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Received 15 October 2004; Revised 18 November 2005; Accepted 28 November 2005

We study the behavior of certain spaces and their compactificability classes at infinity.
Among other results we show that every noncompact, locally compact, second countable
Hausdorff space X such that each neighborhood of infinity (in the Alexandroff com-
pactification) is uncountable, has �(X) =�(R). We also prove some criteria for (non-)
comparability of the studied classes of mutual compactificability.
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1. The notation and terminology

Throughout the paper we mostly use the standard topological notions as in [1] or [2],
however with a few exceptions. Space always refers to topological space, usually consid-
ered without any additional separation axioms. Especially compactness is understood
without the Hausdorff separation axiom. For the terminology related to θ-regularity,
we refer the reader to [3, 4]. An ordinal is the set of smaller ordinals, and a cardinal is
an initial ordinal. Let S be a set. The cardinality of S we denote by |S|. Let (X ,τ) be a
topological space. If we do not wish to specify its topology explicitly, we will sometimes,
for our convenience, speak less precisely about the space X . Conversely, if we decide to
specify the topology of a space X introduced in some previous steps, we will usually de-
note it by τ or τX (in the case that we will work simultaneously with more topological
spaces or more topologies on the same set). In a space X , a point x ∈ X is in the θ-
closure of a set A ⊆ X (x ∈ clθA) if every closed neighborhood of x intersects A. A filter
base Φ in X has a θ-cluster point x ∈ X if x ∈⋂{clθF | F ∈ Φ}. We say that a space X
is θ-regular if every filter base in X with a θ-cluster point has a cluster point. For more
detailed characterization of θ-regularity, the reader is referred to [3–5]. The points x, y
in a space X are T0-separable if there is an open set containing only one of the points
x, y. The points x, y are T2-separable if they have disjoint open neighborhoods. Let X be
a space. Two disjoint sets A,B ⊆ X are said to be point-wise separated in X if every x ∈ A,
y ∈ B are T2-separable in X . Several modifications of local compactness have been de-
fined by various authors in the literature. In this paper, we say that a space is (strongly)
locally compact if its every point has a compact (closed) neighborhood. One can easily
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2 The behavior at infinity

check that a space is strongly locally compact if and only if it is θ-regular and locally
compact. We will often use the following simple, but important property of strongly
locally compact spaces. If X is strongly locally compact and γX is a compactification
such that X and the remainder γX \X are point-wise separated in γX , then X is open
in γX . A filter in a space X is said to be ultra-closed if it is maximal among all filters
in X having a base consisting of closed sets [1]. By the Wallman compactification of X ,
we mean the set ωX = X ∪ {y | y is a nonconvergent ultra-closed filter in X}. The sets
�(U)=U ∪{y | y ∈ ωX \X , U ∈ y}, where U is open in X , constitute an open base of
ωX . For more detail, we refer the reader to [1]. Some properties of the Wallman com-
pactification of a θ-regular space were studied in [5].

2. Preliminaries and introduction

Let us recall some notions and results from the previous papers [6–8]. Let (X ,τX), (Y ,τY )
be spaces with X ∩ Y = ∅. We say that the space X is compactificable by the space Y
or, in other words, X , Y are said to be mutually compactificable if there is a compact
topology τK on K = X ∪ Y such that the topologies on X , Y induced by τK coincide
with τX , τY , respectively, and the sets X , Y are point-wise separated in (K ,τK ). Then we
say that the topology τK is �-acceptable. Recall that mutually compactificable spaces are
always θ-regular, and any two disjoint strongly locally compact spaces are always mutually
compactificable [6].

Let Top be the class of all topological spaces. For any pair of two spaces X , Z, we define
X ∼ Z if for every nonempty space Y disjoint from X , Z the space X is compactificable
by Y if and only if Z is compactificable by Y . It can be easily seen that ∼ is reflexive,
symmetric, transitive, and hence it is an equivalence relation. Let us denote by �(X) the
equivalence subclass of Top with respect to ∼ containing X and call it the compactificabil-
ity class of X . For any spaces X , Z, we put �(X)��(Z) if for every nonempty space Y it
holds: if the space X is compactificable by Y disjoint from X , Z, then Z is compactificable
by Y . The relation � is reflexive, antisymmetric, transitive, and hence it is an order rela-
tion between the compactificability classes. If for some spaces X , Z it holds �(X)��(Z)
but �(X) �= �(Z), we write �(X) � �(Z). We proved in [7] that every compactifica-
bility class contains a T1 representative, but there are compactificability classes with no
Hausdorff representatives.

