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Let C be a nonempty closed convex subset of a real Banach space X which has a uni-
formly Gâteaux differentiable norm. Let T ∈ ΓC and f ∈ΠC. Assume that {xt} converges
strongly to a fixed point z of T as t→ 0, where xt is the unique element of C which satisfies
xt = t f (xt) + (1− t)Txt. Let {αn} and {βn} be two real sequences in (0,1) which satisfy
the following conditions: (C1) limn→∞αn = 0; (C2)

∑∞
n=0αn =∞; (C6) 0 < liminfn→∞βn ≤

limsupn→∞βn < 1. For arbitrary x0 ∈ C, let the sequence {xn} be defined iteratively by
yn = αn f (xn) + (1−αn)Txn, n≥ 0, xn+1 = βnxn + (1− βn)yn, n≥ 0. Then {xn} converges
strongly to a fixed point of T .

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let X be a real Banach space, andC a closed convex subset of X . Recall that a self-mapping
f : C→ C is a contraction on C if there exists a constant α∈ (0,1) such that

∥
∥ f (x)− f (y)

∥
∥≤ α‖x− y‖, x, y ∈ C. (1.1)

We use ΠC to denote the collection of all contractions on C. That is, ΠC = { f : C →
C a contraction}. Note that each f ∈ΠC has a unique fixed point in C.

Let now T : C→ C be a nonexpansive mapping; namely,

‖Tx−Ty‖ ≤ ‖x− y‖ ∀x, y ∈ C. (1.2)

We use F(T) to denote the set of fixed points of T .
Construction of fixed points of nonexpansive mappings is an important subject in the

theory of nonexpansive mappings and its applications in a number of applied areas, in
particular, in image recovery and signal processing (see [1, 2, 6]). However, the sequence
{Tnx} of iterates of the mapping T at a point x ∈ C may, in general, not behave well. This
means that it may not converge (even in the weak topology).
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2 Strong convergence and control condition

One way to overcome this difficulty is to use Mann’s iteration method that produces a
sequence {xn} via the recursive manner:

xn+1 = αnxn +
(
1−αn

)
Txn, n≥ 0, (1.3)

where the initial guess x0 ∈ C is chosen arbitrarily. For example, Reich [7] proved that if
X is a uniformly convex Banach space with a Frechet differentiable norm and if {αn} is
chosen such that

∑∞
n=1αn(1−αn)=∞, then the sequence {xn} defined by (1.3) converges

weakly to a fixed point of T . However, this scheme has only weak convergence even in a
Hilbert space [3].

Some attempts to construct iteration method so that strong convergence is guaranteed
have recently been made.

For a sequence {αn} of real numbers in [0,1] and an arbitrary u∈ C, let the sequence
{xn} in C be iteratively defined by x0 ∈ C,

xn+1 = αnu+
(
1−αn

)
Txn. (1.4)

The iterative method (1.4) is now referred to as the Halpern iterative method in the
light of [4]. He proved the weak convergence of {xn} to a fixed point of T where αn = n−a,
a∈ (0,1).

In 1977, Lions [5] improved the result of Halpern, by proving strong convergence of
{xn} to a fixed point of T where the real sequence {αn} satisfies the following conditions:

(C1) limn→∞αn = 0;
(C2)

∑∞
n=0αn =∞;

(C3) limn→∞(αn−αn−1)/α2
n = 0.

It was observed that Lions’ conditions on the real sequence {αn} excluded the canoni-
cal choice αn = 1/(n+ 1). This was overcome in 1992 by Wittmann [10]. He proved the
following theorem.

Theorem 1.1. Let H be a Hilbert space, let C be a nonempty closed and convex subset of H
and T ∈ ΓC. Let {αn} be a sequence in [0,1] fulfilling (C1), (C2), and

(C4)
∑∞

n=0 |αn+1−αn| <∞.
For arbitrary initial value x0 = u∈ C, define iteratively the sequence {xn} as in (1.4). Then
the sequence {xn} converges strongly to the element of F(T) which is nearest to u.

At this point, we have to remark that the result of Wittmann is basic and important.
Reich [8] extended the Wittmann’s result to uniformly smooth Banach spaces which have
weakly sequentially continuous duality maps. In 2002, Xu [11] improved Lions’ result as
follows.

