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1. Introduction

The connections between variational inequalities and optimization problems is well
known, and many investigators have discussed them along many years; see, for instance,
[1, 8, 10, 13]. This last article, which was authored by Giannessi, in particular, is one of
the main works that study these connections in the finite-dimensional context. In recent
years, the interest in the investigation on the relationships between these two classes of
problems has increased, resulting in several different conditions for the existence of so-
lutions for many variational-type inequalities (e.g., [5, 16, 19, 20]). Connections among
variational inequalities and vectorial optimization problems have also been studied in
[11, 18, 25], for instance.

By using a variational-like inequality, Lee et al. [19] obtained some results of exis-
tence of solutions for nonsmooth invex problems, which are generalizations of those ob-
tained by Chen and Craven [4] for differentiable convex problems. Recently, Giannessi
[11] showed the equivalence between efficient solutions of a differentiable and convex
optimization problem and the solutions of a variational inequality of Minty type. He also
proved the equivalence between weak efficient solutions of a differentiable convex opti-
mization problem and solutions of a variational inequality of weak Minty type.

Following this last line of investigation, Lee [17] was able to establish the equivalence
between the solutions of the inequalities of Minty and Stampacchia types for subdiffer-
ential (in the convex analysis sense) and efficient solutions and weakly efficient solutions,
respectively, in the case of vectorial nonsmooth convex optimization problems. More-
over, using these characterizations, he proved a theorem on existence of weakly efficient
solutions for the vectorial nonsmooth convex optimization problem, under hypothesis of
compactness.
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In this work, we extend the results obtained early by Lee [17] for the nonsmooth invex
context.

This paper is organized as follows. In Section 2, we fix some basic notation and termi-
nology. In Section 3, we prove some connections between efficient solutions and vectorial
optimization problems; in Section 4, we consider the case of weakly efficient solutions. Fi-
nally, in Section 5, we use the results of the previous sections to show an existence result of
the weakly efficient solutions of nonsmooth invex vectorial optimization problem, under
weak hypothesis of compactness.

2. Preliminaries

In this section we recall some notions of nonsmooth analysis; for more details, see, for
instance, Clarke [6].

Let Rn be the n-dimensional Euclidean space and Rn
+ its nonnegative orthant. In the

sequel Ω will be a nonempty open subset of Rn. A function f : Ω→R is said to be Lips-
chitz near x ∈Ω if, for some K > 0,

∣
∣ f (y)− f (z)

∣
∣≤ K‖y− z‖, (2.1)

for all y, z within some neighborhood of x. We say that f is locally Lipschitz on Ω if f is
Lipschitz near any given point of Ω. The generalized directional derivative of f at x in the
direction v, denoted by f 0(x,v), is defined as follows:

f 0(x,v)= limsup
y→x
t↓0

1
t

[

f (y + tv)− f (y)
]

. (2.2)

The generalized gradient of f at x, denoted by ∂ f (x), is the subset of Rn given by

∂ f (x)= {ξ ∈Rn : f 0(x,v)≥ 〈ξ,v〉, ∀v ∈Rn
}

, (2.3)

where 〈·,·〉 is the usual scalar product in Rn. The set ∂ f (x) is nonempty when f is Lips-
chitz near x ∈Ω.

Let X be a nonempty subset of Rn. The distance function related to X is the function
dX :Rn→R, defined by

dX(x)= inf
{‖x− y‖ : y ∈ X

}

. (2.4)

The distance function is not differentiable everywhere but is globally Lipschitz.
Let x ∈ X ; a vector v ∈Rn is said to be tangent to X at x if d0

X(x,v)= 0 and the set of
the tangent vectors to X at x is called Clarke tangent cone and denoted by TX(x). This set
is a closed convex cone in Rn. The Clarke normal cone to X at x can be defined by polarity
with TX(x):

NX(x)= {ξ ∈Rn : 〈ξ,v〉 ≤ 0, ∀v ∈ TX(x)
}

. (2.5)
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Suppose that f is a locally Lipschitz function on Ω and attains a minimum over X at
x. Then,

0∈ ∂ f (x) +NX(x). (2.6)

We say that x ∈ X is a Clarke stationary point of f over X if (2.6) holds.
Hanson [14] considered the differentiable functions f :Rn→R such that for all x, y ∈

Rn, there exists η(y,x)∈Rn such that

f (y)− f (x)≥ 〈∇ f (x),η(y,x)
〉

. (2.7)

Nowadays, such functions are generally known as invex functions due to Craven and
Glover [7], who first named them so. This invexity notion generalizes the concept of
convexity and allows to extend sufficient conditions of optimality and duality results to
nonconvex optimization problems (see, e.g., [2, 12, 21]). Invexity has now been extended
to nondifferentiable locally Lipschitz functions. See, for example, Craven and Glover [7],
Reiland [23], and Phuong et al. [22]. We use the definition provided in [22]: let X be a
nonempty subset of Ω and suppose that f : Ω→ R is a locally Lipschitz function on Ω.
We say that f is invex on X if, for every x, y ∈ X , there is η(y,x)∈ TX(x) such that

f (y)− f (x)≥ f 0(x,η(y,x)
)

. (2.8)

The above notion of invexity is very powerful because it allows to treat smooth and
nonsmooth constrained problems, in the presence of an abstract constraint. In later sec-
tions we will deal with this subject.