Let A = [1,∞), I = [0,1] be equipped with the Euclidean topology induced from R,
andD= {0,1} equipped with the discrete topology. By 0, we denote the constant function
equal to 0. In [8], we proved that for any k,n ∈N the spaces Ak, Rn, Ak ×Rn, Iℵ0 \ {0},
Dℵ0 \ {0} are of the same class of mutual compactificability. Also we proved that if X is
a noncompact locally connected metrizable generalized continuum, then �(X)=�(R).
All these spaces are uncountable but second countable, locally compact and Hausdorff.
On the other hand, it can be proved that there exist spaces compactificable byRwhich are
not compactificable by N, but not conversely. Hence, �(N) � �(R). Note that we omit
the proof now, because it will follow as a corollary from a theorem that will be presented
in the next section. Further, it seems that connectedness does not affect the compactifi-
cability classes much because Dℵ0 is homeomorphic to a subspace of R, also known as
the Cantor Discontinuum. Hence, there is a natural question whether it is true that every
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uncountable, second countable, or separable locally compact Hausdorff space must be
of the same class of compactificability as R. Next we will give a counterexample for this
conjecture. After some further investigation we will find out that the essential property
which plays the most important role in determining the compactificability classes is the
behavior at infinity.

Before we start, let us recapitulate a couple of theorems from the previous papers that
we will need in our proofs in the next section. For the proofs of these result, we refer the
reader to [7, Theorem 2.12] for Theorem 2.1, and to [8, Theorems 3.1 and 3.2, Corollary
3.2] for Theorems 2.2, 2.3, Corollary 2.1, respectively.

Theorem 2.1. Let X be a T3.5 space which is not locally compact and let Z be a strongly
locally compact (not necessarily Hausdorff) space. Then �(X) and �(Z) are not comparable
in the order �.

Theorem 2.2. Let (X ,τX) be a closed subspace of a strongly locally compact space (Z,τZ).
Then, �(X)��(Z).

Recall that by w(X) we denote the weight of a space (X ,τ), that is, the least infinite
cardinal w(X), such that (X ,τ) has an open base τ0 ⊆ τ with |τ0| ≤w(X).

Theorem 2.3. Let (X ,τ) be a locally compact Hausdorff space with w(X)=m, where m �
ℵ0. Then �(X)��(Dm \ {0}).

Corollary 2.4. For any k,n ∈N, the spaces Ak, Rn, Ak ×Rn, Iℵ0 \ {0}, Dℵ0 \ {0} are of
the same class of mutual compactificability.

3. Main results

Our first theorem studies what happens with the classes of mutual compactificability if a
closed compact subspace is collapsed to a singleton.

Theorem 3.1. Let H ⊆ X be a compact closed subspace of a topological space X . Define
an equivalence relation ∼ on X by (x ∼ y)⇔ [(x = y)∨ (x, y ∈H)] for any x, y ∈ X . Let
Y = X/ ∼ be the quotient space. Then �(X)��(Y).

Proof. Let (Z,τZ) be a space which is mutually compactificable by (X ,τ), X ∩Z =∅. We
put K = X ∪Z and denote by τK the �-acceptable topology on K . We will show that H
is closed in (K ,τK ). Let y ∈ K \H . If y ∈ X , then y ∈ X \H ∈ τX , so there exists U ∈ τK
such thatX \H = X ∩U . ThenU ∩H =∅, so y ∈U ⊆ K \H . If y ∈ Z, then from the fact
that X , Z are point-wise separated in (K ,τK ) it follows that there are U ,V ∈ τK such that
y ∈U , H ⊆V , and U ∩V =∅. But then U ∩H =∅, which implies that y ∈U ⊆ K \H .
Hence, H is closed in (K ,τK ).

We will extend the equivalence relation ∼ to K by setting

(x ∼ y)⇐⇒ [(x = y) or ({x, y} ⊆H)
]

for every x, y ∈ K. (3.1)

Let f : K → K/∼ be the corresponding quotient mapping. We put L= K/∼ and consider L
with its quotient topology τL. For simplicity, we may identify the singleton equivalence
classes with their elements, so the quotient mapping f : K \H → L \ {h} restricted to
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the open set K \H is the identity on K \H and a homeomorphism between the open
subspaces K \H and L \ {h}. Since Z ⊆ K \H = L \ {h}, the topology on Z induced from
(L,τL) coincides with its original topology τZ .

