem L has a countable set of eigenvalues {λn}n≥0.
For n→∞,

ρn :=
√
λn = π

T

(
n+ p+

µ1 +µ+
1

2
+O

(
1
nβ

))
, (3.1)

where β :=min(1,2Reν,2Reγ), and p ∈ Z does not depend on q0(x),ak,a+
k , and depends

only on ν,γ.

Proof. Since the functions Sj(x,λ), j = 1,2, form an FSS for (2.5), one has

S+
k (x,λ)= αk1(λ)S1(x,λ) +αk2(λ)S2(x,λ), 0 < x < T , k = 1,2. (3.2)

Using (2.10), (2.13), and (2.16), we calculate

α11(λ)= σ1
(
S+

1

)= σ+
2

(
S2
)
, α12(λ)= σ2

(
S+

1

)=−σ+
2

(
S1
)
,

α21(λ)= σ1
(
S+

2

)=−σ+
1

(
S2
)
, α22(λ)= σ2

(
S+

2

)= σ+
1

(
S1
)
,

(3.3)

det
[
αk j(λ)

]
k, j=1,2 = det

[
σk
(
S+
j

)]
k, j=1,2 = det

[
σ+
k

(
Sj
)]

k, j=1,2 = 1. (3.4)
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Denote Zk0 = {ρ : argρ ∈ (k0π/2,(k0 + 1)π/2)}, k0 =−1,0. In each sector Zk0 , the roots
Rk, k = 1,2 of the equation ξ2 + 1 = 0 can be numbered in such a way that Re(ρR1) <
Re(ρR2), ρ ∈ Zk0 . Clearly, Rk = (−1)k−1i for Z0, and Rk = (−1)ki for Z−1. In [20], for each
sector Zk0 , a special fundamental system of solutions {yk(x,ρ)}k=1,2, 0 < x < T , ρ ∈ Zk0 of
the differential equation (2.5) has been constructed, having the following properties.

(1) For each x ∈ (0,T), the functions y(m)
k (x,ρ), m = 0,1, are holomorphic with re-

spect to ρ for ρ∈ Zk0 , |ρ| ≥ ρ∗, are continuous for ρ∈ Zk0 , |ρ| ≥ ρ∗, and

y(m)
k (x,ρ)= (ρRk)m exp

(
ρRkx

)
[1]0, x ∈ (0,T), ρ ∈ Zk0 , |ρx| ≥ 1,

∣∣ρ(T − x)
∣∣≥ 1,

(3.5)

where [1]0 = 1 +O((ρx)−β) +O((ρ(T − x))−β), that is, f (x,ρ)= [1]0 means that
| f (x,ρ)− 1| ≤ C(|ρx|−β + |ρ(T − x)|−β).

(2) The relation

Sj(x,λ)=
2∑

k=1

djk(ρ)yk(x,ρ), 0 < x < T , (3.6)

holds, where

dj1(ρ)= dj exp
(− iπµj)ρ−µj [1], dj2(ρ)= djρ−µj [1], d1d2 =−(4isinπν)−1.

(3.7)

Here and below, [1] = 1 +O(ρ−β). We will call yk(x,ρ), k = 1,2, the Birkhoff-type solu-
tions for (2.5) related to x = 0.

Let yk1(x,ρ), k = 1,2, be the Birkhoff-type solutions for (2.12) related to x = 0. Then
the functions y+

k (x,ρ) := yk1(T − x,ρ) are solutions of (2.5), and

dm

dxm
y+
k (x,ρ)= (ρRk)m exp

(
ρRk(T − x)

)
[1]0,

x ∈ (0,T), ρ ∈ Zk0 , |ρx| ≥ 1,
∣∣ρ(T − x)

∣∣≥ 1,
(3.8)

S+
j (x,λ)= (−1) j−1

2∑
k=1

d+
jk(ρ)y+

k (x,ρ), 0 < x < T , (3.9)

where

d+
j1(ρ)= d+

j exp
(− iπµ+

j

)
ρ−µ

+
j [1], d+

j2(ρ)= d+
j ρ
−µ+

j [1], d+
1 d

+
2 =−(4isinπγ)−1.