An important result obtained by Phuong et al. is the following invexity characteriza-
tion; see [22].

Proposition 2.1. Let X be a nonempty subset of Ω. A locally Lipchitz function f is invex
on X if and only if every Clarke stationary point of f over X is a global minimum.

3. Efficient solutions and variational-like inequalities

Let X be a nonempty subset of Rn and let fi :Rn→R, i= 1, . . . , p, be the given functions.
We consider the following vectorial optimization problem:

minimize f (x) := ( f1(x), . . . , fp(x)
)

subject to x ∈ X. (P)

As it is well known, differently from the case of scalar optimization problems, there
is not a unique concept of solution for vectorial optimization problems. Amongst the
numerous definitions of solutions for such problems existing in the literature, we will
consider the followings.

Definition 3.1. A point y ∈ X is said to be
(i) an efficient solution of (P) if there is no other point x ∈ X such that f (x)≤ f (y),

or equivalently,

f (x)− f (y) /∈−Rn
+ \ {0}, ∀x ∈ X ; (3.1)
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(ii) a weakly efficient solution of (P) if there is no other point x ∈ X such that f (x) <
f (y), or equivalently,

f (x)− f (y) /∈− intRn
+, ∀x ∈ X ; (3.2)

(iii) a properly efficient solution of (P) if it is efficient and if there exists M > 0 such that
for each i,

fi(x)− fi(y)
f j(y)− f j(x)

≤M (3.3)

for some j such that f j(x) > fj(y), when x ∈ X and fi(x) < fi(y).

Remark 3.2. Some authors call the efficient solution as Pareto optimal solution. Also,
weakly efficient solutions are also called weak-Pareto optimal solution or weak minimum.

Remark 3.3. Kuhn and Tucker noted that some efficient solutions presented an unde-
sirable property with respect to the ratio between the marginal profit of an objective
function and the loss of some other functions. To these solutions, they introduced the
concept of the noninferior proper solution. Subsequently, Geoffrion [9] modified the
concept slightly and defined the properly efficient solutions.

Now, we assume that fi are locally Lipschitz and invex functions on X with respect to
η. We consider in this section the following variational-like inequalities.

Minty-type vectorial variational-like inequality (MVLI). Find y ∈ X such that for each
x ∈ X and any ξi ∈ ∂ fi(x), i= 1, . . . , p,

(

ξT1 η(x, y), . . . ,ξTp η(x, y)
)

/∈Rn
+ \ {0}. (3.4)

Stampacchia-type vectorial variational-like inequality (SVLI). Find y ∈ X such that for
each x ∈ X there exist ξi ∈ ∂ fi(y), i= 1, . . . , p, such that

(

ξT1 η(x, y), . . . ,ξTp η(x, y)
)

/∈Rn
+ \ {0}. (3.5)

Proposition 3.4. Assume that X is a nonempty subset of Rn and fi :Rn →R, i= 1, . . . , p,
are invex locally Lipschitz functions on X with respect to η. If y ∈ X is a weakly efficient
solution of (P), then it is a solution of MVLI.

Proof. Let y ∈ X be an efficient solution of (P). Then, for any x ∈ X , we have

f (x)− f (y) /∈−Rn
+ \ {0}. (3.6)

Since fi is invex with respect to η, f 0
i (x,η(y,x))≤ fi(y)− fi(x); therefore,

ξTi η(y,x)≤ f 0
i

(

x,η(y,x)
)≤ fi(y)− fi(x), ∀ξi ∈ ∂ fi(x). (3.7)

From (3.6) and (3.7), we obtain that y ∈ X is a solution of MVLI. �
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Theorem 3.5. Let X be a nonempty subset of Rn and fi : Rn → R, i = 1, . . . , p, are invex
locally Lipschitz functions on X with respect to η. If y ∈ X is a solution of SVLI, then y is an
efficient solution of (P).

Proof. Let y ∈ X be a solution of SVLI. Then for each x ∈ X , there exist ξi ∈ ∂ fi(y), i =
1, . . . , p, such that

(

ξT1 η(x, y), . . . ,ξTp η(x, y)
)

/∈Rn
+ \ {0}. (3.8)

Since the functions fi are invex, we have for each x ∈ X ,

fi(x)− fi(y)≥ f 0
i

(

y,η(x, y)
)≥ ξTi η(x, y). (3.9)

Hence, from (3.8) and (3.9) we obtain

(

f1(x)− f1(y), . . . , fp(x)− fp(y)
)

/∈Rn
+ \ {0}, (3.10)

and so y ∈ X is an efficient solution of (P). �

From Proposition 3.4 and Theorem 3.5, we have the following corollary.

Corollary 3.6. Let X be a nonempty subset of Rn and fi : Rn → R, i= 1, . . . , p, are invex
locally Lipschitz functions on X with respect to η. If y ∈ X is a solution of SVLI, then y is a
solution of MVLI.