Let V ∈ τY . Then f −1(V)∈ τX , so there exists U ∈ τK such that f −1(V)=U ∩X . We
put W = (U ∩Z)∪V . Clearly, V =W ∩Y . Further,

f −1(W)= f −1(U ∩Z)∪ f −1(V)= (U ∩Z)∪ f −1 = (U ∩Z)∪ (U ∩X)

=U ∩ (Z∪X)=U ∩K =U ∈ τK . (3.2)

Then,W ∈ τL because the quotient mapping is continuous. It follows that τY is weaker or
equal to the topology on Y induced by τL. Conversely, letW ∈ τL and denoteV =W ∩Y .
Then U = f −1(W)∈ τK , so U ∩X ∈ τX . We have

U ∩X = f −1(W)∩X = f −1(W ∩L)∩X = f −1[W ∩ (Z∪Y)
]∩X

= f −1[(W ∩Z)∪ (W ∩Y)
]∩X = [(W ∩Z)∪ f −1(W ∩Y)

]∩X
= [W ∩Z∩X]∪ [ f −1(V)∩X]=∅∪ f −1(V)= f −1(V).

(3.3)

Let g : Y → X be the quotient mapping given by the original (not extended) equivalence
∼ on X . Then g is a restriction of f , so g−1(V)= f −1(V)∈ τX , and by the definition of
the quotient topology we have V ∈ τY . Hence, the topology on Y induced from (L,τL)
coincides with τY .

Let y ∈ Y , z ∈ Z. We will show that y, z have disjoint open neighborhoods in (L,τL).
If y �= h, then {y,z} ⊆ K \H = L \ {h}. There existU ,V ∈ τK such that y ∈U , z ∈V , and
U ∩V =∅. We put P =U \H ,Q =V \H . Then P,Q ⊆ K \H = L \ {h}, so P,Q ∈ τL and
we have y ∈ P, z ∈ Q, and P∩Q =∅. Let y = h. Since X , Z are point-wise separated in
(K ,τK ) and H is compact, there exist U ,V ∈ τK such that H ⊆U , z ∈V , and U ∩V =∅.
We put P = (U \H)∪{h}. Then

f −1(P)= f −1(U \H)∪ f −1({h})= (U \H)∪H =U ∈ τK . (3.4)

Similarly, f −1(V)=V ∈ τK . Then P,V ∈ τL, y = h∈ P, z ∈V , and

P∩V = [(U \H)∩V]∪ [{h}∩V]=∅∪ ({h}∩V)⊆ {h}∩ (K \H)

= {h}∩ (L \ {h})=∅.
(3.5)

Hence, Y and Z are point-wise separated in (L,τL).
Finally, the compactness of (L,τL) follows from the continuity of the quotient mapping

f : K → L. Now we have a �-acceptable topology on L= Y ∩Z, so �(X)��(Y). �

Corollary 3.2. Let X = N∪ [−1,0] with the Euclidean topology induced from R. Then
�(X)=�(N).

Proof. Clearly, [−1,0] is the closed compact subspace ofX , so by the previous theorem we
have �(X)��(N). The converse inequality follows from the fact that N is also a closed
subspace of X , which is strongly locally compact, and from Theorem 2.2. �



Martin Maria Kovár 5

Now we will study the behavior of spaces at infinity and its influence on the compact-
ificability classes. For that purpose, we will need some auxiliary assertions. The following
lemma is a variation on Cantor-Bendixson theorem (cf., [2, Problem 1.7.10-11, page 59]).

Lemma 3.3. Let (X ,τ) be a second countable space and let M ⊆ X be an uncountable set.
Then there is a closed set C ⊆ X such that M \C is (at most) countable and for every open
set O ⊆ X , either C∩O=∅ or M∩O is uncountable.

Proof. Let σ ⊆ τ be a countable base for the topology τ. First, it is easy to see that if the
condition stated in the theorem holds for every open basic setO ∈ σ , then it holds also for
every open set from τ. Therefore, we may restrict our considerations to σ instead of τ. By
transfinite induction, for some ordinal δ, we define a family {Oα | α < δ} ⊆ σ as follows:

(1) if for every O ∈ σ either M∩O is empty or uncountable, then C = clXM has all
the required properties and we are done. Otherwise, there existsO1 ∈ σ such that
O1∩M is nonempty and countable,

(2) now, suppose that we have already chosen {Oβ | β < α} for some ordinal α. If
there exists a basic open set O∈ σ such that O∩ (M \⋃β<αOβ) is nonempty and
countable, we let Oα be any such set O. Otherwise, we stop and put δ = α.