(3.10)

We will call y+
k (x,ρ), k = 1,2, the Birkhoff-type solutions for (2.5) related to x = T .
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It follows from (3.6) and (3.9) that

yk(x,ρ)=
2∑
j=1

bk j(ρ)Sj(x,λ), 0 < x < T , (3.11)

y+
k (x,ρ)=

2∑
j=1

b+
k j(ρ)(−1) j−1S+

j (x,λ), 0 < x < T , (3.12)

where

bk j(ρ)= βk jρµj [1], b+
k j(ρ)= β+

k jρ
µ+
j [1], |ρ| −→∞, (3.13)

and βk j , β+
k j are complex numbers. It follows from (3.5), (3.6), (3.8), and (3.9) that for

|ρ| →∞, |ρ|x ≥ 1, |ρ|(T − x)≥ 1, the following asymptotic formulae are valid:

S(m)
j (x,λ)= djρ−µj

(
(−iρ)m exp(−iρx)[1]0 + (iρ)m exp

(− iπµj)exp(iρx)[1]0
)
,

S+(m)
j (x,λ)= (−1) j−1d+

j ρ
−µ+

j
(
(iρ)m exp

(− iρ(T − x)
)
[1]0

+ (−iρ)m exp
(− iπµ+

j

)
exp

(
iρ(T − x)

)
[1]0

)
.

(3.14)

In order to find the asymptotic behavior of αk j(λ), we substitute (3.14) into (3.2):

(−1)k−1d+
k ρ

−µ+
k
(

exp
(− iρ(T − x)

)
[1]0 + exp

(− iπµ+
k

)
exp

(
iρ(T − x)

)
[1]0

)
= αk1(λ)d1ρ

−µ1
(

exp(−iρx)[1]0 + exp
(− iπµ1

)
exp(iρx)[1]0

)
+αk2(λ)d2ρ

−µ2
(

exp(−iρx)[1]0 + exp
(− iπµ2

)
exp(iρx)[1]0

)
.

(3.15)

Since x is arbitrary from (0,T), we infer

αk j(λ)=2i(−1)k− j+1d3− jd+
k ρ

1−µ3− j−µ+
k
(

exp(−iρT)[1]−exp
(−iπ(µ3− j+µ+

k

))
exp(iρT)[1]

)
.

(3.16)

Therefore,
∣∣αk j(λ)

∣∣≤ C∣∣ρ1−µ3− j−µ+
k
∣∣exp

(|Imρ|T). (3.17)

Denote

∆(λ) := det
[
Uk
(
Sj
)]

k, j=1,2. (3.18)

The function ∆(λ) is entire in λ of order 1/2, and its zeros {λn} coincide with the eigen-
values of the boundary value problem L. The function ∆(λ) is called the characteristic
function for L. Taking (2.16), (2.19), (3.3), and (3.4) into account, we calculate

∆(λ)= α12(λ)− a+
2α22(λ) + a1α11(λ) +

(
a2a

+
1 − a1a

+
2

)
α21(λ) + a+

1 − a2. (3.19)

Substituting (3.16) into (3.19), we obtain the following asymptotic formula for the char-
acteristic function ∆(λ) for |ρ| →∞:

∆(λ)= 2id+
1 d1ρ

ν+γ(exp(−iρT)[1]− exp
(− iπ(µ1 +µ+

1

))
exp(iρT)[1]

)
. (3.20)
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Using (3.20) and Rouche’s theorem [2, page 125], we arrive in the usual way (see [13,
Chapter 1]) at (3.1). �

Fix δ > 0. Denote Gδ := {ρ : |ρ− ρn| ≥ δ, n≥ 0}. By the well-known method [13], one
can get the estimate

∣∣∆(λ)
∣∣≥ C∣∣ρν+γ

∣∣exp
(|Imρ|T), ρ ∈Gδ. (3.21)

Moreover, in view of (3.2), (3.4), and (3.18), one has

∆(λ) := det
[
Uk
(
S+
j

)]
k, j=1,2. (3.22)

4. The completeness theorem

In this section, we prove that the system of eaf ’s of the boundary value problem L is com-
plete in corresponding Banach spaces. At the end of the section, we provide an analogous
theorem for boundary value problems for (1.1) with singular boundary conditions.