Thus, SVLI is a sufficient condition for efficiency in (P). However, this condition is
not necessary (see, e.g., [17, page 172]). We will show that it is a necessary condition for
proper efficiency in (P). To prove the last assertion we will make use of the following
result due to Jeyakumar [15].

Lemma 3.7. Let Γ be an arbitrary set, Y a Hausdorff topological vector space, D a compact
subset of Y , and F : Γ×D→ R a function such that F(x,·) is concave and upper semicon-
tinuous on D for each x ∈ Γ fixed and F(·, y) is convex, for each y ∈D fixed. Then,

inf
x∈Γ

max
y∈D

F(x, y)≥ 0⇐⇒ sup
y∈D

inf
x∈Γ

F(x, y)≥ 0. (3.11)

Proposition 3.8. Let X be a compact subset of Rn and fi : Rn → R, i= 1, . . . , p, are invex
locally Lipschitz functions with respect to η on X . Consider the following assertions:

(a) y ∈ X is a properly efficient solution of (P);
(b) there exist λi > 0, i = 1, . . . , p, such that y is a solution of the following scalar varia-

tional-like inequality: find y ∈ X such that there exists ξi ∈ ∂ fi(y), i= 1, . . . , p, such
that for each x ∈ X ,

(

λ1ξ1 + ···+ λpξp
)T
η(x, y)≥ 0; (3.12)
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(c) there exist λi > 0, i= 1, . . . , p, such that y is solution of the following scalar variational-
like inequality: find y ∈ X such that for each x ∈ X , there exists ξi ∈ ∂ fi(y), i =
1, . . . , p, such that

(

λ1ξ1 + ···+ λpξp
)T
η(x, y)≥ 0. (3.13)

Then (a) and (b) are equivalent, and if η(·, y) is linear for each y ∈ X , then (a), (b), and (c)
are equivalent.

Proof. (a)⇒(b). If y ∈ X is a properly efficient solution of (P). It follows from the invexity
of the functions fi on X that there exist λi > 0, i = 1, . . . , p, (see Brandão et al. [3]) such
that y ∈ X is a solution of the scalar optimization problem:

minimize λ1 f1(x) + ···+ λp fp(x) subject to x ∈ X. (SP)

We observe that the function λ1 f1 + ···+ λp fp is invex and thus

0∈ ∂

( p
∑

i=1

λi fi

)

(y) +NX(y)⊂
p
∑

i=1

λi∂ fi(y) +NX(y). (3.14)

Then, there exist μ∈NX(y) and ξi ∈ ∂ fi(y), i= 1, . . . , p, such that

0= μ+
p
∑

i=1

λiξi. (3.15)

On the other hand, η(x, y)∈ TX(y), for all x ∈ X and, furthermore,

〈

μ,η(x, y)
〉≤ 0, ∀x ∈ X. (3.16)

From (3.15) and (3.16) follows
∑p

i=1 λi〈ξi,η(x, y)〉 ≥ 0, for all x ∈ X , that is,

(

λ1ξ1 + ···+ λpξp
)T
η(x, y)≥ 0. (3.17)

Hence, (b) is proved.
(b)⇒(a). We assume that there exists y ∈ X such that ξi ∈ ∂ fi(y), i= 1, . . . , p, such that

for each x ∈ X (λ1ξ1 + ···+ λpξp)Tη(x, y)≥ 0 is verified. We will assume that it is not a
properly efficient solution of (P) and then exhibiting a contradiction. Suppose y is not a
solution of the following scalar minimization problem (see [9]):

minimize λ1 f1(x) + ···+ λp fp(x), subject to x ∈ X (3.18)

that is, there exists x ∈ X such that
∑p

i=1 λi fi(x) <
∑p

i=1 λi fi(y) and, furthermore,

p
∑

i=1

λi
(

fi(x)− fi(y)
)

< 0. (3.19)
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Now, using the invexity of the functions fi, we obtain

p
∑

i=1

λi
(

fi(x)− fi(y)
)≥

p
∑

i=1

λi f
0
i

(

y,η(x, y)
)≥

p
∑

i=1

λiξ
T
i η(x, y)≥ 0, (3.20)

which contradicts (3.18). Hence, y is a properly efficient solution of (P).
(b)⇔(c). We suppose that y ∈ X and that there exist λi > 0 such that there are ξi ∈

∂ fi(y), i = 1, . . . , p, such that, for each x ∈ X , (λ1ξ1 + ···+ λpξp)Tη(x, y) ≥ 0 is verified.
Equivalently,

max
ξi∈∂ fi(y)

inf
x∈X

(

λ1ξ1 + ···+ λpξp
)T
η(x, y)≥ 0. (3.21)

Define

D :=
p
∏

i=1

∂ fi(y),

Γ := X ,

F(x,ξ) := (λ1ξ1 + ···+ λpξp
)T
η(x, y).

(3.22)

The function F satisfies the hypotheses of Lemma 3.7. In fact, for x ∈ Γ fixed, F(x,·) is
continuous on D (because it is a linear form defined between finite-dimensional spaces
and, in particular, is upper semicontinuous). Moreover, F(x,·) is simultaneously concave
and convex. Consequently, (3.21) is equivalent to

inf
x∈X

max
ξi∈∂ fi(y)

(

λ1ξ + ···+ λpξp
)T
η(x, y)≥ 0 (3.23)

and this last inequality is exactly the statement (b). Thus, (b) and (c) are equivalent. �

From Proposition 3.8, we get the following theorem.

