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We obtain the asymptotic distribution of the nonprincipal eigenvalues associated with the
singular problem x

′′
+ λq(t)x = 0 on an infinite interval [a,+∞). Similar to the regular

eigenvalue problem on compact intervals, we can prove a Weyl-type expansion of the
eigenvalue counting function, and we derive the asymptotic behavior of the eigenvalues.
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1. Introduction

In this work we study the second-order linear ordinary differential equation

x′′ + λq(t)x = 0, t ≥ a, (1.1)

with the boundary conditions

x(a,λ)= 0, lim
t→∞

[
x(t,λ)− t

]= 0, lim
t→∞ t

[
x′(t,λ)− 1

]= 0, (1.2)

where λ is a real parameter and q(t) is a positive continuous function on [a,∞) satisfying

∫∞

a
t2q(t)dt <∞. (1.3)

A nonoscillatory solution x0(t,λ) of (1.1) satisfying the boundary conditions (1.2) is
called a nonprincipal eigenfunction if

∫∞

a

dt
(
x1(t,λ)

)2 <∞, (1.4)

and the corresponding value of λ is called a nonprincipal eigenvalue.
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2 Distribution of eigenvalues

Concerning the existence and uniqueness of nonprincipal eigenvalues, the main result
is due to Elbert et al. [2]. There exists a sequence of positive constants {λk}k, 0≤ λ0 < λ1 <
··· < λk < ··· ↗∞ such that, for each λ= λk, (1.1) possesses a solution xk(t,λk) satisfying
the boundary condition (1.2) and having exactly k zeros in (a,∞), k = 0,1,2, . . . , imposing
the integrability condition (1.3) on q(t).

We are interested in the distribution and asymptotic behavior of eigenvalues {λk}k. To
this end, we study the spectral counting function

N(λ)= #
{
k : λk ≤ λ

}
. (1.5)

It is well known that the eigenvalue problem in a closed interval [a,b] has the asymp-
totic distribution (see [1]):

N(λ)∼ λ1/2

π

∫ b

a
q1/2(t)dt (1.6)

as λ→∞, generalizing the Weyl formula. Here, f ∼ g means that f /g → 1.
Our main result is the following theorem.

Theorem 1.1. Let {λk} be the sequence of nonprincipal eigenvalues of problem (1.1)-(1.2),
and let q(t) be a positive, continuous, and nonincreasing function satisfying (1.3). Then, the
asymptotic expansion of N(λ) is given by

N(λ)= λ1/2

π

∫∞

a
q1/2(t)dt+ o

(
λ1/2) (1.7)

as λ→∞. Also, the kth-eigenvalue has the following asymptotic behavior:

λk−1 =
(

πk
∫∞
a q1/2(t)dt

)2

+ o
(
k2) (1.8)

as k→∞.

The paper is organized as follows. In Section 2 we prove some auxiliary results, and
the proof of Theorem 1.1 is given in Section 3.

2. Sturm-Liouville bracketing of eigenvalues

Let us observe that problem (1.1)-(1.2) is not a variational one, since x′(t) ∼ 1 as t →
+∞ and x′(t) /∈ L2(0,+∞). Hence, we need the following generalization of the Dirichlet-
Neumann bracketing of Courant (see [1]) in order to prove Theorem 1.1.

Theorem 2.1. Let N(λ,I) be the spectral counting function on I = (a,b) of the problem

−x′′ = λq(t)x, x(a)= 0= x(b). (2.1)

Let c ∈ (a,b) . Then,

N(λ,I)∼N
(
λ,I1

)
+N

(
λ,I2

)
(2.2)

as λ→∞, where I1 = (a,c) and I2 = (c,b).
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Remark 2.2. For simplicity, we deal only with the Dirichlet boundary condition on a
bounded interval. With minor modifications of the proof, the result is valid for different
boundary conditions, including the case b = +∞ and the boundary condition (1.2), since
the proof is based on the Sturm-Liouville oscillation theory.

Let us sketch the proof of the Dirichlet Neumann bracketing for a second-order dif-
ferential operator L with variational structure in an interval I . The eigenvalues of L are
obtained minimizing a quadratic functional in a convenient subspace H ⊂ H1(I). We
have

H1
0

(
I1
)⊕H1

0

(
I2
)⊂H1

0 (I)⊂H ⊂H1(I)⊂H1(I1
)⊕H1(I2

)
(2.3)

and we obtain the Dirichlet eigenvalues of L in I1 and I2 as an upper bound of the eigen-
values of L in I , and the Neumann eigenvalues of I1 and I2 as a lower bound.

