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We consider irrational rotations of the circleTx = x+α (mod 1) and study the asymptotic
behavior of sums of the type Sn =

∑n−1
k=0 πk with πk = ±1, the sign being determined by

the location of Tkx with respect to a binary partition.
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1. Introduction and preliminaries

Let X =R/Z and T : X → X be the rotation of an angle 0 < α < 1, that is,

Tx = x+α (mod1). (1.1)

The Lebesgue measure μ is obviously T-invariant. The subset of X given by {x+ kα}k∈Z is
the (full) orbit of x underT . If α∈Q, say α= p/q, then all orbits are finite (with q points),
whereas for α∈ R \Q all orbits are dense (the system is a minimal homeomorphism of
X) and μ is the unique (and thus ergodic) invariant measure.

Let us consider the partition ζ = (A−, A+) of X into the half-open arcs

A+ =
{

x ∈ X : 0≤ x <
1
2

}

, A− =
{

x ∈ X :
1
2
≤ x < 1

}

. (1.2)

If the rotation angle α is irrational, then ζ is generating for T (see [4]) and the partition
ζn = ζ ∨Tζ ∨···∨Tn−1ζ is made out of 2n arcs. This can be easily realized by induction:
when passing from ζn−1 to ζn one has to add to the endpoints of the arcs belonging to
ζn−1 the two new points Tn(0) and Tn(1/2) (for rational α, say α = p/q, the partition
ζn has precisely 2q arcs for all n≥ q). Thus, the rotation is metrically isomorphic to the
subshift given by the closure of π([0,1)) where the coding map π : [0,1]→ {−1,1}Z can
be defined by π(x)n = ϑ(Tn(x)) and ϑ : X → {−1,1} is the function in L2(X ,μ) given by

ϑ(x)= 2χA+ (x)− 1=
⎧
⎨

⎩

+1 if x ∈A+,

−1 if x ∈A−.
(1.3)
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2 Dispersion properties of ergodic translations

Here we want to study the asymptotic behavior of the ergodic sums

Sn(x)=
n−1∑

k=0

πk(x). (1.4)

Since

μ
(
Sn
)=

∫

X

n−1∑

k=0

ϑ(x+ kα)μ(dx)= n
∫

X
ϑ(x)μ(dx)= 0, (1.5)

the faster Sn grows to infinity the slower the convergence in the ergodic theorem is. The
reason why we are considering this problem for the particular function ϑ is that we want
to study a model of random walk on Z with transition to the closest neighbors when the
medium is defined by the rotation T : X → X . In this view |Sn(x)|measures how far from
the origin the walker is at the nth step. Due to the above observations on the partition ζn

there are exactly 2n different walks of length n that can be produced in this way (for α ir-
rational). If we introduce the involution σ : X → X which acts as σ(x)= (x+ 1/2)(mod1),
then we plainly have Sk =−Sk ◦ σ , whence the paths come in pairs symmetric with respect
to the origin. Several mathematical problems arise in this context (for related investiga-
tions see [1, 15]). The first is the characterization of the diffusive behavior of the walk,
that is, the growth behavior of Sn. Other interesting items may arise in the attempt to
understand the first passage distribution function

f (n)= μ
{
x ∈ X : τ(x) > n

}
(1.6)

with

τ(x)=min
{
n : Sn(x)= 0

}
, (1.7)

as well as the limit probability density

p(t)= lim
n→∞μ

{
x ∈ X : τ±n (x)= nt

}
, (1.8)

where τ±n is the time spent by the walker on the right (resp., left) side of the origin up to
time n, that is,

τ±n (x)= 1
2

n−1∑

k=0

(
1± sgn Sk(x)

)
. (1.9)

Recall that for the ordinary symmetric random walk, where the diffusive behavior is a
normal one, one finds f (n)=O(n−1/2) and p(t)= 1/π

√
t(1− t).

In this paper only the first problem will be addressed, leaving the last two to further
research. We mention in passing that this problem also arises in the attempt to understand
the asymptotic behavior of the following skew product on the cylinder:

(x, y)−→ (
x+α, y + ϑ(x)

)
. (1.10)
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The asymptotic behavior of the y-variable is completely determined by that of Sn. This
has been investigated in [5] for a class of Liouville rotation angles. On the other hand, in
[7] it was shown that when the rotation angle is the golden ratio, that is, α= (

√
5− 1)/2,

the arithmetic average (1/n)
∑n−1

k=0 Sk(0) diverges logarithmically and this behavior is ex-
pected to persist for other quadratic irrationals. In the next two sections we will study
the asymptotic behavior of Sn from two different points of view. In Section 2, using an
elementary argument which combines the Ostrowski representation of a positive inte-
ger and a version of the Denjoy-Koksma inequality we obtain general upper bounds
(Theorem 2.1) for ‖Sn‖∞. In Section 3, after having developed some general spectral the-
ory we obtain several lower bounds both for Sn and its Cesàro average in the L2-norm
(Theorems 3.9, 3.10 and 3.12). As a by-product we get a closed expression for the auto-
correlation function of the function ϑ (Theorem 3.7) as well as estimates on some con-
strained sums (Proposition 3.6). The (upper and lower) bounds mentioned above turn
out to depend intimately on the arithmetic properties of the rotation angle α. These, in
turn, are encoded by its continued fraction expansion, some properties of which will be
recalled in the following subsection.

1.1. Continued fractions and return times. In this section we collect several known facts
on continued fractions as well as some results on return times for ergodic translations to
be used later on. To start with, let

α= 1

a1 +
1

a2 +
1

a3 + ···

≡ [
a1,a2,a3, . . .