Having the family {Oα | α < δ}, we put C = clX(M \⋃α<δ Oα). Since {Oα | α < δ} ⊆ σ , the
ordinal δ is countable. We have

M =
(

M \
⋃

β<α

Oβ

)

∪
(

M∩
⋃

β<α

Oβ

)

, (3.6)

and so

Oα∩M =
[

Oα∩
(

M \
⋃

β<α

Oβ

)]

∪
[

Oα∩M∩
⋃

β<α

Oβ

]

⊆
[

Oα∩
(

M \
⋃

β<α

Oβ

)]

∪
⋃

β<α

(
Oβ∩M

)
.

(3.7)

The setO1∩M is countable, from the previous steps (β) where β < α, we supposeOβ∩M
countable and from the current step (α) we know that Oα∩ (M \⋃β<αOβ) is countable.
Hence, by transfinite induction, Oα ∩M is countable as a countable union of countable
sets. Then the set

M \C =M \ clX

(

M \
⋃

α<δ

Oα

)

⊆M∩
(
⋃

α<δ

Oα

)

=
⋃

α<δ

(
Oα∩M

)
(3.8)

is also countable. Suppose thatC∩O �=∅ for someO∈ σ . Then, alsoO∩ (M \⋃α<δ Oα) �=
∅ and from the last induction step (δ) it follows that O∩ (M \⋃α<δ Oα) is uncountable,
because otherwise we could set Oδ =O, which would contradict to the fact that (δ) is the
last step of the induction. But then also the set M∩O is uncountable and we can see that
C has all the required properties. �
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The next lemma is a variation on Cantor’s well-known result that Dℵ0 embeds into
every nonempty perfect set of reals (cf., [2, Problem 3.12.11, page 230; Problem 4.5.5,
page 290]).

Lemma 3.4. Let (X ,τ) be a locally compact, noncompact, second countable Hausdorff

space, αX = X ∪ {∞} the Alexandroff compactification of X . If every neighborhood of ∞
is uncountable, then there exists an embedding e :Dℵ0 → αX which maps 0 to∞.

Proof. By Lemma 3.3, there is a closed set C ⊆ αX such that every open set that intersects
C is an uncountable set and such that X \C is countable. Clearly, ∞∈ C. Thus, without
loss of generality we may assume that C = αX . In other words, we may assume that every
nonempty open subset of αX is uncountable. In particular, it means that no point in αX
is isolated.

Since αX is second countable, it is metrizable. Let d : αX ×αX →R be a metric on X ,
which induces the topology τ. For a point x ∈ X and a positive real number r > 0, we
denote

B(x,r)= {y | y ∈ X , d(x, y) < r
}
. (3.9)

LetD<ω =⋃n∈ωDn be the set of all nonempty finite sequences whose members consist of
0’s and 1’s. Every sequence s∈D<ω of the length nmay be extended by 0 or 1, respectively,
to the sequence having the length n+ 1. We denote the extended sequence by s�0 or s�1,
respectively. For every s∈D<ω, we define inductively an open set Os ∈ τ as follows:

(1) we put x0 = ∞, and as x1 we take any point from X . We also put r0 = r1 =
(1/3)d(x0,x1), O0 = B(x0,r0), O1 = B(x1,r1).

(2) suppose that Os = B(xs,rs) is defined for every s∈Dn. Let s∈Dn. The point xs is
not isolated, so there exists xs�1 ∈ B(xs,2/3rs), xs�1 �= xs. Further, we put xs�0 = xs,
rs�0 = rs�1 = 1/3d(xs�0,xs�1), Os�0 = B(xs�0,rs�0), Os�1 = B(xs�1,rs�1).

Let p ∈Dℵ0 . We denote pn the restriction of the infinite sequence p to the first n elements.
From the construction it follows that

Op1 ⊇ clαXOp2 ⊇Op2 ⊇ clαXOp3 ⊇Op3 ⊇ ··· . (3.10)