Theorem 3.9. Let X be a compact and nonempty subset of Rn and fi :Rn→R, i= 1, . . . , p,
are invex locally Lipschitz functions on X with respect to η. If y is a properly efficient solution
of (P), then y is a solution of SVLI.

Proof. If y is a properly efficient solution of (P), then using Proposition 3.8, there exist
λi > 0, ξ ∈ ∂ fi(y), i= 1, . . . , p, such that

(

λ1ξ + ···+ λpξp
)T
η(x, y)≥ 0, ∀x ∈ X. (3.24)

In fact, assume that there exists x ∈ X such that for each ξi ∈ ∂ fi(y), we have

(

ξT1 η(x, y), . . . ,ξTp η(x, y)
)∈−Rp

+ \ {0} (3.25)
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and we show a contradiction. Since λi are all strictly positive, we conclude

p
∑

i=1

(

λiξi
)T
η(x, y) < 0, (3.26)

which contradicts (3.24). Hence, y is solution of SVLI. �

4. Weakly efficient solutions and variational-like inequalities

In this section, we will consider variational-like inequalities of weak Minty and weak
Stampacchia types, which we formulate as follows.

Weak Minty variational-like inequality (WMVLI). Find y ∈ X such that, for each x ∈ X
and each ξi ∈ ∂ fi(x), i= 1, . . . , p, we have

(

ξT1 η(x, y), . . . ,ξTp η(x, y)
)

/∈− intR
p
+. (4.1)

Weak Stampacchia variational-like inequality (WSVLI). Find y ∈ X such that for each
x ∈ X , there exist ξi ∈ ∂ fi(y), i= 1, . . . , p, such that

(

ξT1 η(x, y), . . . ,ξTp η(x, y)
)

/∈− intR
p
+. (4.2)

Under certain hypotheses, it is possible to show that the solutions of WMVLI and
WSVLI are equals. Before, we prove this, will recall the following definition: given the
function η : S× S→ Rn where S is a nonempty subset of Rn, we say that S is invex with
respect to η at x ∈ S if for each y ∈ S and each t ∈ [0,1], we have x+ tη(y,x)∈ S; we say
that S is invex if it is invex for all x ∈ S.

Theorem 4.1. Let X be a nonempty subset of Rn, invex with respect to η and fi : Rn → R,
i= 1, . . . , p, are invex locally Lipschitz functions with respect to η.

(1) If y is a solution of WMVLI, then y is a solution of WSVLI.
(2) Assume that the function η is antisymmetric (i.e., η(x, y)=−η(y,x),∀x, y ∈ X) and

that y ∈ X is a solution of WSVLI. Then y is a solution of WMVLI.

Proof. (1) We suppose that y ∈ X is solution of WSVLI. Then, for each x ∈ X , there are
ξi ∈ ∂ fi(y), i= 1, . . . , p such that

(

ξT1 η(x, y), . . . ,ξTp η(x, y)
)

/∈− intR
p
+. (4.3)

Let ̂ξi ∈ ∂ fi(x), i = 1, . . . , p. We claim that (ξi − ̂ξi)Tη(x, y) ≤ 0, i = 1, . . . , p. In fact, from
the antisymmetry of η and (4.3), we have

(

ξi− ̂ξi
)T
η(x, y)= ξiη(x, y)− ̂ξiη(x, y)= ξiη(x, y) + ̂ξiη(y,x). (4.4)

Also, since fi is invex,

ξTi η(x, y)≤ f )
i

(

y,η(x, y)
)≤ fi(x)− fi(y), i= 1, . . . , p,

̂ξi
T
η(y,x)≤ f 0

i

(

x,η(y,x)
)≤ fi(y)− fi(x), i= 1, . . . , p,

(4.5)
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and adding (4.5), we obtain

(

ξi− ̂ξi
)T
η(x, y)≤ 0, i= 1, . . . , p, (4.6)

that is, for each x ∈ X and each ̂ξi ∈ ∂ fi(x), i= 1, . . . , p, we have

(

̂ξ1
T
η(x, y), . . . , ̂ξp

T
η(x, y)

)

≥ (ξT1 η(x, y), . . . ,ξTp η(x, y)
)

/∈− intR
p
+ (4.7)

and, consequently,

(

̂ξ1
T
η(x, y), . . . , ̂ξp

T
η(x, y)

)

/∈− intR
p
+; (4.8)

thus, y is a solution of WMVLI.
(2) We will prove the statement (2). For that, we suppose that y ∈ X is a solution of

WMVL. In this case, for each x ∈ X and each ξi ∈ ∂ fi(x), i= 1, . . . , p, we have (ξT1 η(x, y),
. . . ,ξTp η(x, y)) /∈ − intR

p
+. For z ∈ X fixed, we consider the sequence (αk) ⊂ (0,1], with

αk → 0 when k→∞ and we define zk := y +αkη(z, y). Since X is invex with respect to η,
then the sequence (zk) belongs to X . The set ∂ fi(zk) is nonempty and therefore we can
take ξki ∈ ∂ fi(zk), i= 1, . . . , p, for each k ∈N. But y is a solution of WMVLI and therefore