Theorem 1.2. Let X be a uniformly smooth real Banach space, let C be a closed convex
subset of X , and T ∈ ΓC. Let u,x0 ∈ C be given. Assume that {αn} ⊂ [0,1] satisfies the con-
ditions (C1), (C2) and,

(C5) limn→∞(αn−αn−1)/αn = 0.
Then the sequence {xn} defined by (1.4) converges strongly to a fixed point of T .
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He showed that condition (C3) of Lions and condition (C5) are not comparable. Xu
also remarked that Halpern observed that conditions (C1) and (C2) are necessary for the
strong convergence of algorithm (1.4) for all nonexpansive mappings.

Remark 1.3. We note that Theorem 1.2 weakened the condition (C3) by removing the
square in the denominator so that the canonical choice of αn = 1/(n+ 1) is possible. On
the other hand, Xu proved the strong convergence of the scheme in the framework of real
uniformly smooth Banach spaces.

It is our purpose in this paper to propose a modification of Halpern’s iteration method
inspired by the ideas in [11]. Our modified Halpern’s iteration scheme is defined as fol-
lows.

Let C be a closed convex subset of a Banach space and T ∈ ΓC and f ∈ΠC. Define {xn}
in the following way:

yn = αn f
(
xn
)

+
(
1−αn

)
Txn, n≥ 0,

xn+1 = βnxn +
(
1−βn

)
yn, n≥ 0,

(1.5)

where {αn} and {βn} are two sequences in (0,1). We prove, under certain appropriate
assumptions on the sequences {αn} and {βn}, that {xn} converges to a fixed point of T .

2. Preliminaries and lemmas

Let X be a real Banach space. Recall that the (normalized) duality map from X into X∗,
the dual space of X , is given by

J(x)= {x∗ ∈ X∗ :
〈
x,x∗

〉= ‖x‖2 = ∥∥x∗∥∥2}
, x ∈ X. (2.1)

Let S= {x ∈ X : ‖x‖ = 1} denote the unit sphere of X . X is said to have a Gâteaux differ-
entiable norm if the limit

lim
t→0

‖x+ ty‖−‖x‖
t

(2.2)

exists for each x, y ∈ X , and X is said to have a uniformly Gâteaux differentiable norm if
for each y ∈ S, the limit is attained uniformly for x ∈ S. Let X be a normed space with
dimX ≥ 2. The modulus of smoothness of X is the function ρX : [0,∞)→ [0,∞) defined
by

ρX(τ)= sup
{‖x+ y‖+‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}

. (2.3)

The space X is called uniformly smooth if and only if limt→0+ ρX(t)/t = 0.
Now, we introduce several lemmas for our main results in this paper.
The first lemma is a very well-known (subdifferential) inequality.

Lemma 2.1. Let X be a real Banach space and J the normalized duality map on X . Then for
any given x, y ∈ X , the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x+ y)

〉
, ∀ j(x+ y)∈ J(x+ y). (2.4)
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Lemma 2.2 [9]. Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn}
be a sequence in [0,1] which satisfies the following condition:

(C6) 0 < liminfn→∞βn ≤ limsupn→∞βn < 1.
Suppose

xn+1 = βnxn +
(
1−βn

)
yn, n≥ 0,

limsup
n→∞

(∥
∥yn+1− yn

∥
∥−∥∥xn+1− xn

∥
∥
)≤ 0. (2.5)

Then limn→∞‖yn− xn‖ = 0.

Lemma 2.3 [12]. Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1− γn

)
an + δn, n≥ 0, (2.6)

where {γn} is a sequence in (0,1) and {δn} is a sequence in R such that
(C7)

∑∞
n=0 γn =∞;

(C8) limsupn→∞ δn/γn ≤ 0 or
∑∞

n=0 |δn| <∞.
Then limn→∞ an = 0.

Lemma 2.4 [13]. Let X be a uniformly smooth Banach space, C a closed convex subset of X .
T : C→ C a nonexpansive mapping with F(T) �= ∅, and f ∈ΠC. Then {xt} defined by

xt = t f
(
xt
)

+ (1− t)Txt (2.7)

converges strongly to a point in F(T).

