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We obtain the asymptotic distribution of the nonprincipal eigenvalues associated with the
singular problem x” + Aq(t)x = 0 on an infinite interval [a,+c0). Similar to the regular
eigenvalue problem on compact intervals, we can prove a Weyl-type expansion of the
eigenvalue counting function, and we derive the asymptotic behavior of the eigenvalues.
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1. Introduction

In this work we study the second-order linear ordinary differential equation
xX"+Aq(t)x=0, t=a, (1.1)
with the boundary conditions

x(a,A) =0, }1}2 [x(t,A) —t] =0, }Lrpwt[x'(t,A) —1]=0, (1.2)

where A is a real parameter and g(t) is a positive continuous function on [a, o) satisfying

thzq(t)dt< . (1.3)

a

A nonoscillatory solution x((#,4) of (1.1) satisfying the boundary conditions (1.2) is
called a nonprincipal eigenfunction if

* dt
Ja m < 00, (14)

and the corresponding value of A is called a nonprincipal eigenvalue.
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2 Distribution of eigenvalues

Concerning the existence and uniqueness of nonprincipal eigenvalues, the main result
is due to Elbert et al. [2]. There exists a sequence of positive constants {Ax}r, 0 < Ag <A; <
-+ <Ak < -+ - 7 oosuch that, for each A = A, (1.1) possesses a solution x (#,Ax) satisfying
the boundary condition (1.2) and having exactly k zeros in (a, ), k = 0,1,2,..., imposing
the integrability condition (1.3) on g(#).

We are interested in the distribution and asymptotic behavior of eigenvalues {A} . To
this end, we study the spectral counting function

NQ) =#{k: A <A} (1.5)
It is well known that the eigenvalue problem in a closed interval [a, b] has the asymp-
totic distribution (see [1]):
A2 b
NQ) ~ 7[ "2 (0)dt (1.6)
as A — co, generalizing the Weyl formula. Here, f ~ ¢ means that f/g — 1.
Our main result is the following theorem.

TueoreM 1.1. Let {1} be the sequence of nonprincipal eigenvalues of problem (1.1)-(1.2),
and let q(t) be a positive, continuous, and nonincreasing function satisfying (1.3). Then, the
asymptotic expansion of N(A) is given by

M2 12
NQ) = 7[ g2(8)dt + 0 (AV2) (1.7)
as A — co. Also, the kth-eigenvalue has the following asymptotic behavior:
2
k
Mor1=| =7 k? 1.8
cr= (i) +o0) (19)

ask — oo,
The paper is organized as follows. In Section 2 we prove some auxiliary results, and

the proof of Theorem 1.1 is given in Section 3.

2. Sturm-Liouville bracketing of eigenvalues

Let us observe that problem (1.1)-(1.2) is not a variational one, since x'(t) ~ 1 as t —
+00 and x'(t) & L?(0,+o0). Hence, we need the following generalization of the Dirichlet-
Neumann bracketing of Courant (see [1]) in order to prove Theorem 1.1.

THEOREM 2.1. Let N(A,I) be the spectral counting function on I = (a,b) of the problem
—x" = Aq(t)x, x(a) =0 = x(b). (2.1
Let c € (a,b) . Then,
NI ~NAL)+N(LL) (2.2)

as A — oo, where I, = (a,c) and I, = (¢, b).
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Remark 2.2. For simplicity, we deal only with the Dirichlet boundary condition on a
bounded interval. With minor modifications of the proof, the result is valid for different
boundary conditions, including the case b = +o and the boundary condition (1.2), since
the proof is based on the Sturm-Liouville oscillation theory.

Let us sketch the proof of the Dirichlet Neumann bracketing for a second-order dif-
ferential operator L with variational structure in an interval I. The eigenvalues of L are
obtained minimizing a quadratic functional in a convenient subspace H C H!(I). We
have

HYM(L) @ H(I,) c HY(I) c H c H(I) c H'(I,) ® H(I,) (2.3)

and we obtain the Dirichlet eigenvalues of L in I; and I, as an upper bound of the eigen-
values of L in I, and the Neumann eigenvalues of I; and I, as a lower bound.