In problem (1.1)-(1.2), the solutions and eigenvalues are obtained by a fixed point ar-
gument, instead of a minimization procedure, and we need a different argument to relate
the eigenvalue of two intervals and those of the union of them. Since the eigenfunction xk
has exactly k zeros in (a,b), it is possible to obtain the asymptotic distribution of eigen-
values from the asymptotic number of zeros of solutions, an idea which goes back at least
to Hartman (see [3]). For the sake of self-completeness, we prove Theorem 2.1 here.

Proof of Theorem 2.1. Let us consider the following eigenvalue problems in I1 and I2, with
the original boundary conditions in a and b, and a Neumann boundary condition at c:

−u′′ = μq(t)u, t ∈ (a,c),

u(a)= 0, u′(c)= 0,
(2.4)

−v′′ = νq(t)v, t ∈ (c,b),

v′(c)= 0, v(b)= 0.
(2.5)

For each problem there exists a sequence of simple eigenvalues {μk}k, {νk}k tending
to infinity, and the kth eigenfunction uk corresponding to μk (resp., vk, νk) has exactly k
zeros.

Let λ be fixed. Let λn be the greater eigenvalue of problem (2.1) lower or equal than
λ and xn(t) the corresponding eigenfunction, which has n zeros in (a,b). Let k be the
number of zeros of xn in (a,c), and let n− k be the number of zeros in (c,b).

Let μj be the greater eigenvalue of problem (2.4) lower or equal than λ, and let uj be
the corresponding eigenfunction. We will show that j, the number of zeros of uj , satisfies

k− 1≤ j ≤ k+ 2. (2.6)

Let us suppose first that uj has k + 3 zeros. Then, the Sturmian theory gives μj > λn.
Let xμj (t) be the unique solution of (2.1) satisfying

xμj (c)= uj(c),

x′μj
(c)= u′j(c).

(2.7)
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Hence, xμj ≡ uj in (a,c), and xμj (t) has at least n− k− 1 zeros in (c,b) (let us note that
one of the original zeros of xn(t) could cross the point c to the left). Thus, the solution
xμj (t) has at least n+ 2 zeros in (a,b).

However, the eigenfunction xn+1(t) of problem (2.1) corresponding to the eigenvalue
λn+1 has n+ 1 zeros and satisfy λn+1 < μj . Hence,

λn+1 < μj ≤ λ, (2.8)

which contradicts our assumption.
On the other hand, let us suppose that uj has k − 2 zeros. Clearly, μj < λn < λ. Let

uj+1 be the eigenfunction of problem (2.4) with k− 1 zeros in (a,c), and let μj+1 be the
corresponding eigenvalue. By using the Sturm-Liouville theory,

μj+1 < λn < λ, (2.9)

because xn(t) has k zeros in (a,c), which contradicts the fact that μj is the greater eigen-
value of problem (2.4) lower or equal than λ.

Let us consider now problem (2.5). Let νh be the greater eigenvalue of problem (2.5)
lower or equal than λ, and let vh be the corresponding eigenfunction. In much the same
way, fixing the boundary condition at t = b, we can show that h, the number of zeros of
vh, satisfy

n− k− 2≤ h≤ n− k+ 1. (2.10)

Then, from inequalities (2.6) and (2.10),

N
(
λ,I1

)
+N

(
λ,I2

)− 3≤N(λ,I)≤N
(
λ,I1

)
+N

(
λ,I2

)
+ 3 (2.11)

and the proof is finished. �

3. Asymptotic of nonprincipal eigenvalues

In this section we prove Theorem 1.1. First, we need the following lemma.

Lemma 3.1. Let q(t) be a positive continuous function satisfying

∫∞

a
t2q(t)dt <∞. (3.1)

Then,
∫∞

a
q1/2(t)dt <∞. (3.2)

Proof. It follows from Holder’s inequality:

∫∞

a
q1/2(t)dt <

(∫∞

a
t2q(t)dt

)1/2(∫∞

a
t−2dt

)1/2

<∞. (3.3)
�
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We divide the proof of Theorem 1.1 in three parts. We obtain an optimal lower bound
for N(λ); then we obtain an upper bound for N(λ); and finally, we improve the upper
bound.

Proposition 3.2. Let N(λ) be the eigenvalue counting function of Theorem 1.1. The fol-
lowing inequality holds:

λ1/2

π

∫ +∞

a
q1/2(t)dt+ o

(
λ1/2)≤N(λ). (3.4)

Proof. Let ε > 0 be fixed, there exist Tε such that

1
π

∫∞

Tε

q1/2(t)dt ≤ ε

2
. (3.5)

Let us consider the Dirichlet eigenvalue problem on [a,Tε]:

−y′′(t)= μq(t)y(t), (3.6)

y(a)= 0= y
(
Tε
)
. (3.7)

It is well known that there exists a sequence of eigenvalues {μk}k≥0, with associated
eigenfunctions {yk}k≥0. Each eigenvalue is isolated and yk has exactly k zeros in the open
interval (a,Tε).