]
(1.11)

be the continued fraction expansion of α. One recursively constructs a sequence pn/qn of
rational approximants of α setting

p0

q0
= 0

1
,

p1

q1
= 1

a1
,

pn+1

qn+1
= an+1 pn + pn−1

an+1 qn + qn−1
. (1.12)

Then pn/qn = [a1,a2,a3, . . . ,an] and p2n/q2n < α < p2n−1/q2n−1 for all n > 0 (see [10, Chap-
ter 1]). Given u∈R let [u] and {u} be its integer and fractional part, respectively. Let G :
[0,1]→ [0,1] be the Gauss transformation given by G(x)= {1/x} for x > 0 and G(0)= 0.
One readily sees that α = [a1,a2, . . . ,an +Gn(α)], so that an+1 = [1/(Gn(α))] or Gn(α) =
[an+1,an+2, . . .] (we are making the conventions that 1/0=∞ and 1/∞= 0) and also

α= pn−1 +
(
Gn(α)

)−1
pn

qn−1 +
(
Gn(α)

)−1
qn

(1.13)

which combined with Lagrange’s formula qnpn−1− qn−1pn = (−1)−n yields

α− pn
qn
= (−1)n

qn
(
qn−1 +

(
Gn(α)

)−1
qn
) = (−1)n

qn
(
qn+1 +Gn+1(α)qn

) . (1.14)
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Now assume that α∈R \Q. In this case the iterative process Gn(α) is endless and for all
n≥ 1 we have an+1 < (Gn(α))−1 < an+1 + 1. One gets the well-known inequalitites

1
qn ·

(
qn + qn+1

) <
∣
∣
∣
∣α−

pn
qn

∣
∣
∣
∣ <

1
qn · qn+1

. (1.15)

Moreover, since

qn +Gn(α)qn−1 =
(n−1∏

k=0

Gk(α)

)−1

, (1.16)

one has the bounds

1

2
∏n−1

k=0 Gk(α)
< qn <

1
∏n−1

k=0 Gk(α)
. (1.17)

From (1.15) one deduces the following characterization for the denominators qn: let |x| =
min{|x− p| : p ∈ Z} be the distance from the nearest integer, then

qn =min
{
r > qn−1 : ‖rα‖ < ‖qn−1α‖

}
(1.18)

so that ‖rα‖ ≥ ‖qn−1α‖ for all r < qn (see Figure 1.1).
If we denote by d the Euclidean metric on X , then

d
(
x,Trx

)=min
p∈Z

|x+ rα− x− p| = ‖rα‖ (1.19)

for all x ∈ X . Set

fn := d
(
x,Tqnx

)= ∥
∥qnα

∥
∥= ∣

∣qnα− pn
∣
∣= (−1)n

(
qnα− pn

)
. (1.20)

From the above one deduces the recursion formula

fn−1 = an+1 fn + fn+1 (1.21)

and also

fn =
n∏

k=0

Gk(α). (1.22)

Equation (1.22) shows that for all irrational 0 < α < 1 the sequence fn is strictly decreasing
and by (1.15) satisfies the bounds

1
an+1 + 2

< qn · fn < 1
an+1

. (1.23)
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Figure 1.1. r · ‖rα‖ versus r for α= (
√

5− 1)/2.

Finally, using (1.15) and (1.17) one can easily verify that the three conditions

r1+η · ‖rα‖ > C1 ∀r ≥ 1,

qn+1 < C2q
1+η
n ∀n≥ 1,

(n−1∏

k=0

Gk(α)

)η

< C3G
n(α) ∀n≥ 1,

(1.24)

whereCi, i= 1,2,3, are positive constants and η ≥ 0 are equivalent to one another, and the
same equivalence is true for the complementary condition where the reverse inequalities
are required to hold for infinite subsequences of values of r and n.

Definition 1. The irrational number α is of type γ if

γ = sup
{
s : lim

r→∞
rs · ‖rα‖ = 0

}
. (1.25)

By (1.18) one has that if qn ≤ r < qn+1, then rs · ‖rα‖ ≥ qsn · fn for s ≥ 1 so that the
lower limit in (1.25) is reached along the subsequence r = qn for such values of s. On the
other hand, by (1.23) we have q1−ε

n · fn < 1/qεn and therefore γ ≥ 1. Moreover, by (1.23)
it follows that limr→∞r · ‖rα‖ = 0 if and only if we can find an infinite subsequence {nk}
such that ank →∞. As an example consider the number α = e− 2. It is known [13] that
in this case we have an = 1 except for the infinite subsequence nk = 3k− 1, k = 1,2, . . . ,
with ank = 2k. By (1.23) we then have 1/2(k+ 2) < q3k+1 · f3k+1 < 1/2(k+ 1). On the other

hand, (1.17) yields q3k+1 ≥
∏k

h=1 2h= 2kk! and therefore e− 2 is of type 1.
The set of type 1 numbers has measure 1 and coincides with the set of Roth-type

numbers. In particular it includes those with bounded partial quotients. One has (see [13,
4.5-4.6]) limr→∞r · ‖rα‖ ≤ 1/

√
m2 + 1 for any α = [a1,a2, . . .] unless ai < m for all i large

enough. At the opposite extreme, we say that α is well approximable by rational numbers if
η(α) > 0 where η(α) is the supremum of all η such that for all k ≥ 1 we have qk · ‖qkα‖ <
Cq

−η
k . In this case α is of type 1 +η(α). If, for example, ak = 22k , then α is of type 2. More
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generally, a number of type (at least) γ ≥ 1 can be produced by constructing recursively

its continued fraction expansion in such a way that at each step one has ak ≥ [q
γ−1
k ]. This

produces Diophantine as well as Liouville irrational numbers. A Diophantine number α
of exponent η ≥ 0, written α ∈ DC(η), is such that |α− p/q| ≥ Cq−2−η for all p,q ∈ Z.
Therefore it is of type (at most) 1 + η (a Liouville number is “of type ∞”). To be more
precise, for γ≥1 the set of type γ numbers coincides with∩η>γDC(η+ 1) \∪η<γDC(η+ 1).