(

ξkT1 η(x, y), . . . ,ξkTp η(x, y)
)

/∈− intR
p
+. (4.9)

Without loss of generality, we can suppose that all the functions fi have the same Lip-
schitz constant K . Since ξki ∈ ∂ fi(zk), for each k, we have ‖ξki ‖ ≤ K , for i = 1, . . . , p. For

each i, (ξki )k∈N is a bounded sequence in Rn and we can assume that ξki → ̂ξi when k→∞,

for some ̂ξi ∈Rn. Also, ξki ∈ ∂ fi(zk) for each k and zk → y and since the set-valued map-

ping ∂ fi is closed (see [6]), we obtain ̂ξi ∈ ∂ fi(y), i= 1, . . . , p. Taking k→∞ in (4.9) and
observing that the set (− intR

p
+)c is closed in Rp, we obtain

(

̂ξ1
T
η(x, y), . . . , ̂ξp

T
η(x, y)

)

/∈− intR
p
+. (4.10)

Hence, y ∈ X is a solution of WSVLI. �

Theorem 4.2. Let X be a nonempty subset of Rn, invex with respect to η and fi : Rn → R,
i= 1, . . . , p, invex locally Lipschitz functions with respect to η on X . Then

(1) if y ∈ X is a solution of WSVLI, then y is a weakly efficient solution of (P);
(2) if η is antisymmetric, then y ∈ X is a weakly efficient solution of (P) if and only if y

is a solution of WSVLI.

Proof. Initially suppose that y ∈ X is not a weakly efficient solution of (P). Then there
exists z ∈ X such that

fi(y) > fi(z), i= 1, . . . , p. (4.11)
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Let ξi ∈ ∂ fi(y), i= 1, . . . , p. Since the fi are invex, we have

ξTi η(z, y)≤ f 0
i

(

y,η(z, y)
)≤ fi(z)− fi(y). (4.12)

Thus,

fi(z)− fi(y)≥ ξTi η(z, y), ∀ξi ∈ ∂ fi(y) (4.13)

and, from (4.11) and (4.13), we have

(

ξT1 η(z, y), . . . ,ξTp η(z, y)
)∈− intRP

+. (4.14)

Consequently, y is not a solution of WSVLI.
Now, we suppose that y ∈ X is not solution of WSVLI. In this case, there exists x ∈ X

such that for each ξi ∈ ∂ fi(x), i= 1, . . . , p, we have

(

ξT1 η(x, y), . . . ,ξTp η(x, y)
)∈− intR

p
+. (4.15)

Let ξi ∈ ∂ fi(x). Since the fi are invex,

fi(y)− fi(x)≥ f 0
i

(

x,η(y,x)
)≥ ξTi η(y,x), i= 1, . . . , p, (4.16)

and consequently

ξTi η(y,x)≥ fi(y)− fi(x). (4.17)

The function η is antisymmetric and from (4.17), we have

ξTi η(x, y)≥ fi(x)− fi(y), i= 1, . . . , p. (4.18)

Thus y is not a weakly efficient solution of (P). �

Next, we will show results as in Proposition 3.8 for a weakly efficient solution of (P). To
do this, we will use the following result that is an alternative theorem for invex functions,
its proof can be seen in [3].

Lemma 4.3 (invex Gordan’s theorem). LetC be a nonempty closed subset of Ω. Suppose that
fi : Ω→R, i∈ I = {1, . . . ,m}, are locally Lipschitz functions and invex on C, for a common
η. If f (x)=max{ fi(x) : i∈ I} reaches a minimum on C, then either

(i) there exists x ∈ C such that fi(x) < 0, for all i∈ I ;
(ii) there exist λi ≥ 0, i∈ I , not all zero, such that

∑

i∈I λi fi(x)≥ 0, for all x ∈ C;
but never both.

Naturally, under the hypotheses of Lemma 4.3, if C is compact, then f (x) reaches a
minimum on C.

Next, we state the following result.

Proposition 4.4. Let X be a compact, nonempty subset of Rn and fi : Rn→R are invex
locally Lipschitz functions with respect to η on X . Assume that for each y ∈ X , the function
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η(·, y) is linear. Then, the following statements are equivalent:
(a) y ∈ X is a weakly efficient solution of (P);
(b) there exist λi ≥ 0, i= 1, . . . , p, not all zero, such that y ∈ X is a solution of the following

scalar variational-like inequality: find y ∈ X such that there exist ξi ∈ ∂ fi(y), i =
1, . . . , p, such that, for each x ∈ X ,

(

λ1ξ1 + ···+ λpξp
)T
η(x, y)≥ 0; (4.19)

(c) there exist λi ≥ 0, i= 1, . . . , p, not all zero, such that y ∈ X is a solution of the following
scalar variational-like inequality: find y ∈ X such that for each x ∈ X , there exist
ξi ∈ ∂ fi(y) such that

