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We used function theoretic method to solve a singular integral equation with logarithmic
kernel in two disjoint finite intervals where the unknown function satisfying the integral
equation may be bounded or unbounded at the nonzero finite endpoints of the interval
concerned. An appropriate solution of this integral equation is then applied to solve the
problem of scattering of time harmonic surface water waves by a fully submerged thin
vertical barrier with a single gap.
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1. Introduction

The following singular integral equation with logarithmic kernel arises in various scat-
tering and radiation problems of linear water wave theory involving vertical barriers:

∫
G
g(u) ln

∣∣∣∣ x+u

x−u

∣∣∣∣du= f (x), x ∈G, (1.1)

where g and f are differentiable functions and G may consist of single or disjoint multiple
intervals.

Usually in the literature, (1.1) was solved by reducing it to a Cauchy-type singular in-
tegral equation and consequently this solution was utilized to solve the corresponding
water wave problem. The solution of (1.1) obtained by reducing it to Cauchy-type singu-
lar integral equation posed difficulty in solving the corresponding scattering or radiation
problem due to the fact that the weak singularity in (1.1) was converted to strong singu-
larity of Cauchy type. This difficulty was taken care of by Chakrabarti et al. [3], Manam
[5], while solving the problem of scattering of water waves by a vertical wall with a gap.
They used function theoretic method to solve the corresponding integral equation (1.1)
with G≡ (a,b) or G≡ (0,a)∪ (b,c) directly instead of reducing it to Cauchy-type singu-
lar integral equation. In the present paper, we have used function-theoretic method to
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2 Weakly singular integral equation

solve (1.1) with G≡ (0,a)∪ (b,c) under the condition when

(i)

g(u)∼O
(∣∣(u− p)

∣∣−1/2
)

, as u−→ p, (1.2)

(ii)

g(u)∼O
(∣∣(u− p)

∣∣1/2
)

, as u−→ p, (1.3)

p being a, b or c. Utilizing the boundedness of g(u) at a, b, c given by (1.3), the problem
of scattering of water waves by a submerged vertical wall with a gap is solved completely.
This problem was solved earlier by Chakrabarti and Vijaya Bharathi [4] and Banerjea and
Mandal [2]. In the present paper, we have used a very simple method to solve the problem
completely. In Section 2, we have obtained the solution of a singular integral equation
(1.1) with G ≡ (0,a)∪ (b,c) where g(u) satisfies (1.2) and (1.3). In Section 3, we have
formulated the problem of scattering of water waves by a vertical wall submerged in water
and discussed the genesis of (1.1). Then we used the boundedness property of g(u) given
by (1.3) to obtain solution of the scattering problem in a simple manner. Chakrabarti and
Vijaya Bharathi [4] used complex variable technique while Banerjea and Mandal [2] used
two types of singular integral equation method to solve the problem. The singular integral
equations arising in [2] consist of Cauchy kernel and a combination of logarithmic and
Cauchy kernel. In both methods in [2], the weakly singular kernel was converted to strong
singular kernel. In the present paper, we have reduced the corresponding boundary value
problem to (1.1) with weakly singular kernel when G≡ (0,a)∪ (b,c).

2. Method of solution of a singular integral equation with logarithmic kernel

Let us consider the equation

1
π

∫
G
g(t) ln

∣∣∣∣ y + t

y− t

∣∣∣∣dt = f (y), y ∈G, G≡ (0,a)∪ (b,c), (2.1)

where f (y) is a known function and g(u) is an unknown function which satisfies (1.2).
Here f (u) and g(u) are both differentiable functions.

For solution of (2.1) under the condition (1.2), let

F(z)= d

dz

∫
G
g(u) ln

(
u+ z

u− z

)
du, (2.2)

where F(z) is sectionally analytic function in complex z-plane cut along (−c,−b) ∪
(−a,0)∪ (0,a)∪ (b,c) and F(z)∼O(1/z2) as |z| →∞.

We denote

F±(x)= lim
y→0±

F(z). (2.3)
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Using Plemelj’s formula we have

F+(x) +F−(x)= κ(x),

F+(x)−F−(x)= λ(x),
(2.4)

κ(x)=
⎧⎨
⎩

2π f ′(x), x ∈G,

2π f ′(−x), x ∈G′,
(2.5)

λ(x)=
⎧⎨
⎩

2πig′(x), x ∈G,

−2πig′(−x), x ∈G′,
(2.6)

and G≡ (0,a)∪ (b,c) and G′ ≡ (−c,−b)∪ (−a,0).
The first equation of (2.4) defines a Riemann-Hilbert problem for F(z), the solution

of which is given by

F(z)= F0(z)

[
Dz2 +Bz+C+

1
2πi

∫
G∪G′

κ(t)
F+

0 (t)
dt

t− z

]
, (2.7)

where D, B, C are unknown constants and

F0(z)= {(
z2− a2)(z2− b2)(z2− c2)}−1/2

. (2.8)

Using Plemelj’s formula in (2.7) and utilizing (2.4), (2.5), and (2.6), we get the expres-
sion for the function g as

g(x)= 1
π

1
R(x)

[
Dx2 +Bx+C+ 2xP(x)

]
, in 0 < x < a, (2.9)

g(−x)= 1
π

1
R(x)

[−Dx2−Bx−C− 2xP(x)
]
, in − a < x < 0, (2.10)

and also

g(x)= 1
π

1
−R(x)