We conclude with some standard and less standard results on return times. Let � ∈
(0,1/2] and set t0 = 0 and ti = inf{k > ti−1 : {kα} < �}, for i > 0, that is, {ti}i≥0 is the
sequence of entrance times in the half-open interval [0,�) of the forward orbit of 0 under
T . The sequence of return times ri = ti+1 − ti determines a set of gaps, that is, the set of
all possible values of ri, i ≥ 0. The frequency of a gap is defined as its frequency in the
sequence {ri}i≥0. A classical result is the three-gap theorem (see [14, 6], [2, Section 4]). Let
us first observe that there exists a unique expression of � as

� = c fk + fk+1 + g for some k ≥ 1, 0 < g ≤ fk, 1≤ c ≤ ak+1, (1.26)

where, by (1.21), the integer k is uniquely determined by the inequalities

fk + fk+1 < � ≤ fk−1 + fk. (1.27)

Indeed, the Euclidean division of � by fk gives a quotient ck ≤ ak+1 + 1 and a remainder
�k ≤ fk+1. Thus � = ck fk + �k = c fk + fk+1 + g with g = fk − fk+1 + �k ≤ fk and c = ck − 1.

The three-gap theorem then says that the gaps assume at most three values, one be-
ing the sum of the other two: qk (with frequency (c− 1) fk + fk+1 + g), qk+1 − cqk (with
frequency g), and qk+1− (c− 1)qk (with frequency fk − g).

By uniform distribution this result still holds when considering the gaps between the
successive passages into any half-open interval I with |I| = �.

Now let

kn :=min
{

k :
∥
∥qkα

∥
∥ <

1
2n

}

=max
{

k :
∥
∥qk−1α

∥
∥≥ 1

2n

}

. (1.28)

From (1.12) one obtains the uniform lower bound qk>2k−1 so that (1.15) yields ‖qk−1α‖<
q−1
k < 2−k+1. Therefore the sequence kn cannot grow faster than logn. Moreover, by (1.18)

we have

‖rα‖ ≥ ∥
∥qkn−1α

∥
∥≥ 1

2n
∀r < qkn . (1.29)

Therefore, by (1.19), qkn can be interpreted as the first time the orbit returns into a neigh-
borhood of radius 1/n of the initial point. Note that

2 f�+1 <
1
n
≤ 2 f� =⇒ kn = � + 1. (1.30)
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Lemma 1.1. For q� ≤ n < q�+1 the function kn (and thus the return time qkn) may take at
most three values: kn ∈ {�,� + 1,� + 2}.
Proof. By the (inmost) inequality (1.15) we have that if n ≥ q� , then f�−1 > 1/(2q�) ≥
1/(2n), thus kn≥�. Moreover, using (1.23) we see that if n<q�+1, then f�+1<1/(a�+2q�+1) <
1/(a�+2n). Therefore if a�+2 > 1, then kn ≤ � + 1. If instead a�+2 = 1, then f�+2 < 1/q�+3 <
1/(2q�+1) < 1/(2n). �

Remark 1.2. Due to (1.30) we see that if 1/(2 f�) ≤ q� and q�+1 ≤ 1/(2 f�+1), then for n
ranging as q� ≤ n < q�+1 the function kn takes on but the intermediate value � + 1. In
turn, by (1.23), for the first inequality to be satisfied it is necessary that a�+1 = 1, while for
the second it is sufficient that a�+2 > 1.

Remark 1.3. We point out that the three times dealt with in Lemma 1.1 are the three
possible values of the first time the orbit comes as close to the initial point as (at least)
1/n, when n ranges in the interval [q� ,q�+1). A connection with the three-gap theorem is
as follows: if k is chosen so as to satisfy

q� ≤ n= (
c fk + fk+1 + g

)−1
< q�+1 (1.31)

with 1≤ c ≤ ak+2 and 0 < g ≤ fk, then {k}∩{�,� + 1,� + 2} �=∅.
Consider, for example, the golden mean α = (

√
5− 1)/2 = [1,1,1, . . .]. In this case

qk−1 = (α−k − (−α)k)/
√

5 are the Fibonacci numbers whereas fk−1 = αk by (1.22). Thus

1
f�−2

<
1

2 f�−1
< q� <

1
f�−1

<
1

2 f�
< q�+1 <

1
f�

(1.32)

and kn = � if q� ≤ n < 1/(2 f�) whereas kn = � + 1 if 1/(2 f�)≤ n < q�+1. From this one eas-
ily sees that kn � logn (we write an � bn whenever there are constants c1 and c2 such
that c1bn ≤ an ≤ c2bn for all n). On the other hand, the condition (1.31) becomes q� ≤
n = ( fk−1 + g)−1 < q�+1. For these values of n the gaps between successive returns into
an interval of size 1/n are qk−1, qk, and qk+1. By (1.27) k is determined by the inequal-
ities f −1

k−2 ≤ n < f −1
k−1. Moreover f −1

k−2 < qk < f −1
k−1. Therefore the above inequalities can be

satisfied choosing either k = � or k = � + 1.

We finally characterize the asymptotic behavior of the first return time qkn in terms of
the type of the rotation angle α.

Lemma 1.4. If α is of type γ ≥ 1 then

lim
n→∞

logqkn
logn

= 1
γ
. (1.33)

Proof. Under the hypothesis of the lemma we have rγ+ε · ‖rα‖ > Aε for all r ≥ 1 and some
positive constant Aε. We thus get

q
γ+ε
kn
≥ Aε∥
∥qknα

∥
∥ > 2Aε n (1.34)
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so that limn→∞logqkn/ logn > 1/(γ+ ε). By the arbitrariness of ε we thus have

lim
n→∞

logqkn
logn

≥ 1
γ
. (1.35)

In the other direction, we have limr→∞rγ−ε · ‖rα‖ = 0 and therefore we can find an infi-
nite subsequence {qj} so that q

γ−ε
j · ‖qjα‖ < 1. Choose a sequence {nj} such that 2nj <

q
γ−ε
j ≤ 4nj for all j. It then follows that ‖qjα‖<1/2nj and therefore qknj ≤qj≤(4nj)1/(γ−ε).