Since the space αX is compact, the intersection
⋂
n∈N clαXOpn of the closed balls is

nonempty and since limn→∞ rpn = 0, it contains exactly one element, say e(p). In particu-
lar, e(0)=∞. The mapping e :Dℵ0 → X is an injection. Indeed, let p,q ∈Dℵ0 , p �= q, and
let n∈N be the least number for which pn �= qn. We have e(p)∈ clαXOpn , e(q)∈ clαXOqn ,
but clαXOpn ∩ clαXOqn = ∅. Thus e(p) �= e(q). Finally, we will show that e : Dℵ0 → X
is continuous. Let O ∈ τ be an open set containing e(p). There is some m ∈ N such
that e(p) ∈ Opm ⊆ O. The set U = {y | y ∈ Dℵ0 , ym = pm} is open in Dℵ0 since it is
an intersection of m sub-basic sets of the product topology on Dℵ0 . But if y ∈ U , then
e(y)∈ clαXOym+1 ⊆Oym =Opm ⊆O. Hence, e :Dℵ0 → X is continuous. Since Dℵ0 is com-
pact, e is a homeomorphism onto its image. �

Finally, we can formulate and prove the main theorem.
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Theorem 3.5. Let X be a locally compact, noncompact, second countable Hausdorff space.
If every neighborhood of ∞∈ αX contains uncountably many elements of X , then �(X) =
�(R).

Proof. By Lemma 3.4, X contains a closed subspace homeomorphic to Dℵ0 \ {0}. Then
from Theorems 2.2, 2.3, and Corollary 2.4, we get

�
(
Dℵ0 \ {0})��(X)��

(
Dℵ0 \ {0})=�(R), (3.11)

which consequently gives �(X)=�(R). The proof is complete. �

So far, our effort was concentrated especially on the problem how to prove that the
compactificability classes of two or more different spaces coincide. Perhaps it is just the
right time to find some general conditions under which the compactificability classes of
different spaces must differ.

Let T be some class of directed sets with ∅ /∈ T. Define the following properties of a
topological space X :

(i) property α(T): there exists an injective net ϕ(A,≥) with A∈ T, ϕ(A)⊆ X , con-
verging in X ,

(ii) property α(T): no injective net ϕ(A,≥) withA∈ T, ϕ(A)⊆ X , has a cluster point
in X .

Lemma 3.6. Let (X ,τX) be a T1 space, I= [0,1], K = ωX × I, Y = K \ (X ×{0}). We con-
sider I with its natural, Euclidean topology. Let τK be the product topology of the Wallman
compactification ωX of (X ,τX) with the Euclidean topology of I and let τY be the subspace
topology on Y induced from (K ,τK ). Let a1,a2, . . . , b1,b2, . . . be two disjoint sequences in
X having no cluster point in X . Let (Z,τZ) be a topological space disjoint from Y and let
L= Y ∪Z be equipped with a topology τL such that (Y ,τY ), (Z,τZ) are subspaces of (L,τL).
Let c1,c2, . . . be a sequence in Z such that each ci is a cluster point of the nets αi(t)= (ai, t),
βi(t)= (bi, t) with their values in Y for t→ 0. Then the topology τL is not �-acceptable.

Proof. Suppose that all the conditions stated in the lemma are satisfied and the topology
τL is �-acceptable. We put F = {a1,a2, . . .}, F = {b1,b2, . . .}. Then F ∩G=∅ and F, G are
closed in (X ,τX). Denote V = X \G ∈ τX , �(V) = V ∪ {h | h ∈ ωX \X ,V ∈ h}, where
we identify the elements of ωX \X with the nonconvergent ultra-closed filters in (X ,τX).
The set �(V) is open in ωX . Let h∈ ωX \X be a cluster point of the sequence a1,a2, . . ..
Then F ∈ h, because otherwise, �(X \F) would be a neighborhood of h, which does not
contain any element from a1,a2, . . .. Then,V ∈ h because F ⊆ X \G=V . Then h∈�(V).
Consequently, all cluster points of the sequence a1,a2, . . . are in �(V). Analogously, if g
is a cluster point of the sequence b1,b2, . . ., then necessarily G ∈ g. Then V = X \G /∈ g,
which gives g /∈ �(V). Therefore, all cluster points of the sequence b1,b2, . . . are outside
of �(V), that is, in ωX \�(V). Then both sequences a1,a2, . . . , b1,b2, . . . have no common
cluster point in ωX .