(

λ1ξ1 + ···+ λpξp
)T
η(x, y)≥ 0. (4.20)

Proof. The equivalence between (b) and (c) is proved similarly as in Proposition 3.8.
(a)⇒(b). We assume that y ∈ X is a weakly efficient solution of (P). Since fi are invex,

the functions φi,

φi(x)= fi(x)− fi(y), x ∈ X , (4.21)

are also invex with respect to η on X . By hypotheses, it does not exist an x ∈ X such that
φi(x) < 0, i = 1, . . . , p. Consequently, from Lemma 4.3, there exist λi ≥ 0, i = 1, . . . , p, not
all zero and such that

∑p
i=1 λiφi ≥ 0, for all x ∈ X . Or equivalently, y is a solution of the

scalar problem (SP’):

minimize
p
∑

i=1

λi fi(x) subject to x ∈ X (SP’)

and hence

0∈ ∂

( p
∑

i=1

λi fi

)

(y) +NX(y)⊂
p
∑

i=1

∂ fi(y) +NX(y). (4.22)

Thus, there exist μ ∈ NX(y), ξi ∈ ∂ fi(y), i = 1, . . . , p, such that 0 = μ +
∑p

i=1 λiξi. Since
η(x, y)∈ TX(y), for all x ∈ X , we obtain

0≥ 〈μ,η(x, y)
〉=−

p
∑

i=1

λi
〈

ξi,η(x, y)
〉

, ∀x ∈ X , (4.23)

that is,

(

λ1ξ1 + ···+ λpξp
)T
η(x, y)≥ 0; (4.24)

that is exactly the statement (b).
(b)⇒(a). We assume that there exist λi ≥ 0, i = 1, . . . , p, not all zero, ξi ∈ ∂ fi(y) such

that

(

λ1ξ1 + ···+ λpξp
)T
η(x, y)≥ 0, ∀x ∈ X. (4.25)
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If y is not a weakly efficient solution of (P), then y is not a solution of the weighted scalar
problem associated to λ, that is, there exists x ∈ X such that

∑p
i=1 λi( fi(x)− fi(y)) < 0. On

the other hand,

0 >
p
∑

i=1

λi
(

fi(x)− fi(y)
)≥

p
∑

i=1

λi f
0
i

(

y,η(x, y)
)≥

p
∑

i=1

ξTi η(x, y)

= (λ1ξ1 + ···+ λpξp
)T
η(x, y)≥ 0

(4.26)

which is absurd. �

From Theorems 4.1 and 4.2 and Proposition 4.4, we easily obtain the following theo-
rem.

Theorem 4.5. Let X be a compact, nonempty subset of Rn, invex with respect to η, and
fi : Rn→R, i = 1, . . . , p, are invex locally Lipschitz functions with respect to η on X . Let the
function η be antisymmetric and such that η(·, y) is linear for each y ∈ Y . Then, the follow-
ing assertions are equivalent:

(1) y ∈ X is a weakly efficient solution of (P);
(2) y ∈ X is a solution of WMVLI;
(3) y ∈ X is a solution of WSVLI;
(4) there exist λi ≥ 0, i = 1, . . . , p, not all zero, and such that y ∈ X is a solution of the

following scalar variational-like inequality: to find y ∈ X such that there exist ξi ∈
∂ fi(y), i= 1, . . . , p, such that for each x ∈ X ,

(

λ1ξ1 + ···+ λpξp
)T
η(x, y)≥ 0; (4.27)

(5) there exist λi ≥ 0, i = 1, . . . , p, not all zero, and such that y ∈ X is a solution of the
following scalar variational-like inequality: to find y ∈ X such that for each x ∈ X ,
there exist ξi ∈ ∂ fi(y), i= 1, . . . , p, such that

(

λ1ξ1 + ···+ λpξp
)T
η(x, y)≥ 0. (4.28)

Note that the hypotheses applied on η in the last theorem are trivially satisfied when
the function fi are convex; in effect, in this case, η(x, y)= x− y. See [24].

5. Existence of weakly efficient solutions

We begin this section by recalling a fixed point theorem for set-valued mappings which
is a generalization of the classical fixed point theorem of Fan-Browder, and which proof
can be found in Park [21].

Lemma 5.1 (fixed point theorem). Let X be a convex, nonempty subset of a Hausdorff

topological vector space E and K a compact nonempty subset of X . Let A and B : X ⇒ X be
two set-valued mappings satisfying the following conditions:

(1) Ax ⊂ Bx, for all x ∈ X ;
(2) Bx is a convex set, for all x ∈ X ;
(3) Ax �=∅, for all x ∈ K ;
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(4) A−1y = {x ∈ X : y ∈ Ax} is an open set, for all y ∈ X ;
(5) for each N finite subset of X , there exists LN compact, convex, nonempty subset of X

such that LN ⊃N and for each x ∈ LN \K , Ax∩LN �=∅.
Then, there is a x ∈ X such that x ∈ Bx.

We will use the results of the previous section, together with Lemma 5.1, to establish a
result about the existence of weakly efficient solution for the nonsmooth invex vectorial
problems under weak compactness hypothesis on the feasible set X .