Reasoning as above completes the proof. �

2. The asymptotic growth of Sn

In this section we study the asymptotic growth of the sums Sn defined in (1.4) in L∞-
norm. The asymptotic behavior of Sn and its average 1/n

∑n−1
k=0 Sk(x) in L2-norm will be

dealt with in Section 3 using spectral techniques.
To warm up let us consider α rational, say α = p/q. We can reason as follows: the

unit circle gets partitioned by the equidistant points 0,1/q, . . . ,q− 1/q and for any choice
of the initial point x the piece of orbit {x+ kα}0≤k<q visits each subset [i/q, (i+ 1)/q), i=
0, . . . ,q− 1, exactly once (the order of the visits being determined by p). A short reflection
shows that the discrepancy between the number of times this orbit lies in A+ and in A−
is bounded by 2. More precisely, if q is even, then this discrepancy is zero, whereas for q
odd there is i such that i/q < 1/2 < (i+ 1)/q and the point may fall either in [i/q, 1/2) or
in [1/2, (i+ 1)/q). This yields, for all k ≥ 1,

∥
∥Sk·q

∥
∥∞ =

⎧
⎨

⎩

2k if q is odd,

0 if q is even.
(2.1)

Thus, for rational α one has a nondiffusive behavior.
For α irrational we may consider its continued fraction expansion (1.11) along with

the sequence of its rational approximants p�/q� = [a1,a2, . . . ,a�]. Inequality (1.15) yields

∣
∣
∣
∣kα− k

p�
q�

∣
∣
∣
∣ <

k

q2
� · a�+1

<
1

q� · a�+1
, 1≤ k ≤ q�. (2.2)

Therefore for each � ∈N the unit circle gets partitioned into the subsets [i/q� , (i+ 1)/q�),
i = 0, . . . ,q� − 1, and the piece of orbit {x + kα}0≤k<q� is fairly well distributed among
them. More specifically, using (2.2) one realizes that the discrepancy between the number
of times the orbit lies in A+ and in A− is bounded above by 2. We then get

∥
∥Sk·q�

∥
∥∞ ≤ 2k, k ≥ 1. (2.3)

In particular, the sum Sn is uniformly bounded along the subsequence {q�}. But the latter
has (at least) exponentially large gaps and the absence of mixing for the sequence {ϑ◦Tk}
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may allow for a growth behavior of maxq�≤n<q�+1 |Sn| (for sums of i.i.d. random variables
it is well known that if max1≤n≤N |Sn| is large, then with high probability |SN | is large as
well).

Theorem 2.1. If α has bounded partial quotients, then for q� ≤ n < q�+1,

∥
∥Sn

∥
∥∞ =O(logn). (2.4)

If α is of type γ ≥ 1, then for all ε > 0,

∥
∥Sn

∥
∥∞ =O

(
n1−(1/(γ+ε)) logn

)
. (2.5)

If moreover α∈DC (η) with η ≥ 0, then

∥
∥Sn

∥
∥∞ =O

(
n1−(1/(η+1)) logn

)
. (2.6)

Proof. For q� ≤ n < q�+1 we may use the Ostrowski representation for n (see [13, Chapter
II.4]):

n=
�∑

k=0

ck qk with 0≤ ck ≤ ak+1, ck−1 = 0 if ck = ak+1. (2.7)

Using this and (2.3) we get

∥
∥Sn

∥
∥∞ ≤

�∑

k=0

∥
∥Sckqk

∥
∥∞ ≤ 2

�∑

k=0

ck, q� ≤ n < q�+1. (2.8)

If the partial quotients of α are uniformly bounded (so that it is of type 1) this gives

∥
∥Sn

∥
∥∞ =O(logn) (2.9)

since � = O(logn). If α is of type γ ≥ 1, then for each ε > 0 we have rγ+ε · ‖rα‖ > Aε for
all r ≥ 1 and some positive constant Aε. Using (1.24) we see that we can find a positive
constant Bε so that q�+1 < Bεq

γ+ε
� . Therefore q� ≤ n < Bεq

γ+ε
� . From this and (2.7) we ob-

tain c� ≤ n/q� < B
1/(γ+ε)
ε n1−(1/(γ+ε)) and one sees inductively that the same inequality holds

true for ck with k = 0, . . . ,�. Indeed, write n = c�q� + n′ with n′ =∑�−1
k=0 ckqk. Reasoning

as above we get c�−1 ≤ n′/q�−1 < B
1/(γ+ε)
ε (n′)1−1/(γ+ε) < B

1/(γ+ε)
ε n1−1/(γ+ε), and so on. This

yields the estimate (2.5). The last statement follows immediately by noting that being

Diophantine of exponent η ≥ 0 is equivalent to the statement q�+1 =O(q
η+1
� ). �

Remark 2.2. Theorem 2.1 can be extended in various directions. For instance, one may
consider irrational numbers α such that q�+1 < eλq

1/δ
� for some positive constants λ and δ
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Figure 2.1. Sn(0) versus n for (A) α = e − 2 = [1,2,1,1,4,1,1,6, . . .] and (B) α = (
√

5 − 1)/2 =
[1,1,1, . . .].