Let α, η be real numbers and let 1 ≤ p <∞. We consider the Banach spaces Bα,η,p =
{ f (x) : f (x)x−α(T − x)−η ∈�p(0,T)} with the norm ‖ f ‖α,η,p = ‖ f (x)x−α(T − x)−η‖p,
where ‖ · ‖p is the norm in the space �p(0,T). It was proved in [22] that

Bα,η,p ⊆ Bβ,ξ,s, 1≤ s≤ p <∞, β−α < s−1− p−1, ξ −η < s−1− p−1, (4.1)

(here the symbol ⊆ denotes dense embedding [8, page 9]). In particular, it follows from
(4.1) that Bα,η,p ⊆�s(0,T) for 1≤ s≤ p <∞, α > p−1− s−1, η > p−1− s−1.

Theorem 4.1. The system of eaf ’s of the boundary value problem L is complete in the space
Bβ,ξ,s for 1≤ s <∞, β < θ + 1/s, ξ < θ1 + 1/s.

Proof. Let {ψ�(x)}�≥0 be the system of eaf ’s of L, and let the function f (x) be such that

f (x)xθ(T − x)θ1 ∈�(0,T),
∫ T

0
f (x)ψ�(x)dx = 0 for � ≥ 0. (4.2)

Denote

ϕk(x,λ)=Uk
(
S2
)
S1(x,λ)−Uk

(
S1
)
S2(x,λ), 0 < x < T , k = 1,2. (4.3)

The functions ϕk(x,λ) are solutions of (2.5), and in view of (3.18),

Uk
(
ϕk
)= 0, k = 1,2, U1

(
ϕ2
)=−U2

(
ϕ1
)= ∆(λ). (4.4)

The functions ϕk(x,λ), k = 1,2, are entire in λ of order 1/2. For λ = λn, n ≥ 0, the func-
tions ϕk(x,λn) satisfy the boundary conditions (2.19). Taking (2.10), (3.18), and (4.3)
into account, we obtain

〈
ϕ1(x,λ),ϕ2(x,λ)

〉≡ ∆(λ). (4.5)

By virtue of (3.22) and (4.4),

ϕk(x,λ)=Uk
(
S+

2

)
S+

1 (x,λ)−Uk
(
S+

1

)
S+

2 (x,λ), 0 < x < T , k = 1,2. (4.6)
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Denote

Fk(λ)=
∫ T

0
f (x)ϕk(x,λ)dx, Qk(λ)= (∆(λ)

)−1
Fk(λ), k = 1,2. (4.7)

It follows from (4.2), (4.4), (4.5), and (4.7) that the functions Qk(λ) are entire in λ, since
all its singularities are removable. In order to estimate |Qk(λ)|, we need the following
auxiliary assertion.

Lemma 4.2. For ρ ∈Gδ , |ρ|x ≥ 1, |ρ|(T − x)≥ 1,

∣∣(∆(λ)
)−1

ϕk(x,λ)
∣∣≤ C|ρ|−1/2−ε, (4.8)

where ε :=min(Reν,Reγ) > 0.

Proof. It follows from (2.10), (3.11), and (3.18) that

〈
y1(x,ρ), y2(x,ρ)

〉=det
[
bk j(ρ)

]
k, j=1,2, det

[
Uξ
(
yk
)]

ξ,k=1,2=∆(λ)det
[
bk j(ρ)

]
k, j=1,2,

(4.9)

and consequently,

det
[
Uξ
(
yk
)]

ξ,k=1,2 = ∆(λ)
〈
y1(x,ρ), y2(x,ρ)

〉
. (4.10)

In view of (4.4) and (4.10), we get

ϕk(x,λ)= (〈y1(x,ρ), y2(x,ρ)
〉)−1(

Uk
(
y2
)
y1(x,ρ)−Uk

(
y1
)
y2(x,ρ)

)
, k = 1,2.

(4.11)
It follows from (2.16), (3.11), and (3.12) that

σξ
(
yk
)= bkξ(ρ), σ+

ξ

(
y+
k

)= b+
kξ(ρ). (4.12)

Since the functions y+
j (x,ρ), j = 1,2, form an FSS for (2.5), one has

yk(x,ρ)=
2∑
j=1

Γk j(ρ)y+
j (x,ρ). (4.13)

Let for definiteness, ρ ∈ Z0, that is, argρ∈ [0,π/2]. Then

y1(x,ρ)= exp(iρx)[1]0, y2(x,ρ)= exp(−iρx)[1]0,

y+
1 (x,ρ)= exp

(
iρ(T − x)

)
[1]0, y+

2 (x,ρ)= exp
(− iρ(T − x)

)
[1]0,

(4.14)

and consequently, for |ρ| →∞, ρ∈ Z0,

Γ12(ρ)= exp(iρT)[1], Γ21(ρ)= exp(−iρT)[1],

Γkk(ρ)=O(ρ−β)exp(iρT), k = 1,2.
(4.15)
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It follows from (4.12), (4.13), (4.14), and (4.15) that for |ρ| →∞, ρ ∈ Z0,

σ+
ξ

(
y1
)= (−1)ξ−1b+

2ξ(ρ)exp(iρT)[1], σ+
ξ

(
y2
)= (−1)ξ−1b+

1ξ(ρ)exp(−iρT)[1].