Theorem 5.2. Let X be a nonempty subset of Rn, invex with respect to η and fi : Rn→R,
i= 1, . . . , p, are invex locally Lipschitz functions with respect to η. Assume that η is an anti-
symmetric function and such that η(·, y) is convex and continuous, for each y ∈ X . Suppose
also that there exists a compact, nonempty subset K of X such that for each finite subset N of
X , there exists a compact, convex, and nonempty subset LN of X , such that LN ⊃N and for
all x ∈ LN \K , there is z ∈ LN such that there exist ξi ∈ ∂ fi(z), i= 1, . . . , p, satisfying

(

ξT1 η(z,x), . . . ,ξTp η(z,x)
)∈− intR

p
+. (5.1)

Then, (P) has a weakly efficient solution.

Proof. We use a concise notation to make the proof clearer. We denote by ∂ f (x) the set
∂ f1(x)×···× ∂ fp(x), x ∈ X . Let s = (s1, . . . ,sp), where si ∈ Rn, i = 1, . . . , p. Let sTη(x, y)
be the vector

(

sT1 η(x, y), . . . ,sTpη(x, y)
)∈Rp. (5.2)

Let A and B : X ⇒ X be two set-valued mappings given by

Ax := {z ∈ X : ∃t ∈ ∂ f (z), tTη(z,x)∈− intR
p
+
}

,

Bx := {z ∈ X :∀s∈ ∂ f (x),sTη(z,x)∈− intR
p
+
}

.
(5.3)

We will prove (using Lemma 5.1) that there exists y ∈ K such that Ay = ∅ or, equiva-
lently, y is a solution of WMVLI and by Theorem 4.2, it is sufficient to prove our result.
Initially, we will prove that the set-valued mappings A and B satisfy the conditions (1),
(2), (4), and (5) of Lemma 5.1 and that B does not have a fixed point. So, Lemma 5.1 will
imply the existence of y ∈ K such that Ay =∅.

Next, we will show that the condition (1) of Lemma 5.1 holds: let x ∈ X and z ∈ Ax.
Then there exist t = (ξ1, . . . ,ξp)∈ ∂ f (z) such that

(

ξT1 η(z,x), . . . ,ξTp η(z,x)
)∈− intR

p
+. (5.4)

Let s= ( ̂ξ1, . . . , ̂ξp)∈ ∂ f (x). Using the invexity of functions fi and the antisymmetry of η,
we have, for each i= 1, . . . , p,

̂ξiη(z,x)≤ f 0
i

(

x,η(z,x)
)≤ fi(z)− fi(x)=−( fi(x)− fi(z)

)

≤−ξTi η(x,z)= ξTi η(z,x).
(5.5)
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From (5.4) and (5.5), we obtain

(
̂ξT1 η(z,x), . . . ,̂ξTp η(z,x)

)

∈− intR
p
+, (5.6)

where z ∈ Bx.
Now, we will see that the second condition of Lemma 5.1 holds. Let x ∈ X , z1,z2 ∈ Bx,

and λ∈ [0,1]. Then, for each s= (ξ1, . . . ,ξp)∈ ∂ f (x), we have

(

ξT1 η
(

z1,x
)

, . . . ,ξTp η
(

z1,x
))

,
(

ξT1 η
(

z2,x
)

, . . . ,ξTp η
(

z2,x
))∈− intR

p
+. (5.7)

For each j = 1, . . . , p, we consider ξj = (ξ(1)
j , . . . ,ξ(n)

j ), ξ(k)
j ∈ R, η(x, y) = (η1(x, y), . . . ,

ηn(x, y)), ηk(x, y)∈R. Then, from the convexity of ηk and (5.7), we obtain

ξTj η
(

λz1 + (1− λ)z2,x
)=

n
∑

k=1

ξ(k)
j ηk

(

λz1 + (1− λ)z2,x
)

≤
n
∑

k=1

ξ(k)
j

[

ληk
(

z1,x
)

+ (1− λ)ηk
(

z2,x
)]

= λξTj η
(

z1,x
)

+ (1− λ)ξTj η
(

z2,x
)

< 0, j = 1, . . . , p.

(5.8)

Hence, λz1 + (1− λ)z2 ∈ Bx.
The fourth condition is proved as follows: we prove that, for all z ∈ X , the set (A−1z)c

is closed. To do this, we consider a sequence (xn)⊂ (A−1z)c and such that xn converges to
x. Then, xn /∈A−1z, for all n∈N. Let t = (ξ1, . . . ,ξp)∈ ∂ f (z), such that

(

ξT1 η
(

z,xn
)

, . . . ,ξTp η
(

z,xn
))

/∈− intR
p
+. (5.9)

Since η(·,z) is continuous and antisymmetric, we have that η(z,·) is also continuous and
antisymmetric; (− intR

p
+)c being closed, taking n→∞ in (5.9), we obtain

(

ξT1 η(z,x), . . . ,ξTp η(z,x)
)

/∈− intR
p
+ (5.10)

and thus x ∈ (A−1z)c.
By our hypotheses, condition (5) of Lemma 5.1 holds.
However, B does not have a fixed point, because if there is a fixed point, it would exist

some x ∈ X such that for each s∈ ∂ f (x), sTη(x,x)= 0∈− intR
p
+, which is absurd.