(such numbers may be “of type ∞”). Reasoning as in the proof of the above theorem we
get in this case the estimate

∥
∥Sn

∥
∥∞ =O

(
n

logδ n

)

. (2.10)

Furthermore, the estimate (2.5) can be improved when some additional knowledge on
the partial quotients is available. Consider again the number α= e− 2 (which is of type
1). In this case, using (2.8) along with the explicit expression for the partial quotients
mentioned in the previous section, we get ‖Sn‖∞ ≤ 2

∑3k+1
i=1 ai = 2(k2 + 3k + 1) for all

q3k ≤ n < q3k+1. On the other hand, since q3k+1 ≥ 2kk! and q3k ≥ 2q3k−2 ≥ 2k(k− 1)!, the
condition q3k ≤ n < q3k+1 implies 2k(k− 1)!≤ n < 2kk!. A simple computation then yields
k =O(logn/ loglogn). Therefore, for n as above we find

∥
∥Sn

∥
∥∞ =O

(
log2n

log2 logn

)

. (2.11)

Some insight to understand the pictures in Figure 2.1 may be achieved by noting that
by the three-gap theorem in the symbolic sequence π(x) the blocks of consecutive 1’s (or
−1’s) have at most three lengths, for all x ∈ X . As an example consider the golden ratio
α= (

√
5− 1)/2. Here we find

f1 = 1−α� 0.38, f2 = 2α− 1� 0.24, f3 = 2− 3α� 0.14. (2.12)

Therefore |A+| = 1/2 = f1 + g with g = α− 1/2 � 0.12. The gaps, and thus the lengths
of the blocks mentioned above, are then q1 = 1, q2 = 2, and q3 = 3 with frequencies g,
g + f3, and f2 − g, respectively (these are the lengths of the subintervals of A+ on which
the return time is constant and one easily checks that they sum up to 1/2).

We conclude this section with two more remarks.

Remark 2.3. The proof of the upper estimates obtained above relies on the Ostrowski
representation of a positive integer along with the basic inequality (2.3). On the other
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hand, the latter is a particular case of the Denjoy-Koksma inequality (see [11]): let f :
X →R have bounded variation and satisfy

∫
X f (x)μ(dx)= 0. Then for α∈R \Q,

∣
∣
∣
∣
∣

qn−1∑

k=0

f (x+ kα)

∣
∣
∣
∣
∣
≤ 2Var( f ). (2.13)

Thus the results stated above can be straightforwardly extended to any function f with
bounded variation. However, as explained in the introduction, here we are mainly inter-
ested in studying diffusion properties of the random walk on Z which arises using the
particular function ϑ.

Remark 2.4. The behavior of the sequence Sn(x) determines the analytic structure of the
generating function

F(α,x,z) :=
∑

n≥1

ϑ(x+nα)zn . (2.14)

In particular, the asymptotic growth of Sn(x) determines the strength of the singularity
of F(α,x,z) at z = 1. One moreover easily realizes that for each irrational α and all x ∈ X
the function F(α,x,z) has its circle of convergence (which in this case is the unit circle)
as a natural boundary, a property shared (with probability one) by Taylor series whose
coefficients are symmetric random variables [9]. Set indeed z = r e2πiθ with 0≤ r ≤ 1 and
take θ = qα (mod1) with q �= 0. By unique ergodicity we have

lim
n→∞

1
n

n−1∑

k=0

ϑ(x+ kα)e2πikqα = e−2πiqx
∫ 1

0
ϑ(y)e2πiqydy =

⎧
⎪⎪⎨

⎪⎪⎩

2
iqπ

e−2πiqx, q odd,

0, q even.

(2.15)

Therefore, by Abel’s second theorem [12, Theorem 5.2] we have

lim
r→1−

(1− r)F
(
α,x,re2πiqα)=

⎧
⎪⎪⎨

⎪⎪⎩

2
iqπ

e−2πiqx, q odd,

0, q even.

(2.16)

3. The spectral approach

We will now investigate the average behavior of |Sn| by means of spectral techniques.
Given f : X →R denote by μ( f ) the expectation

∫
X f (x)μ(dx). As already noted μ(Sn)= 0.

Diffusion properties of the walk are described by the dispersion DSn given by

DSn = μ
(
S2
n

)−μ
(
Sn
)2 = μ

(
S2
n

)≡ ∥
∥Sn

∥
∥2

2. (3.1)

We preliminary note that since

DSn =
∫

X
S2
n(x)μ(dx)≤ ∥

∥Sn
∥
∥2
∞, (3.2)

an immediate consequence of Theorem 2.1 is the following estimate.
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Corollary 3.1. If α has bounded partial quotients, then

DSn =O
(

log2n
)
. (3.3)

If α is of type γ ≥ 1, then for each ε > 0,

DSn =O
(
n2(1−1/(γ+ε)) log2n

)
. (3.4)

If moreover α∈ DC(η) with η ≥ 0, then

DSn =O
(
n2(1−1/(η+1)) log2n

)
. (3.5)

In order to obtain lower bounds we will first develop some general spectral theory
which will be then applied to our setting.

3.1. Some general spectral theory. Although what follows could be easily formulated
for any f : X →R, for the sake of simplicity we will only consider the special case f = ϑ.
Other material on this subject can be found in [4, 8]. Let T : X → X be homeomorphism
of the circle and μ an ergodic T-invariant probability measure on X . We write

DSn =
∫

X

n−1∑

l, j=0

ϑ
(
Tl(x)

)
ϑ
(
T j(x)

)
μ(dx)

=
∫

X

n−1∑

l, j=0

ϑ(x)ϑ
(
T j−l(x)

)
μ(dx)=

n−1∑

k=−n+1

(
n−|k|)bk(ϑ),

(3.6)

where we have introduced the autocorrelation function bk(ϑ) defined by b0(ϑ)= 1 and

bk(ϑ)=
∫

X
ϑ(x)ϑ

(
Tk(x)

)
μ(dx)≡ μ

(
ϑ · ϑ◦Tk

)
. (3.7)

T being invertible, the function bk(ϑ) satisfies bk(ϑ)= b−k(ϑ). An interesting quantity is
the spectral type of ϑ, that is, the probability measure σϑ on (0,1] such that

bk(ϑ)=
∫ 1

0
e2πikλσϑ(dλ). (3.8)

By means of this measure we can express DSn in the following way.