In problem (1.1)-(1.2), the solutions and eigenvalues are obtained by a fixed point ar-
gument, instead of a minimization procedure, and we need a different argument to relate
the eigenvalue of two intervals and those of the union of them. Since the eigenfunction xi
has exactly k zeros in (a,b), it is possible to obtain the asymptotic distribution of eigen-
values from the asymptotic number of zeros of solutions, an idea which goes back at least
to Hartman (see [3]). For the sake of self-completeness, we prove Theorem 2.1 here.

Proof of Theorem 2.1. Let us consider the following eigenvalue problems in I; and I, with
the original boundary conditions in a and b, and a Neumann boundary condition at c:

—u" =pq(t)u, te(ac),
(2.4)
u(a) =0, u'(c)=0,

v =vq(t)v, te(cb),
(2.5)
v'(c)=0, v(b)=0.

For each problem there exists a sequence of simple eigenvalues {g}r, {7k} tending
to infinity, and the kth eigenfunction uy corresponding to uy (resp., v, vx) has exactly k
Zeros.

Let A be fixed. Let A, be the greater eigenvalue of problem (2.1) lower or equal than
A and x,(t) the corresponding eigenfunction, which has # zeros in (a,b). Let k be the
number of zeros of x,, in (a,c), and let n — k be the number of zeros in (c, b).

Let p; be the greater eigenvalue of problem (2.4) lower or equal than A, and let u; be
the corresponding eigenfunction. We will show that j, the number of zeros of u;, satisfies

k-1=<j<k+2. (2.6)

Let us suppose first that u; has k + 3 zeros. Then, the Sturmian theory gives u; > A,.
Let x,,(f) be the unique solution of (2.1) satisfying

Xy, () = uj(c),
(2.7)

x;tj(c) = u;-(c).



4 Distribution of eigenvalues

Hence, x,; = u; in (a,c), and x,,(t) has at least n — k — 1 zeros in (c, b) (let us note that
one of the original zeros of x,(t) could cross the point ¢ to the left). Thus, the solution
Xy, (t) has at least n + 2 zeros in (a, b).

However, the eigenfunction x4 (t) of problem (2.1) corresponding to the eigenvalue
An+1 has n+ 1 zeros and satisfy A,+1 < u;. Hence,

/ln+1 <Hj= /1, (28)

which contradicts our assumption.

On the other hand, let us suppose that u; has k — 2 zeros. Clearly, u; <1, < A. Let
uj.1 be the eigenfunction of problem (2.4) with k — 1 zeros in (a,c), and let y;;; be the
corresponding eigenvalue. By using the Sturm-Liouville theory,

Hin <An <A, (2.9)

because x,(t) has k zeros in (a,c), which contradicts the fact that y; is the greater eigen-
value of problem (2.4) lower or equal than A.

Let us consider now problem (2.5). Let v;, be the greater eigenvalue of problem (2.5)
lower or equal than A, and let vj, be the corresponding eigenfunction. In much the same
way, fixing the boundary condition at t = b, we can show that h, the number of zeros of
vp, satisfy

n—-k—-2<h<n—-k+1. (2.10)

Then, from inequalities (2.6) and (2.10),
NMALL)+N(ALL)-3<NWMAID <NAMAL)+N(AL)+3 (2.11)
and the proof is finished. O

3. Asymptotic of nonprincipal eigenvalues
In this section we prove Theorem 1.1. First, we need the following lemma.

LemMA 3.1. Let q(¢t) be a positive continuous function satisfying

thzq(t)dt< . (3.1)

a

Then,

Jw "2 (Hdt < co. (3.2)

Proof. 1t follows from Holder’s inequality:

. - 1/2 o 172
J ql/z(t)dt<(J tzq(t)dt> (J t—Zdt) < oo, (3.3)
a a a O
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We divide the proof of Theorem 1.1 in three parts. We obtain an optimal lower bound
for N(A); then we obtain an upper bound for N(1); and finally, we improve the upper
bound.