The spectral counting function ND(λ, [a,Tε]) of problem (3.6) has the following as-
ymptotic expansion:

ND
(
λ,
[
a,Tε

])= λ1/2

π

∫ Tε

a
q1/2(t)dt+ o

(
λ1/2). (3.8)

Therefore, for the same ε > 0, there exists λ(ε) such that

∣
∣
∣
∣
ND
(
λ,
[
a,Tε

])

λ1/2
− 1
π

∫ Tε

a
q1/2(t)dt

∣
∣
∣
∣≤

ε

2
(3.9)

for every λ≥ λ(ε).
By the Sturmian comparison theorem, we have the inequality λk ≤ μk, which gives the

lower bound for N(λ):

ND
(
λ,
[
a,Tε

])≤N(λ). (3.10)

Hence,

N(λ)
λ1/2

≥ ND
(
λ,
[
a,Tε

])

λ1/2
≥ 1

π

∫ Tε

a
q1/2(t)dt− ε

2
≥ 1

π

∫∞

a
q1/2(t)dt− ε (3.11)

for every λ≥ λ(ε), and the proof is finished. �

Remark 3.3. Let us note that Proposition 3.2 is valid whenever
∫∞
a q1/2(t)dt < +∞, which

is guaranteed by Lemma 3.1, without any monotonicity assumption.
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Proposition 3.4. Let N(λ) be the eigenvalue counting function of Theorem 1.1. The fol-
lowing inequality holds:

4λ1/2

π

∫ +∞

a
q1/2(t)dt+ o

(
λ1/2)≥N(λ). (3.12)

Proof. We need a lower bound for eigenvalues due to Nehari [4]. Let q(t) be a monotonic
function, and μk the kth Dirichlet eigenvalue of (1.1) in (a,b). Then,

μk

(∫ b

a
q1/2(t)dt

)2

≥ π2k2

4
. (3.13)

Let {λk}k≥0 be the nonprincipal eigenvalues of problem (1.1)-(1.2), and let tk be the
kth zero of the associated eigenfunction xk(t). Clearly, λk coincides with the kth Dirichlet
eigenvalue in (a, tk).

Hence,

λk ≥ π2k2

4
(∫ tk

a q1/2(t)dt
)2 ≥

π2k2

4
(∫∞

a q1/2(t)dt
)2 . (3.14)

We obtain

N(λ)= #
{
k : λk ≤ λ

}

≤ #

{

k :
π2k2

4
(∫∞

a q1/2(t)dt
)2 ≤ λ

}

= #

{

k : k ≤ 2λ1/2

π

∫∞

a
q1/2(t)dt

}

≤ 2λ1/2

π

∫∞

a
q1/2(t)dt+O(1),

(3.15)

and the proof is finished. �

Now we prove Theorem 1.1.

Proof of Theorem 1.1. Let be Tε such that

∫ +∞

Tε

q1/2(t)dt < ε. (3.16)

Applying Theorem 2.1 we obtain

N(λ)∼N
(
λ,
(
a,Tε

))
+N

(
λ,
(
Tε,∞

))
. (3.17)

The asymptotic behavior of N(λ, (a,Tε)) is obtained from the classical theory,

N
(
λ,
(
a,Tε

))∼ λ1/2

π

∫ Tε

a
q1/2(t)dt. (3.18)
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Hence, for λ≥ λ(ε), we have

N
(
λ,
(
a,Tε

))≤ λ1/2

π

∫ Tε

a
q1/2(t)dt+ ελ1/2 ≤ λ1/2

π

∫ +∞

a
q1/2(t)dt+ ελ1/2. (3.19)

Now, N(λ, (Tε,∞)) can be bounded by using Proposition 3.4:

N
(
λ,
(
Tε,∞

))≤ 2λ1/2

π

∫ +∞

Tε

q1/2(t)dt ≤ ε
2λ1/2

π
. (3.20)

Hence,

N(λ)≤ λ1/2

π

∫ +∞

a
q1/2(t)dt+ ελ1/2 + ε

2λ1/2

π
. (3.21)

Since ε is arbitrarily small, and by using Proposition 3.2, we have the asymptotic ex-
pansion

N(λ)∼ λ1/2

π

∫ +∞

a
q1/2(t)dt. (3.22)

Finally, from (3.22), we have

k =N
(
λk−1

)∼ λ1/2
k

π

∫∞

a
q1/2(t)dt, (3.23)

which gives the asymptotic behavior of the kth-eigenvalue,

λk =
(

πk
∫∞
a q1/2(t)dt

)2

+ o
(
k2). (3.24)

This completes the proof. �
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