Proposition 3.2.

DSn =
∫ 1

0
Φn(x)σϑ(dx), (3.9)

where

Φn(x) := sin2nπx

sin2πx
. (3.10)
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Proof. The assertion follows upon combining the identity

n−1∑

k=−n+1

(
n−|k|)eikt = sin2(nt/2)

sin2(t/2)
(3.11)

with (3.6) and (3.8). �

Notice that the function Φn(x) is 1-periodic and satisfies

∫ 1

0
Φn(x)dx = n. (3.12)

We now show that the Cesàro means

〈
DSn

〉
:= 1

n

n−1∑

k=0

DSk (3.13)

always have a limit (finite or infinite). More specifically we have the following.

Proposition 3.3.

lim
n→∞

〈
DSn

〉=
∫ 1

0

σϑ(dx)

2sin2πx
. (3.14)

Proof. A straightforward computation yields for the function defined in (3.10)

〈
Φn(x)

〉
:= 1

n

n−1∑

k=0

Φk(x)= 1

sin2πx

[
1
2
− 1

4n

(

1 +
sin(2n− 1)πx

sinπx

)]

(3.15)

which converges to 1/2sin2πx when n→∞. Upon observing that for each fixed x ∈ (0,1)
the expression between inner brackets is periodic in n (with period 1/x) one readily
shows using Lebesgue’s monotone convergence theorem that lim〈Φn(x)〉 = lim〈Φn(x)〉
and both are equal to the integral in (3.14). �

We point out that (3.9), (3.10), and (3.14) are general formulas for the dispersion, the
dependence on the transformation (T ,μ) being entirely contained in the spectral measure
σϑ. If (T ,μ) is mixing, then the limit limn→∞DSn is also expected to exist and to be equal
to (3.14).

Example 3.4. In the case of an endomorphism T : X → X the autocorrelation sequence
bk(ϑ)= μ(ϑ · ϑ◦Tk) is defined only for k ≥ 0. On the other hand, for negative k one may
put bk = b−k so that (3.6) and (3.8) remain valid (see [4]). For example, for the two-to-
one map of the circle given byT(x)=2 · x (mod1) we find ϑ(Tk(x))=∑r odd(2/irπ)χ2kr(x)
with χr(x) := e2πirx and therefore bk(ϑ)= δk,0 or, which is the same, the spectral measure
σϑ is but the Lebesgue measure. Therefore from (3.9) and (3.12) we get DSn = n for all
n ≥ 1. We point out that in this case we have Sn =

∑n
k=1 εk where εk is the Rademacher
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sequence defined on the standard Lebesgue probability space. Whence one has the esti-
mate (see [9, page 8]):

μ
(
S2
n > an

)
>

(1− a)2

3
for 0 < a < 1. (3.16)

The purely linear behavior DSn = n persists for the map T(x) =m · x (mod1) provided
m is an even (positive) integer. For m odd we find bk(ϑ) =m−k and a short calculation
gives the spectral density

ρ(λ) := dσϑ(λ)
dλ

= m2− 1
m2− 2mcos2πλ+ 1

,

DSn =
(
m+ 1
m− 1

)

n− 2m
(
1−m−n)

(m− 1)2
= ρ(0)n+ o(n),

(3.17)

to be compared to [8, Theorem 6].

We now derive general bounds which relate the asymptotic behavior of DSn and 〈DSn〉
to the behavior of the spectral measure σϑ near the endpoints 0 and 1.

In order to estimate Φn(x) and 〈Φn(x)〉 let us recall from basic calculus that

2
π
≤ sinπx

πx
≤ 1 ∀0≤ x ≤ 1

2
, (3.18)

where the upper bound holds for all x ∈R+. This yields the following bounds:

4
π2

n2 ≤Φn(x)≤ π2

4
n2 for 0≤ x ≤ 1

2n
, (3.19)

Φn(x)≤ 1

sin2πx
≤ 1

4x2
for

1
2n
≤ x ≤ 1

2
. (3.20)

Moreover, by (3.15) we can easily find two positive constants C1 and C2 so that

C1n
2 ≤ 〈

Φn(x)
〉≤ C2n

2 for 0≤ x ≤ 1
2n

. (3.21)

Using again (3.18), we find

∣
∣
∣
∣

sin(2n− 1)πx
sinπx

∣
∣
∣
∣≤

1
sinπx

≤ n for
1

2n
≤ x ≤ 1

2
, (3.22)

whence

∣
∣
∣
∣

1
2
− 1

4n

(

1 +
sin(2n− 1)πx

sinπx

)∣
∣
∣
∣≥

1
4

(

1− 1
n

)

≥ 1
8

∀n > 1,

∣
∣
∣
∣

1
2
− 1

4n

(

1 +
sin(2n− 1)πx

sinπx

)∣
∣
∣
∣≤

3
4

(

1− 1
3n

)

≤ 3
4

∀n≥ 1.

(3.23)
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Therefore we have the bounds

1

8sin2πx
≤ 〈

Φn(x)
〉≤ 3

4sin2πx
for

1
2n
≤ x ≤ 1

2
. (3.24)

We point out that the behavior of the functions Φn(x) and 〈Φn(x)〉 is similar in the re-
gion 0≤ x ≤ 1/2n where they are both of order n2. Instead for 1/2n≤ x ≤ 1/2 their differ-
ence becomes evident in that unlike Φn(x), 〈Φn(x)〉 never vanishes (compare (3.20) and
(3.24)).