(4.16)

Substituting (4.12) and (4.16) into (2.19) and taking (3.13) into account, we obtain for
|ρ| →∞, ρ ∈ Z0,

U1
(
y1
)= β12ρ

1/2+ν[1], U1
(
y2
)= β22ρ

1/2+ν[1] + a+
1β

+
11ρ

1/2−γ exp(−iρT)[1],

U2
(
y1
)=−β+

22ρ
1/2+γ[1]exp(iρT)[1] + a2ρ

1/2−ν[1],

U2
(
y2
)=−β+

12ρ
1/2+γ[1]exp(−iρT)[1].

(4.17)

Since 〈y1(x,ρ), y2(x,ρ)〉 = −2iρ[1] as |ρ| → ∞, ρ ∈ Z0, it follows from (4.11), (4.14),
and (4.17) that for |ρ| →∞, |ρ|x ≥ 1, |ρ|(T − x)≥ 1, ρ ∈ Z0,

ϕ1(x,λ)= 1
2i

(
β12ρ

ν−1/2 exp(−iρx)[1]0

− (β22ρ
ν−1/2[1] + a+

1β
+
11ρ

−1/2−γ exp(−iρT)[1]
)

exp(iρx)[1]0
)
,

ϕ2(x,λ)= 1
2i

((−β+
22ρ

−1/2+γ exp(iρT)[1] + a2ρ
−1/2−ν[1]

)
exp(−iρx)[1]0

+β+
12ρ

−1/2+γ exp(−iρT)exp(iρx)[1]0
)
.

(4.18)

In particular, together with (3.21), this yields (4.8) for ρ ∈ Z0. For ρ ∈ Z−1, the arguments
are similar. Lemma 4.2 is proved. �

Now we return to the proof of Theorem 4.1. We show that
∣∣Qk(λ)

∣∣≤ C|ρ|−ε, ρ ∈Gδ. (4.19)

For this purpose, we denote γρ,0 = {x ∈ [0,T] | |ρ|x ≤ 1}, γρ,1 = {x ∈ [0,T] | |ρ|(T − x)≤
1}, γρ,2 = [0,T] \ (γρ,0∪ γρ,1). Then

Qk(λ)=Qk0(λ) +Qk1(λ) +Qk2(λ), Qkj(λ) := (∆(λ)
)−1

∫
γρ, j

f (x)ϕk(x,λ)dx.

(4.20)

Since f (x)= f0(x)xν−1/2(T − x)γ−1/2, f0(x)∈�(0,T), we have by virtue of (4.8),∣∣Qk2(λ)
∣∣

≤ C|ρ|−1/2−ε
∫
γρ,2

∣∣ f0(x)xν−1/2(T − x)γ−1/2
∣∣dx

≤ C|ρ|−ε
(∫ T/2

1/|ρ|

∣∣ f0(x)xν(T − x)γ−1/2
∣∣dx+

∫ T−1/|ρ|

T/2

∣∣ f0(x)xν−1/2(T − x)γ
∣∣dx

)

≤ C|ρ|−ε
∫ T

0

∣∣ f0(x)
∣∣dx,

(4.21)
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hence

∣∣Qk2(λ)
∣∣≤ C|ρ|−ε, ρ∈Gδ. (4.22)

Furthermore, using (2.16), (2.19), (3.3), and (3.17), we obtain

∣∣U1
(
S1
)∣∣≤ C(1 +

∣∣ρν−γ∣∣exp
(|Imρ|T)), ∣∣U2

(
S1
)∣∣≤ C∣∣ρν+γ

∣∣exp
(|Imρ|T),∣∣U1

(
S2
)∣∣≤ C(1 +

∣∣ρ−ν−γ∣∣exp
(|Imρ|T)), ∣∣U2

(
S2
)∣∣≤ C∣∣ρ−ν+γ

∣∣exp
(|Imρ|T).