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Banach space X which
has a uniformly Gâteaux differentiable norm. Let T ∈ ΓC and f ∈ ΠC. Assume that {xt}
converges strongly to a fixed point z of T as t→ 0, where xt is the unique element of C which
satisfies xt = t f (xt) + (1− t)Txt. Let {αn} and {βn} be two real sequences in (0,1) which
satisfy the conditions (C1), (C2), and (C6).

For arbitrary x0 ∈ C, define iteratively the sequence {xn} as in (1.5). Then the sequence
{xn} converges strongly to a fixed point of T .

Proof. First, we observe that {xn} is bounded.
Indeed, if we take a fixed point p of T , note that

∥
∥xn+1− p

∥
∥≤ βn

∥
∥xn− p

∥
∥+

(
1−βn

)∥
∥yn− p

∥
∥

≤ [βn +
(
1−βn

)(
1−αn

)]∥
∥xn− p

∥
∥+

(
1−βn

)
αn
∥
∥ f
(
xn
)− f (p)

∥
∥

+
(
1−βn

)
αn
∥
∥ f (p)− p

∥
∥

≤ [1− (1−α)αn + (1−α)αnβn
]∥
∥xn− p

∥
∥+

(
1−βn

)
αn
∥
∥ f (p)− p

∥
∥

≤max
{
∥
∥xn− p

∥
∥,

∥
∥ f (p)− p

∥
∥

1−α

}

.

(3.1)
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Now, an induction yields

∥
∥xn− p

∥
∥≤max

{
∥
∥x0− p

∥
∥,

∥
∥ f (p)− p

∥
∥

1−α

}

. (3.2)

Hence, {xn} is bounded, so are {Txn}, {yn}, and { f (xn)}.
Observe that

yn+1− yn = αn+1 f
(
xn+1

)
+
(
1−αn+1

)
Txn+1−αn f

(
xn
)− (1−αn

)
Txn

= (αn+1−αn
)
f
(
xn+1

)
+αn

(
f
(
xn+1

)− f
(
xn
))

+
(
1−αn+1

)(
Txn+1−Txn

)
+
(
αn−αn+1

)
Txn.

(3.3)

It follows from (3.3) that

∥
∥yn+1− yn

∥
∥−∥∥xn+1− xn

∥
∥≤ ∣∣αn+1−αn

∣
∣
(∥
∥ f
(
xn+1

)∥
∥+

∥
∥Txn

∥
∥
)

+αn
∥
∥ f
(
xn+1

)− f
(
xn
)∥
∥.

(3.4)

Since { f (xn)}, {Txn} are bounded, we obtain that

limsup
n→∞

(∥
∥yn+1− yn

∥
∥−∥∥xn+1− xn

∥
∥
)≤ 0. (3.5)

Hence, by Lemma 2.2, we have

lim
n→∞

∥
∥yn− xn

∥
∥= 0. (3.6)

Observe also that

yn− xn = αn
(
f
(
xn
)− xn

)
+
(
1−αn

)(
Txn− xn

)
. (3.7)

It follows from (C1), (3.6), and (3.7) that

lim
n→∞

∥
∥xn−Txn

∥
∥= 0. (3.8)

We next show that

limsup
n→∞

〈
f (z)− z, j

(
xn− z

)〉≤ 0. (3.9)

Let xt be the unique fixed point of the contraction mapping zt given by

ztx = t f (x) + (1− t)Tx. (3.10)

Then

xt − xn = t
(
f
(
xt
)− xn

)
+ (1− t)

(
Txt − xn

)
. (3.11)
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We apply Lemma 2.1 to get

∥
∥xt − xn

∥
∥2 ≤ (1− t)2

∥
∥Txt − xn

∥
∥2

+ 2t
〈
f
(
xt
)− xn, j

(
xt − xn

)〉

≤ (1− t)2(∥∥Txt −Txn
∥
∥+

∥
∥Txn− xn

∥
∥
)2

+ 2t
〈
f
(
xt
)− xt, j

(
xt − xn

)〉
+ 2t

∥
∥xt − xn

∥
∥2

≤ (1− t)2
∥
∥xt − xn

∥
∥2

+ an(t) + 2t
∥
∥xt − xn

∥
∥2

+ 2t
〈
f
(
xt
)− xt, j

(
xt − xn

)〉
,

(3.12)

where

an(t)= ∥∥Txn− xn
∥
∥
(
2
∥
∥xt − xn

∥
∥+

∥
∥Txn− xn

∥
∥
)−→ 0 as n−→∞. (3.13)