Setting An = [0,1/2n]∪ [1− 1/2n,1] and Bn = [1/2n,1− 1/2n], we write

DSn =
∫

An

Φn(x)σϑ(dx) +
∫

Bn

Φn(x)σϑ(dx)=: In + Jn, (3.25)

〈
DSn

〉=
∫

An

〈
Φn(x)

〉
σϑ(dx) +

∫

Bn

〈
Φn(x)

〉
σϑ(dx)=: I′n + J ′n. (3.26)

According to the above discussion, we expect the integrals In and I′n to behave similarly,
the same not being true for Jn and J ′n.

To see this, let us define the spectral coefficients σk (k ≥ 1) as

σk := σϑ

([
1

2(k+ 1)
,

1
2k

]

∪
[

1− 1
2k

,1− 1
2(k+ 1)

])

. (3.27)

Then (3.19) gives

In � I′n � n2
∑

k≥n
σk. (3.28)

On the other hand, (3.20) yields the upper bound

Jn ≤
∫

Bn

σϑ(dx)
4x2

≤
n∑

k=1

(k+ 1)2σk =O

( n∑

k=1

k2σk

)

, (3.29)

whereas (3.24) and (3.18) give

J ′n �
∫

Bn

σϑ(dx)
x2

�
n∑

k=1

k2σk. (3.30)

We summarize the above as follows.

Proposition 3.5.

DSn =O

(

n2
∑

k≥n
σk +

n∑

k=1

k2σk

)

, (3.31)

and, for n > 1,

〈
DSn

〉� n2
∑

k≥n
σk +

n∑

k=1

k2σk. (3.32)



16 Dispersion properties of ergodic translations

By a straightforward extension of a number-theoretic lemma proved in [8, page 662]
if {σk}k≥1 is a sequence of nonnegative real numbers and t ∈ [0,2), then for n→∞

∑

k≥n
σk =O

(
n−tL(n)

)=⇒
n∑

k=1

k2σk =O
(
n2−tL(n)

)
, (3.33)

where L(n) is a slowly varying function, that is, L(cn) ∼ L(n) as n→∞. When t > 0 the
reverse implication is also valid. This entails that whenever the above conditions are satis-
fied the two terms in the right-hand side of (3.31) (or (3.32)) give the same upper bound
for DSn (and thus for 〈DSn〉). Conversely, putting together (3.19) and (3.25) we obtain

∑

k≥n
σk ≡ σϑ

([

0,
1

2n

]

∪
[

1− 1
2n

,1
])

≤ π2

4
In
n2
≤ π2

4
DSn
n2

. (3.34)

Of course a similar estimate can be obtained for 〈DSn〉 using (3.21).

3.2. The case of rotations. For the map Tx = x+α (mod1) it is well known that the uni-
tary operator Uα : L2(X ,μ)→ L2(X ,μ) acting as Uα f = f ◦T has a pure point spectrum
[4], with eigenvalues λr and eigenfunctions χr , given by

λr = e2πirα, χr(x)= e2πirx, r ∈ Z. (3.35)

Let ( f ,g)= ∫
S1 f (x)g(x)μ(dx) be the inner product of f ,g ∈ L2(S1,μ). An easy computa-

tion yields

(
ϑ,χr

)= 1− 2e−πir + e−2πir

2πir
=
⎧
⎪⎨

⎪⎩

2
irπ

, r odd,

0, r even.
(3.36)

Therefore we have the expansions

ϑ(x)=
∑

r odd

(
2
irπ

)

χr(x), ϑ
(
Rk
α(x)

)=
∑

r odd

(
2e2πikrα

irπ

)

χr(x), (3.37)

which can be inserted into (3.7) to obtain

bk(ϑ)=
∑

r odd

(
2e−2πikrα

irπ

)
(
ϑ,χ−r

)=
∑

r odd

(
4

r2π2

)

e2πikrα. (3.38)

Notice that since
∑∞

k=0(2k+ 1)−2 = π2/8, we find

b0 ≡ σϑ
(
S1)=

∑

r odd

(
4

r2π2

)

= 1 (3.39)

as expected. The numbers bk are thus the Fourier coefficients of the spectral “density” (cf.
(3.8))

ρ(λ)≡ dσϑ(λ)
dλ

=
∑

r odd

(
4

r2π2

)

δ
(
λ−{rα}). (3.40)
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The coefficients (3.27) are in this case given by

σk = 4
π2

∑

r odd
1/(k+1)≤2‖rα‖≤1/k

1
r2
. (3.41)

Estimate (3.34) along with Corollary 3.1 then yield the following result.

Proposition 3.6. If α has bounded partial quotients, then

∑

r odd‖rα‖≤1/2n

1
r2
=O

(
n−2 log2n

)
. (3.42)

If α is of type γ ≥ 1, then for each ε > 0,

∑

r odd‖rα‖≤1/2n

1
r2
=O

(
n−2/γ+ε log2n

)
. (3.43)

If moreover α∈ DC (η) with η ≥ 0, then

∑

r odd‖rα‖≤1/2n

1
r2
=O

(
n−2/η+1 log2n

)
. (3.44)

We now derive a closed expression for the autocorrelation sequence bk.

Theorem 3.7. For all α,

bk(ϑ)= 1 + 8{kα}({kα}− 1
)− 2{2kα}({2kα}− 1

)
. (3.45)

Proof. Let Bn(x) be the nth Bernoulli polynomial, defined by the generating series

∞∑

n=0

Bn(x)
zn

n!
= zexz

ez− 1
. (3.46)

The first three are B0(x) = 1, B1(x) = x− 1/2, B2(x) = x2 − x + 1/6. Let moreover Bn(x)
be the function which is 1-periodic and coincides with Bn(x) in the interval [0,1), that
is, Bn(x) = Bn({x}). For n ≥ 2 the Fourier series for Bn(x) is absolutely convergent and
writes (see, e.g., [3, page 14])

Bn(x)=− n!
(2πi)n

∑

r �=0

e2πirx

rn
. (3.47)

We thus have the chain of equalities:

bk(ϑ)= 4
π2

∑

r odd

e2πikαr

r2
= 4

π2

[
∑

r �=0

e2πikαr

r2
− 1

4

∑

r �=0

e2πi2kαr

r2

]

= 8B2(kα)− 2B2(2kα).