ProrosiTioN 3.2. Let N(A) be the eigenvalue counting function of Theorem 1.1. The fol-
lowing inequality holds:

AI/Z +00
TJ g2 (t)dt+0(A?) < N(A). (3.4)

Proof. Let ¢ >0 be fixed, there exist T, such that

1 [

2l q"*(t)dt < % (3.5)

Let us consider the Dirichlet eigenvalue problem on [a, T¢]:
=" (6) = pq()y(t), (3.6)
y(a) = 0= y(Te). (3.7)

It is well known that there exists a sequence of eigenvalues {y } k=0, with associated
eigenfunctions { yx } k=o. Each eigenvalue is isolated and yx has exactly k zeros in the open
interval (a, T¢).

The spectral counting function Np(A,[a, T¢]) of problem (3.6) has the following as-
ymptotic expansion:

AI/Z Te
Np(M[a,T:]) = - g (t)dt+o(A?). (3.8)

a

Therefore, for the same ¢ > 0, there exists A(¢) such that

Noh[aTe]) 1 JTqu/z(t)dt‘ << (3.9)

1172 - P
for every A = A(e).
By the Sturmian comparison theorem, we have the inequality Ax < ux, which gives the
lower bound for N(1):

ND(A>[a> Ts]) SN(A) (310)
Hence,
N(A) _ Np(A[a,Te 1 (T 1(®
Y Mo M[/z . | arwar- S~ - (3.11)
for every A = A(¢), and the proof is finished. O

Remark 3.3. Let us note that Proposition 3.2 is valid whenever [;” g"/?(t)dt < +o0, which
is guaranteed by Lemma 3.1, without any monotonicity assumption.
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ProposiTiON 3.4. Let N(A) be the eigenvalue counting function of Theorem 1.1. The fol-
lowing inequality holds:

4/\1/2 +oo
b J g (Ddt+o(1'?) = N(}). (3.12)

Proof. We need a lower bound for eigenvalues due to Nehari [4]. Let q(¢) be a monotonic
function, and gy the kth Dirichlet eigenvalue of (1.1) in (a,b). Then,

b 2 212
yk<J ql/z(t)dt> > ”4k . (3.13)

Let {Ax}k=0 be the nonprincipal eigenvalues of problem (1.1)-(1.2), and let # be the
kth zero of the associated eigenfunction xx(t). Clearly, Ax coincides with the kth Dirichlet
eigenvalue in (a, t).

Hence,
22 252
Mz —r nk 5 > wﬂk 5 (3.14)
A(J; g2 (dt)”  4(], g (1)dt)
We obtain
N) =#{k: A <A}
272
<ol TRl
4(J, g2 (1)dt)
(3.15)
12 (o
_ #{k:k < Mﬂ j qm(t)dt}
12 (oo
< ”ﬂ J g2 (t)dt +0(1),
and the proof is finished. O
Now we prove Theorem 1.1.
Proof of Theorem 1.1. Let be T, such that
+o0
I g (D)dt < e, (3.16)
Te
Applying Theorem 2.1 we obtain
N@Q) ~N, (a,Te)) + N(A, (Te, 0)). (3.17)

The asymptotic behavior of N(A, (a, T,)) is obtained from the classical theory,

1/2 &

T,
N, (@.T,)) ~ % "2 (1)dt. (3.18)
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Hence, for A > A(¢), we have

1172 Te N2 e
N, (a,T,)) < 7[ q2(1)dt + A2 < 7J g2 (0)dt + A2, (3.19)

Now, N(A, (Te, %)) can be bounded by using Proposition 3.4:

1/2 p+oo 1/2
N, (T, ) < % L g2 (Ddt < 82); . (3.20)
Hence,
1/2 p+oo 1/2
N < %J ql/z(t)dt+sA1/2+s%. (3.21)

Since ¢ is arbitrarily small, and by using Proposition 3.2, we have the asymptotic ex-
pansion

A2 (e
NQ) ~ — q"(t)dt. (3.22)
Finally, from (3.22), we have
1/2 oo
k=NO1) ~ fj g2 (D, (3.23)

which gives the asymptotic behavior of the kth-eigenvalue,

k

2
_ 2
e = (4&“’ qm(t)dt) +o(k2). (3.24)

This completes the proof. O
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