The last inequality (3.12) implies

〈
xt − f

(
xt
)
, j
(
xt − xn

)〉≤ t

2

∥
∥xt − xn

∥
∥2

+
1
2t
an(t). (3.14)

It follows that

limsup
n→∞

〈
xt − f

(
xt
)
, j
(
xt − xn

)〉≤ t

2
M2

1 , (3.15)

where M1 > 0 is a constant such that M1 ≥ ‖xt − xn‖ for all t ∈ (0,1) and n≥ 1.
Letting t→ 0 in (3.15) and noting (3.13) yields

limsup
t→0

limsup
n→∞

〈
xt − f

(
xt
)
, j
(
xt − xn

)〉≤ 0. (3.16)

Moreover, we have that

〈
z− f (z), j

(
z− xn

)〉

= 〈z− f (z), j
(
z− xn

)〉− 〈z− f (z), j
(
xt − xn

)〉

+
〈
z− f (z), j

(
xt − xn

)〉− 〈xt − f (z), j
(
xt − xn

)〉

+
〈
xt − f (z), j

(
xt − xn

)〉− 〈xt − f
(
xt
)
, j
(
xt − xn

)〉

+
〈
xt − f

(
xt
)
, j
(
xt − xn

)〉

= 〈z− f (z), j
(
z− xn

)− j
(
xt − xn

)〉

+
〈
z− xt, j

(
xt − xn

)〉
+
〈
f
(
xt
)− f (z), j

(
xt − xn

)〉

+
〈
xt − f

(
xt
)
, j
(
xt − xn

)〉
.

(3.17)
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Then, we obtain

limsup
n→∞

〈
z− f (z), j

(
z− xn

)〉

≤ sup
n∈N

〈
z− f (z), j

(
z− xn

)− j
(
xt − xn

)〉
+
∥
∥z− xt

∥
∥ limsup

n→∞

∥
∥xt − xn

∥
∥

+
∥
∥ f (xt)− f (z)

∥
∥ limsup

n→∞

∥
∥xt − xn

∥
∥+ limsup

n→∞

〈
xt − f

(
xt
)
, j
(
xt − xn

)〉

≤ sup
n∈N

〈
z− f (z), j

(
z− xn

)− j
(
xt − xn

)〉

+ (1 +α)
∥
∥z− xt

∥
∥ limsup

n→∞

∥
∥xt − xn

∥
∥+ limsup

n→∞

〈
xt − f

(
xt
)
, j
(
xt − xn

)〉
.

(3.18)

By hypothesis that xt → z ∈ F(T) as t→ 0 (see Lemma 2.4) and that j is norm-to-weak∗

uniformly continuous on bounded subset of C, we obtain

lim
t→0

sup
n∈N

〈z− f (z), j(z− xn)− j(xt − xn)〉 = 0. (3.19)

Therefore, we have

limsup
n→∞

〈
z− f (z), j

(
z− xn

)〉= limsup
t→0

limsup
n→∞

〈
z− f (z), j

(
z− xn

)〉

≤ limsup
t→0

limsup
n→∞

〈
xt − f

(
xt
)
, j
(
xt − xn

)〉

≤ 0.

(3.20)

Finally, we show that xn→ z as n→∞.
Write

xn+1− z = βn
(
xn− z

)
+
(
1−βn

)(
yn− z

)

= βn
(
xn− z

)
+
(
1−βn

)(
1−αn

)(
Txn− z

)
+
(
1−βn

)
αn
(
f
(
xn
)− z

)
,

(3.21)

and apply Lemma 2.1 to get

∥
∥xn+1− z

∥
∥2 ≤ ∥∥βn

(
xn− z

)
+
(
1−βn

)(
1−αn

)(
Txn− z

)∥
∥2

+ 2
(
1−βn

)
αn
〈
f
(
xn
)− z, j

(
xn+1− z

)〉

≤ [βn
∥
∥xn− z

∥
∥+

(
1−βn

)(
1−αn

)∥
∥xn− z

∥
∥
]2

+ 2
(
1−βn

)
αn
〈
f
(
xn
)− f (z), j

(
xn+1− z

)〉

+ 2
(
1−βn

)
αn
〈
f (z)− z, j

(
xn+1− z

)〉

≤ (1−αn +αnβn
)2∥∥xn− z

∥
∥2

+α
(
1−βn

)
αn
(∥
∥xn− z

∥
∥2

+
∥
∥xn+1− z

∥
∥2
)

+ 2
(
1−βn

)
αn
〈
f (z)− z, j

(
xn+1− z

)〉
.