(3.48)

The desired formula now follows from the explicit expression of B2(x). �
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Now, putting together (3.9), (3.10), and (3.40) we get

DSn = 4
π2

∑

r odd

Φn
({rα})
r2

, (3.49)

and, by (3.12),

∫ 1

0
DSn dα= n, (3.50)

that is, averaging over the (normalized) set of rotation angles yields a normal dispersion.
Cesàro averaging over n yields instead the following asymptotic behavior.

Proposition 3.8. For all irrational α having an infinite subsequence of odd qk’s,

lim
n→∞

〈
DSn

〉=∞. (3.51)

Proof. Let us first note that the function Φn(x) satisfies the symmetry property Φn(x)=
Φn(1− x) for 0≤ x ≤ 1, so that Φn({rα})=Φn(‖rα‖) where ‖a‖ =min{|a− p| : p ∈ Z}.
Formula (3.14) then reads

lim
n→∞

〈
DSn

〉= 2
π2

∑

r odd

1

r2 sin2π‖rα‖ . (3.52)

On the other hand, from (3.18) and ‖rα‖ ≤ 1/2 we deduce that

1

π2
(
r · ‖rα‖)2 ≤

1

r2 sin2π‖rα‖ ≤
1

4
(
r · ‖rα‖)2 . (3.53)

For α irrational we have qk · ‖qkα‖ = O(q
1−γ
k ) where γ ≥ 1 is the type of α. Therefore

under our assumption on the qk’s the series in (3.52) is divergent. �

We conclude by showing how the different behavior of Φn(x) and 〈Φn(x)〉 discussed
in the previous subsection translates into different lower bounds for DSn and 〈DSn〉.

Suppose that α is chosen so that all qk’s are odd. Then using (3.19) and (1.29) we have

DSn ≥ c1

∑

r odd‖rα‖<1/2n

n2

r2
≥ c2

n2

q2
kn

. (3.54)

If α has bounded partial quotients, then the above estimate is not very informative in that
it gives n2/q2

kn
� const. On the other hand, putting together (3.54) and Lemma 1.4 we get

the following.

Theorem 3.9. If α is of type γ > 1 and the qk’s are all odd, then an infinite subsequence {nj}
can be found such that for each ε > 0 there is a constant Cε > 0 so that

DSnj ≥ Cεn
2(1−(1/(γ−ε)))
j . (3.55)
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Concerning 〈DSn〉, from (3.24) (or else (3.41) and (3.32)) along with (1.23) we get
(assuming all the qk’s odd)

〈
DSn

〉≥ c3

∑

r odd‖rα‖≥1/2n

1
(
r · ‖rα‖)2 ≥ c4

kn−1∑

k=0

1
(
qk · fk

)2 ≥ c4

kn∑

k=1

a2
k. (3.56)

Using Lemma 1.1 we then obtain the following result.

Theorem 3.10. There is a constant C > 0 such that

q� ≤ n < q�+1 =⇒
〈
DSn

〉≥ C
�∑

k=1

∗
a2
k, (3.57)

where the starred sum is restricted to those k for which qk−1 is odd.

This inequality can be used to derive lower bounds for various types of α. For example,
if α is of type γ > 1, the last term of the sum in (3.57) can be estimated by noting that
we can find an infinite subsequence of r values so that rγ · ‖rα‖ < C1. By (1.24), this is
equivalent to q�+1 > C2q

γ
� and G�(α) < C3(

∏�−1
k=0G

k(α))γ−1, where, again, the inequalities
are supposed to hold along a suitable infinite subsequence of � values. Using (1.17) we
then get for all q� ≤ n≤Aq

γ
� ,

a� ≥ 1
G�(α)

> c5

( �−1∏

k=0

Gk(α)

)1−γ
> c6 q

γ−1
� > c7n

1−1/γ. (3.58)

An interesting estimate can be easily obtained for a class of numbers α with bounded
partial quotients. We first need the following result.

Lemma 3.11. Given any irrational α, for every pair qk, qk+1 of consecutive denominators, at
least one of them is odd.

Proof. By induction: start with q0 = 1 and by the defining recursion qk+1 = ak+1qk + qk−1

one sees that if qk−1 is odd and qk is even, then qk+1 has to be odd. �

For example for the golden mean α = (
√

5− 1)/2 = [1,1,1, . . .] the qk’s are the Fi-
bonacci numbers 1,1,2,3,5,8,13,21,34, . . . , and the frequency of odd qk’s is 2/3. For
α=√2− 1= [2,2,2, . . .] the qk’s are numbers 1,2,5,12,29,70,169, . . . , and the frequency
of odd qk’s is exactly 1/2.

Finally, using Theorem 3.10, Lemma 3.11 and recalling that for α with bounded partial
quotients the integer � in (3.57) satisfies � � logn, we readily get the following inequality.

Theorem 3.12. For all irrational α with bounded partial quotients the following holds, for
n large enough:

〈
DSn

〉≥ 1
2

logn. (3.59)



20 Dispersion properties of ergodic translations

Acknowledgments

The author is indebted to Mirko Degli Esposti and Claudio Bonanno for many discus-
sions on this and related subjects. The author also wishes to thank Alejandra Gonzales
for having produced a variety of pictures (not reported here) which illustrate some of the
results discussed above.

References

[1] J. Aaronson and M. Keane, The visits to zero of some deterministic random walks, Proceedings of
the London Mathematical Society. Third Series 44 (1982), no. 3, 535–553.
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