Denote M =N× (0,1]. For every (k, t),(l,s)∈M, we define

(k, t)≤ (l,s)⇐⇒ k ≥ l, t ≤ s. (3.12)
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Further, for every (k, t)∈M, we put

ϕ(k, t)= αk(t)= (ak, t
)
, χ(k, t)= βk(t)= (bk, t

)
. (3.13)

The nets ϕ(M,≥), χ(M,≥) have their values in Y and they have no cluster point in X ×
{0}. Suppose that, for instance, ϕ(M,≥) has a cluster point z ∈ Z. Then there exists a net
ϕ′(M′,�) finer than ϕ(M,≥), which converges to z. Since K is compact, ϕ′(M′,�) has
a cluster point, say y ∈ K . But y is also a cluster point of ϕ(M,�), which has no cluster
point in X ×{0}, so y ∈ K \ (X ×{0})= Y . However, since τL is �-acceptable, Y and Z
are point-wise separated in (L,τL). This is not possible since ϕ′(M′,�) converges to z ∈ Z
and has a cluster point y ∈ Y , both in the topology τL, which on Y coincides with the
topology induced from (K ,τK ). Hence, the net ϕ(M,≥), and similarly also χ(M,≥), has
no cluster point in Z.

Let w ∈ L be the cluster point of the sequence c1,c2, . . .. Take W ∈ τL such that w ∈W .
Let (k0, t0) ∈M. There exists k ≥ k0 such that ck ∈W . However, ck is a cluster point of
the nets αk(t), βk(t) for t→ 0. So, there exist t,s ∈ (0,1], t ≤ t0, s ≤ t0 such that αk(t) =
(ak, t)= ϕ(k, t)∈W and βk(s)= (bk,s)= χ(k,s)∈W . We have (k, t)≥ (k0, t0) and (k,s)≥
(k0, t0), which mean that w ∈ L is a common cluster point of the nets ϕ(M,≥), χ(M,≥).
Because of the previous paragraph w /∈ Z, so w ∈ Y = K \ (X × {0}) = (ωX × (0,1])∪
[(ωX \X)× {0}]. However, it is not possible that w ∈ ωX × (0,1], because in this case
w ∈ ωX × (ε,1] for sufficiently small ε > 0. The set ωX × (ε,1] is open in τY , but it does
not contain ϕ(k, t) or χ(k, t) if (k, t)≥ (1,ε). Hence, it remains w ∈ (ωX \X)×{0}. Then
w = (v,0), where v ∈ ωX \X . But this implies that v is a common cluster point of the
sequences a1,a2, . . . , b1,b2, . . ., which is a contradiction.

Thus our assumption that τL is �-acceptable is incorrect. �

Theorem 3.7. Let (X ,τX) be a θ-regular T1 space containing a discrete infinite sequence
of subspaces P1,P2, . . . with the property α(T). Then for any space (Z,τZ) with the property
α(T) it follows �(X) � �(Z).

Proof. Suppose �(X)��(Z). We put I= [0,1] with the Euclidean topology, K = ωX ×
I, Y = K \ (X × {0}). We consider the product topology τK on K and the topology τY
induced from (K ,τK ) on Y . Clearly, the spaces (X ,τX) and X × {0} with the topology
induced from (K ,τK ) are homeomorphic. Since (X ,τX) is θ-regular, ωX \X and X are
pairwise separated in ωX . Then, also X × {0} and Y are pairwise separated in (K ,τK ).
Then �(X ×{0})=�(X)��(Z). Hence, there exists a �-acceptable topology τL on L=
Y ∩Z, where Z is supposed to be disjoint from Y (if Y ∩Z �=∅, we will replace Z by a
homeomorphic copy, disjoint from Y).

Let ξi(Ai,≥) be an injective net in Pi such that Ai ∈ T, having a limit li ∈ Pi. For any
α∈ Ai and t ∈ (0,1], we define

ζi,α(t)= (ξi(α), t
)∈ Pi× (0,1]⊆ X × (0,1]⊆ Y. (3.14)

If we consider (0,1] as a directed set, then ζi,α is a net with values in Y and a limit
(ξi(α),0)∈ X ×{0} for t→ 0. Since the net ζi,α has a limit in X ×{0} and the sets X ×{0},
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Y are pointwise separated in (K ,τK ), ζi,α has no cluster point in Y . Since (L,τL) is com-
pact, ζi,α has a cluster point in Z, say ψi(α) ∈ Z. Then ψi(Ai,≥) is a net in Z, having
Ai ∈ T.

Suppose that ψi is injective. Since (Z,τZ) has the property α(T), the net ψi(Ai,≥) has
no cluster point in Z, so it must have a cluster point in Y , say y ∈ Y . We denote Mi =
Ai× (0,1] and for every (α, t),(β,s)∈Mi, we define

(α, t)� (β,s)⇐⇒ α≥ β, t ≤ s′,

ϕi(α, t)= ζi,α(t)= (ξi(α), t
)
.