(3.22)
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It then follows that

∥
∥xn+1− z

∥
∥2 ≤ 1− (2−α)

(
1−βn

)
αn +

(
1−βn

)2
α2
n

1−α(1−βn)αn

∥
∥xn− z

∥
∥2

+
2
(
1−βn

)
αn

1−α
(
1−βn

)
αn

〈
f (z)− z, j

(
xn+1− z

)〉

=
(

1− 2(1−α)
(
1−βn

)
αn

1−α
(
1−βn

)
αn

)
∥
∥xn− z

∥
∥2

+
2
(
1−βn

)
αn

1−α
(
1−βn

)
αn

〈
f (z)− z, j

(
xn+1− z

)〉

+

(
1−βn

)2
α2
n

1−α
(
1−βn

)
αn

∥
∥xn− z

∥
∥2

,

(3.23)

that is,

∥
∥xn+1− z

∥
∥2 = (1− γn

)∥
∥xn− z

∥
∥2

+ γn

[
1

1−α

〈
f (z)− z, j

(
xn+1− z

)〉
+

(
1−βn

)
αn

2(1−α)

∥
∥xn− z

∥
∥2
]

≤ (1− γn
)∥
∥xn− z

∥
∥2

+ γn

[
1

1−α

〈
f (z)− z, j

(
xn+1− z

)〉
+

(
1−βn

)
αn

2(1−α)
M2

]

= (1− γn
)∥
∥xn− z

∥
∥2

+ δn,
(3.24)

where γn = 2(1−α)
(
1−βn

)
αn/(1− α(1− βn)αn), δn = γn[(1/(1− α))〈 f (z)− z, j(xn+1 −

z)〉+ ((1−βn)αn/2(1−α))M2] and M2 > 0 is a constant such that ‖xn− z‖2 ≤M2, n≥ 1.
It is easily seen that γn→ 0 as n→∞,

∑∞
n=0 γn =∞, and

limsup
n→∞

δn/γn = limsup
n→∞

[
1

1−α

〈
f (z)− z, j

(
xn+1− z

)〉
+

(
1−βn

)
αn

2(1−α)
M2

]

≤ 0. (3.25)

Finally, apply Lemma 2.3 to (3.24) to conclude that xn → z as n→∞. This completes
the proof. �

Corollary 3.2. Let C be a nonempty closed convex subset of a real Banach space X which
has a uniformly Gâteaux differentiable norm. Let T∈ΓC. Assume that {xt} converges strong-
ly to a fixed point z of T as t→ 0, where xt is the unique element of C which satisfies xt =
tu+ (1− t)Txt for arbitrary u∈ C. Let {αn} and {βn} be two real sequences in (0,1) which
satisfy the conditions (C1), (C2), and (C6).
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For arbitrary x0 ∈ C, let the sequence {xn} be defined iteratively by

yn = αnu+
(
1−αn

)
Txn, n≥ 0,

xn+1 = βnxn +
(
1−βn

)
yn, n≥ 0.

(3.26)

Then {xn} converges strongly to a fixed point of T .

Remark 3.3. We note that every uniformly smooth Banach space has a uniformly Gâteaux
differentiable norm and is such that every nonempty closed convex and bounded subset
of X has the fixed point property for nonexpansive mappings. Our Corollary 3.2 extend
Theorems 1.1 and 1.2 to the more general real Banach spaces with uniformly Gâteaux
differentiable norm and at the same time dispense with conditions (C4) and (C5), respec-
tively.

Theorem 3.4. Let C be a nonempty closed convex subset of a real uniformly smooth Ba-
nach space X . Let T ∈ ΓC and f ∈ ΠC. Let {αn} and {βn} be two real sequences in (0,1)
which satisfy the conditions (C1), (C2), and (C6). For arbitrary x0 ∈ C, define iteratively the
sequence {xn} as in (1.5). Then the sequence {xn} converges strongly to a fixed point of T .
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