Consequently, from Lemma 5.1, there exists y ∈ K such that Ay =∅. �

Corollary 5.3. Let X be a nonempty subset of Rn, invex with respect to η and η antisym-
metric such that η(·, y) is convex and continuous. If

K = {x ∈ X :
(

f 0
1

(

z0,η
(

z0,x
))

, . . . , f 0
p

(

z0,η
(

z0,x
)))

/∈− intR
p
+
}

(5.11)

is compact for some z0 ∈ X . Then, (P) has a weakly efficient solution.
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Proof. Let N be a nonempty and finite subset of X . We define LN := co(N ∪K) (where co
denotes the closed convex hull of A). Then, for each x ∈ LN \K ⊂ X \K , we have

(

f 0
1

(

z0,η
(

z0,x
))

, . . . , f 0
p

(

z0,η
(

z0,x
)))∈− intR

p
+. (5.12)

Let z := z0 ∈ K ⊂ LN , ξi ∈ ∂ fi(z), we have

ξTi η
(

z0,x
)≤ f 0

i

(

z0,η
(

z0,x
))

, i= 1, . . . , p. (5.13)

Thus, from (5.12) and (5.13), we obtain

(

ξT1 η(z,x), . . . ,ξTp η(z,x)
)∈− intR

p
+. (5.14)

Therefore, the hypotheses of Theorem 5.2 are verified and, consequently, (P) has a weakly
efficient solution. �

6. Conclusions

In this paper, we studied the equivalence between solutions of vectorial variational-like
inequalities of (weak) Minty and Stampacchia type and the (weak) efficient solutions of
the nonsmooth invex vectorial optimization problem. We used an approach analogous to
those used by Giannessi [11], generalizing the results proved by Lee in [17].
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[9] A. M. Geoffrion, Proper efficiency and the theory of vector maximization, Journal of Mathematical

Analysis and Applications 22 (1968), no. 3, 618–630.



16 Efficient solutions

[10] F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, Varia-
tional Inequalities and Complementarity Problems (Proc. Internat. School, Erice, 1978) (R. W.
Cottle, F. Giannessi, and J.-L. Lions, eds.), Wiley, Chichester, 1980, pp. 151–186.

[11] , On Minty variational principle, New Trends in Mathematical Programming, Appl. Op-
tim., vol. 13, Kluwer Academic, Massachusetts, 1998, pp. 93–99.

[12] G. Giorgi and A. Guerraggio, Various types of nonsmooth invex functions, Journal of Information
& Optimization Sciences 17 (1996), no. 1, 137–150.

[13] R. Glowinski, J.-L. Lions, and R. Trémolières, Numerical Analysis of Variational Inequalities,
North-Holland, Amsterdam, 1976.

[14] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis
and Applications 80 (1981), no. 2, 545–550.

[15] V. Jeyakumar, A generalization of a minimax theorem of Fan via a theorem of the alternative,
Journal of Optimization Theory and Applications 48 (1986), no. 3, 525–533.

[16] I. V. Konnov and J. C. Yao, On the generalized vector variational inequality problem, Journal of
Mathematical Analysis and Applications 206 (1997), no. 1, 42–58.

[17] G. M. Lee, On relations between vector variational inequality and vector optimization problem,
Progress in Optimization (Perth, 1998) (X. Q. Yang, A. I. Mees, M. E. Fisher, and L. S. Jennings,
eds.), Appl. Optim., vol. 39, Kluwer Academic, Dordrecht, 2000, pp. 167–179.

[18] G. M. Lee, D. S. Kim, and H. Kuk, Existence of solutions for vector optimization problems, Journal
of Mathematical Analysis and Applications 220 (1998), no. 1, 90–98.

[19] G. M. Lee, D. S. Kim, B. S. Lee, and N. D. Yen, Vector variational inequality as a tool for studying
vector optimization problems, Nonlinear Analysis 34 (1998), no. 5, 745–765.

[20] G. M. Lee and S. H. Kum, On implicit vector variational inequalities, Journal of Optimization
Theory and Applications 104 (2000), no. 2, 409–425.

[21] S. Park, Some coincidence theorems on acyclic multifunctions and applications to KKM theory,
Fixed Point Theory and Applications (Halifax, NS, 1991), World Scientific, New Jersey, 1992,
pp. 248–277.

[22] T. D. Phuong, P. H. Sach, and N. D. Yen, Strict lower semicontinuity of the level sets and invexity
of a locally Lipschitz function, Journal of Optimization Theory and Applications 87 (1995), no. 3,
579–594.

[23] T. W. Reiland, Nonsmooth invexity, Bulletin of the Australian Mathematical Society 42 (1990),
no. 3, 437–446.

[24] R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, no. 28, Princeton University
Press, New Jersey, 1970.

[25] X. Q. Yang, Generalized convex functions and vector variational inequalities, Journal of Optimiza-
tion Theory and Applications 79 (1993), no. 3, 563–580.

Lucelina Batista Santos: Departamento de Matemática, Universidade Federal do Paraná,
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