(3.15)

For every i ∈ N, we have a net ϕi(Mi,�) with values in Y . Let us show that ϕi(Mi,�)
has the limit (li,0)∈ X ×{0} in (K ,τK ). Choose V ∈ τX such that li ∈ V and ε > 0. Then
there exists α0 ∈ Ai such that ξi(α)∈ V for α� α0. Then, for every (α, t) ∈Mi such that
(α, ti) � (α0,ε/2), we have ϕi(α, t) = (ξi(α), t) ∈ V × (0,ε). Then, ϕi(Mi,�) converges to
(li,0) ∈ X × {0}. Let W ∈ τY be an open neighborhood of y ∈ Y . There exists U ∈ τL
such that W = Y ∩U . Let (α, t) ∈Mi. There exists β ∈ Ai, β ≥ α such that ψi(β) ∈ U .
But ψi(β) is a cluster point of the net ζi,β. Hence, there exists s ∈ (0,1], s ≤ t such that
ϕi(β,s) = ζi,β(s) = (ξi(β),s) ∈ U . Since the net ϕi(Mi,�) has its values in Y , we have
ϕi(β,s) ∈W . Then y ∈ Y is a cluster point of ϕi(Mi,�), which is a contradiction, be-
cause in the previous step we proved that ϕi(Mi,�) has the limit (li,0)∈ X ×{0} and the
sets X ×{0}, Y are point-wise separated in (K ,τK ). Hence, the only possible conclusion
is that ψi is not injective.

By the previous paragraph, there exist αi,βi ∈ Ai such that αi �= βi and ψi(αi)= ψi(βi).
We put ai = ξi(αi), bi = ξi(βi), ci = ψi(αi) = ψi(βi). Since the net ξi(Ai,≥) is injective,
ai �= bi. We have ai,bi ∈ Pi, so the sequences a1,a2, . . . and b1,b2, . . . are disjoint because
of the discreteness of the collection {P1,P2, . . .}. For the same reason, they have no clus-
ter point in X . Moreover, for every i ∈ N, ci = ψi(αi) = ψi(βi) ∈ Z is a cluster point of
the nets ζi,αi(t) = (ξi(αi), t) = (ai, t), ζi,βi(t) = (ξi(βi), t) = (bi, t) for t → 0 in (L,τL). By
Lemma 3.6, the topology τL is not �-acceptable, which is a contradiction. Therefore, it
must be �(X) � �(Z). �

Modifying the technique of the proof of the previous theorem analogously, we can
obtain the following result.

Theorem 3.8. Let (X ,τX) be a θ-regular T1 space containing a discrete infinite sequence of
subspaces P1,P2, . . . with the property |Pi| > κ (κ is a cardinal number). Then for any space
(Z,τZ) with the property |Z| ≤ κ it follows �(X) � �(Z).

Proof. Suppose �(X)��(Z). We put I= [0,1] with the Euclidean topology,K = ωX × I,
Y = K \ (X ×{0}). We consider the product topology τK on K and the topology τY in-
duced from (K ,τK ) on Y . The space X ×{0}, with the topology induced from (K ,τK ),
is homeomorphic to (X ,τX) and pairwise separated from Y in (K ,τK ). Then �(X ×
{0})��(Z). Therefore, there exists a �-acceptable topology τL on L= Y ∩Z (where Z is
supposed to be disjoint from Y).
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Let i∈N. For every p ∈ Pi, we put ζi,p(t)= (p, t). The net ζi,p((0,1],≤) has its values
in Y and has the limit (p,0)∈ X ×{0} for t→ 0. We put

Qi =
{
q | q ∈ Z, q is a cluster point of the net ζi,p

(
(0,1],≤ )}. (3.16)

Then |Qi| ≤ κ < |Pi|, so there exist ai,bi ∈ Pi ⊆ X , ai �= bi such that the nets ζi,ai(t) =
(ai, t), ζi,bi(t) = (bi, t) have the same cluster point ci ∈ Z for t → 0 in the topology τL.
Since the collection {P1,P2, . . .} is discrete in (X ,τX), the sequences a1,a2, . . . and b1,b2, . . .
are disjoint and have no cluster point in X . By Lemma 3.6, the topology τL is not �-
acceptable, which is a contradiction. Hence, �(X) � �(Z). �

The next corollary summarizes some relationships between the compactificability
classes of some frequently used and well-known spaces. These properties follow from
the theory presented in this paper and in the three previous papers [6–8].