(4.23)

It follows from (2.11), (3.21), (4.3), (4.20), and (4.23) that

∣∣Q10(λ)
∣∣≤ C∣∣ρ−ν−γ∣∣exp

(−|Imρ|T)
×
∫ 1/|ρ|

0

∣∣ f0(x)xν−1/2
∣∣(∣∣x−ν+1/2

∣∣(1 +
∣∣ρ−ν−γ∣∣exp

(|Imρ|T))
+
∣∣xν+1/2

∣∣(1 +
∣∣ρν−γ∣∣exp

(|Imρ|T)))dx
≤ C∣∣ρ−ν−γ∣∣(∫ 1/|ρ|

0

∣∣ f0(x)
∣∣dx+

(
1 +

∣∣ρν−γ∣∣)∫ 1/|ρ|

0

∣∣ f0(x)x2ν
∣∣dx)

≤ C|ρ|−2ε, ρ∈Gδ ,

∣∣Q20(λ)
∣∣≤ C∣∣ρ−ν−γ∣∣∫ 1/|ρ|

0

∣∣ f0(x)xν−1/2
∣∣(∣∣x−ν+1/2ρ−ν+γ

∣∣+
∣∣xν+1/2ρν+γ

∣∣)dx
≤ C∣∣ρ−2ν

∣∣∫ 1/|ρ|

0

∣∣ f0(x)
∣∣dx+C

∫ 1/|ρ|

0

∣∣ f0(x)x2ν
∣∣dx

≤ C|ρ|−2ε, ρ∈Gδ.

(4.24)

Thus,

∣∣Qk0(λ)
∣∣≤ C|ρ|−2ε, ρ ∈Gδ. (4.25)

Similarly, using (2.14), (3.21), and (4.6), one obtains

∣∣Qk1(λ)
∣∣≤ C|ρ|−2ε, ρ ∈Gδ. (4.26)

Together with (4.22), this yields (4.19).
Since the functionsQk(λ) are entire in λ, it follows from (4.19) and Liouville’s theorem

that Qk(λ)≡ 0, k = 1,2, and consequently,

Fk(λ) :=
∫ T

0
f (x)ϕk(x,λ)dx ≡ 0, k = 1,2. (4.27)

Denote

Fj0(λ) :=
∫ T

0
f (x)Sj(x,λ)dx, j = 1,2. (4.28)
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By virtue of (4.3) and (4.27),

Uk
(
S2
)
F10(λ)−Uk

(
S1
)
F20(λ)≡ 0, k = 1,2. (4.29)

According to (3.18), the determinant of this linear algebraic system is equal to ∆(λ). Solv-
ing this system we get F10(λ)= F20(λ)≡ 0, that is,

∫ T
0
f (x)Sj(x,λ)dx ≡ 0, j = 1,2. (4.30)

Now we consider the boundary value problem L0 for (2.5) with the boundary con-
ditions σ1(y) = σ+

1 (y) = 0. The eigenvalues {λ0
n}n≥0 of L0 coincide with the zeros of the

characteristic function

∆0(λ) := σ+
1

(
S2
)= 〈S2(x,λ),S+

2 (x,λ)
〉
. (4.31)

According to (3.3) and (4.31), ∆0(λ)=−α21(λ). Using (3.16), one can get

ρ0
n :=

√
λ0
n =

π

T

(
n+ p0 +

µ2 +µ+
2

2
+O

(
1
nβ

))
, n−→∞,∣∣∆0(λ)

∣∣≥ C∣∣ρ−ν−γ∣∣exp
(|Imρ|T), ρ ∈G0

δ ,
(4.32)

where p0 ∈ Z,Gδ := {ρ : |ρ− ρ0
n| ≥ δ, n≥ 0}.

We consider the function

y(x,λ)= (∆0(λ)
)−1

(
S+

2 (x,λ)
∫ x

0
f (t)S2(t,λ)dt+ S2(x,λ)

∫ T
x
f (t)S+

2 (t,λ)dt

)
. (4.33)

It is easy to check that

y′′(x,λ)− q(x)y(x,λ) + λy(x,λ)= f (x), 0 < x < T. (4.34)

Fix x ∈ (0,T), and let |ρ|x ≥ 1, |ρ|(T − x)≥ 1. Then, according to (3.14),

∣∣S2(x,λ)
∣∣≤ C∣∣ρ−ν−1/2

∣∣exp
(|Imρ|x), ∣∣S+

2 (x,λ)
∣∣≤ C∣∣ρ−γ−1/2

∣∣exp
(|Imρ|(T − x)

)
.