Corollary 3.9. The following statements are satisfied:
(i) let X , Z be two infinite discrete spaces with different cardinalities |X| > |Z|. Then

�(Z)��(X),
(ii) �(R \Q) � �(Q),

(iii) Comp��(N)��(R),
(iv) �(Q), �(R \Q), and �((0,1)ℵ0 ) are incomparable with Comp, �(N), �(R),
(v) let X = {n− 1/m | n,m∈N} be a subspace of R. Then

�(N)��(X)��(R), (3.17)

(vi) let ω = ℵ0 =N, and let ω1 = ℵ1 be the first uncountable cardinal, both considered
as ordinal number, with the interval topology. Then

�
(
ω× (ω1 + 1

))
� �

(
ω1
)
. (3.18)

Proof. (i) Let |X| > |Z| = κ≥ ℵ0. Then there exists a decomposition of X into countably
many pairwise disjoint subsets Pi ⊆ X , i ∈ N, such that, for each i ∈ N, we have |Pi| =
|X| > κ. From Theorem 3.8 it follows �(X) � �(Z). Further, by Theorem 2.2 it holds
�(Z)��(X). Then �(Z)��(X).

(ii) For every n∈N, we put Pn = [2n,2n+ 1]∩ (R \Q). Then |Pn| > |Q| = ℵ0, and the
family {Pn | n∈N} is discrete. By Theorem 3.8, we have �(R \Q) � �(Q).

(iii) It is clear that Comp��(N). We put Pn = [2n,2n+ 1] for every n∈N. We have
|Pn| > |N| = ℵ0, so by Theorem 3.8 we get �(R) � �(N). But N is a closed subspace of
R, so by Theorem 2.2 we have �(N)��(R). Then �(N)��(R).

(iv) The spaces Q, R \Q, and (0,1)ℵ0 are T3.5, but not locally compact. The compact
spaces as well as N or R are strongly locally compact. The assertion now follows directly
from [7, Theorem 2.1].

(v) We take T = {(N,≥)}, where we consider the natural, linear order ≥ on N. Then
any injective net ϕ(A,≥) with A ∈ T is an injective sequence, which clearly has no clus-
ter point in N. However, if we put Pn = {n− 1/m | m ∈ N,m ≥ 2} ∪ {n}, then Pn ⊆
X contains an injective sequence n− 1/2,n− 1/3,n− 1/4, . . . converging to n ∈ Pn. The
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family {P1,P2, . . .} is discrete. By Theorem 3.7 it holds �(X) � �(N). On the other hand,
N is a closed subspace of X , so by Theorem 2.2, �(N)��(X). Hence, �(N)��(X). For
proving �(X) � �(R), we may adjust (iii) and use the fact that X is a closed countable
subspace of R.

(vi) We take T = {(ω1,≥)}, where ≥ is the order of ordinals. An injective net ϕ
(ω1,≥) has no cluster point in ω1, since any uncountable subset of ω1 is not bounded. On
the other hand, Pn = {n}× (ω1 + 1) clearly contains values of an injective net ϕn(ω1,≥)
given by ϕn(α)= (n,α), converging to the point (n,ω1)∈ Pn. Applying Theorem 3.7, we
get �(ω× (ω1 + 1)) � �(ω1). �

However, we will note that there are still much more open questions than answers and
solutions. Among numerous very natural questions that one certainly may ask, we can
only list some of them.

Question 3.10. Is Comp the only class above �(N)? Is it true that a space X is compact if
and only if �(X)��(N)?

Question 3.11. Which compactificability classes have the representatives among the
subspaces of the real line and which are their relationships?

Remark to the previous question that we know almost nothing about the compacti-
ficability classes represented by the non-locally compact subspaces of the real line, like
�(Q) or �(R \Q). Perhaps some set-theoretic axioms like CH may affect the next open
question.

Question 3.12. Is it true that between �(N) and �(R) there are infinitely or even
uncountably many compactificability classes?

Question 3.13. Is it true that �(ω1)��(ω× (ω1 + 1))?

Question 3.14. Which relationships are there between the compactificability classes rep-
resented by the spaces of ordinals?

Question 3.15. Which properties have the compactificability classes represented by spaces
constructed from the classic examples that were given over the years (Sorgenfrey line,
Niemytzki plane, . . .)?

It is known that each compactificability class has a T1 representative, however, there
exist classes of mutual compactificability with no Hausdorff representatives. Hence, we
will close the paper by the following natural question.

Question 3.16. Is it true that every compactificability class contains a sober or sober T1

representative?
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