(4.35)
Using (2.11) and (4.35), we calculate

∫ 1/|ρ|

0

∣∣ f (t)S2(t,λ)
∣∣dt ≤ C

∫ 1/|ρ|

0

∣∣ f0(t)t2ν(T − t)−1/2+γ
∣∣dt ≤ C∣∣ρ−2ν

∣∣,∫ x
1/|ρ|

∣∣ f (t)S2(t,λ)
∣∣dt ≤ C∣∣ρ−ν−1/2

∣∣∫ x
1/|ρ|

∣∣ f0(t)tν−1/2(T − t)−1/2+γ
∣∣exp

(|Imρ|t)dt
≤ C∣∣ρ−ν

∣∣exp
(|Imρ|x)

∫ x
1/|ρ|

∣∣ f0(t)tν
∣∣dt ≤ C∣∣ρ−ν

∣∣exp
(|Imρ|x).

(4.36)
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Analogously, using (2.14) and (4.35), we get

∫ T
T−1/|ρ|

∣∣ f (t)S+
2 (t,λ)

∣∣dt ≤ C∣∣ρ−2γ
∣∣,

∫ T−1/|ρ|

x

∣∣ f (t)S+
2 (t,λ)

∣∣dt ≤ C∣∣ρ−γ∣∣exp
(|Imρ|(T − x)

)
.

(4.37)

Substituting (4.32), (4.35), (4.36), and (4.37) into (4.33), we obtain

∣∣y(x,λ)
∣∣≤ C|ρ|−1/2, ρ∈Gδ , |ρ|x ≥ 1, |ρ|(T − x)≥ 1. (4.38)

Furthermore, using (3.2) and (4.33), we calculate

y(x,λ)=−
(
S1(x,λ)

∫ x
0
f (t)S2(t,λ)dt+ S2(x,λ)

∫ T
x
f (t)S1(t,λ)dt

)

− α22(λ)
α21(λ)

S2(x,λ)
∫ T

0
f (t)S2(t,λ)dt.

(4.39)

By virtue of (4.30), the last integral is identically zero, and consequently, the function
y(x,λ) is entire in λ for each fixed x ∈ (0,T). Together with (4.38), this yields y(x,λ)≡ 0.
In view of (4.35), we conclude that f (x)= 0 a.e. on (0,T).

Thus, we have proved that for each p (1≤ p <∞), the system of eaf ’s of L is complete
in Bθ,θ1,p. Since β < θ + 1/s, ξ < θ1 + 1/s, we have β < θ + 1/s− 1/p, ξ < θ1 + 1/s− 1/p,
for sufficiently large p, and according to (4.1), Bθ,θ1,p ⊆ Bβ,ξ,s. Consequently, the system
of eaf ’s of L is complete in Bβ,ξ,s for 1 ≤ s <∞, β < θ + 1/s, ξ < θ1 + 1/s. Theorem 4.1 is
proved. �

Corollary 4.3. The system of eaf ’s of L is complete in �s(0,T) for 1/s > max(Reν−
1/2,Reγ− 1/2).

We consider the boundary value problem Q for (1.1) with the boundary conditions

τ2(z) + a1τ1(z) + a+
1 τ

+
1 (z)= 0,

τ+
2 (z) + a2τ1(z) + a+

2 τ
+
1 (z)= 0.

(4.40)

The eigenvalues of Q coincide with the eigenvalues of L, hence Theorem 3.1 remains true
also for Q. Denote

w =
(
s0 + 2

)
θ

2
− s00 + s20

4
, w1 =

(
s1 + 2

)
θ1

2
− s01 + s21

4
. (4.41)

The following theorem is an obvious corollary of Theorem 4.1.

Theorem 4.4. The system of eaf ’s of the boundary value problem Q is complete in the space
Bβ,ξ,s for 1≤ s <∞, β < w + 1/s, ξ < w1 + 1/s. In particular, the system of eaf ’s of Q is com-
plete in �s(0,T) for 1/s >max(−w,−w1).
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