[
Dx2 +Bx+C+ 2xP(x)

]
, in b < x < c, (2.11)

g(−x)= 1
π

1
−R(x)

[−Dx2−Bx−C− 2xP(x)
]
, in − c < x <−b. (2.12)

Comparing (2.9) with (2.10) and (2.11) with (2.12), we get

D = C = 0. (2.13)

Thus,

g(u)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2u
R(u)

[
B0 +P(u)

]
, 0 < u < a,

−2u
R(u)

[
B0 +P(u)

]
, b < u < c,

(2.14)
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where B0 = B/2 is a constant to be determined

P(u)=
∫
G

f ′(t)S(t)
u2− t2

dt, (2.15)

R(x)=
∣∣∣{(

a2− x2)(b2− x2)(c2− x2)}1/2
∣∣∣, (2.16)

S(u)=
⎧⎨
⎩
R(x), 0 < x < a,

−R(x), b < x < c.
(2.17)

In order to determine B0, we proceed as follows.
By direct integration, we get from (2.14),

∫
G
ug(u)du= B0

1
π

∫
G

2u2

S(u)
du. (2.18)

Multiplying both sides of (2.1) with 1/S(x) and x/S(x) and integrating over G, we get
the following two relations:

∫
G

f (x)
S(x)

dx = I1(a)
π

∫ a

0
g(u)du+

I1(c)
π

∫ c

b
g(u)du,

∫
G

x f (x)
S(x)

dx = I2(a)
π

∫ a

0
g(u)du+

I2(c)
π

∫ c

b
g(u)du

(2.19)

with

I1(u)=
∫
G

1
S(x)

ln
∣∣∣∣ u+ x

u− x

∣∣∣∣dx,

I2(u)=
∫
G

x

S(x)
ln

∣∣∣∣ u+ x

u− x

∣∣∣∣dx.
(2.20)

Multiplying (2.1) by T(x), where

T(x)=
{

x2
(
x2− b2

)
(
x2− a2

)(
c2− x2

)
}1/2

(2.21)

and integrating over G, and using the following result:

I3(u)=
∫
G
T(x) ln

∣∣∣∣ u+ x

u− x

∣∣∣∣dx

=
⎧⎨
⎩
π(u− a) + I3(a), 0 < u < a,

π(u− c) + I3(c), b < u < c,

(2.22)

we get

∫
G
ug(u)du=

[
aπ− I3(a)

]
π

∫ a

0
g(u)du+

[
cπ− I3(c)

]
π

∫ c

b
g(u)du

+
∫
G
f (x)T(x)dx.

(2.23)
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Now, from (2.19), we get

∫ a

0
g(u)du= π

	
[
I2(c)

∫
G

f (x)
S(x)

dx− I1(c)
∫
G

x f (x)
S(x)

dx
]

, (2.24)

∫ c

b
g(u)du= π

	
[
I1(a)

∫
G

x f (x)
S(x)

dx− I2(c)
∫
G

f (x)
S(x)

dx
]

, (2.25)

where 	= [
I1(a)I2(c)− I1(c)I2(a)

]
. (2.26)

Hence by (2.23), using (2.24) and (2.25), we get

∫
G
ug(u)du= K1

	
∫
G

f (x)
S(x)

dx+
K2

	
∫
G

x f (x)
S(x)

dx+
∫
G
f (x)T(x)dx, (2.27)

where

K1 =
[
π
{
aI2(c)− cI2(a)

}
+

{
I2(a)I3(c)− I2(c)I3(a)

}]
,

K2 =
[
π
{
cI1(a)− aI1(c)

}
+

{
I1(c)I3(a)− I1(a)I3(c)

}]
.

(2.28)

And finally, using (2.18) and (2.27), the unknown constant B0 is determined.
Thus the solution of (1.1) with g(u) satisfying (1.2) is given by (cf. (2.14)),

g(u)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
π

2u
R(u)

[
B0 +P(u)

]
, 0 < u < a,

− 1
π

2u
R(u)

[
B0 +P(u)

]
, b < u < c,

(2.29)

where B0 is a known constant.
Making a→ 0 in (2.29), the results in [3] can be recovered.
Next, we find the solution of (2.1) with g(u) satisfying (1.3). We rewrite P(x) in (2.15)

as follows:

P(x)= (
a2− x2)(b2− x2)(c2− x2)∫ a

0

f ′(t)(
x2− t2

)
R(t)

dt

− (
x2− a2)(x2− b2)(c2− x2)∫ c

b

f ′(t)(
x2− t2

)
R(t)

dt

+
(
a2− x2)(b2− x2)

[∫ a

0

f ′(t)
R(t)

dt−
∫ c

b

f ′(t)
R(t)

dt

]

+
(
a2− x2)

⎡
⎣
∫ a

0

√√√√
(
c2− t2

)
(
a2− t2

)(
b2− t2

) f ′(t)dt−
∫ c

b

√√√√
(
c2− t2

)
(
t2− a2

)(
t2− b2

) f ′(t)dt
⎤
⎦

+

⎡
⎣
∫ a

0

√√√√
(
c2− t2

)(
b2− t2

)
(
a2− t2

) f ′(t)dt−
∫ c

b

√√√√
(
c2− t2

)(
t2− b2

)
(
t2− a2

) f ′(t)dt

⎤
⎦ .

(2.30)
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Substituting (2.30) into (2.29), we observe that for g(u) to satisfy (1.3), we must have
the following relations:

⎡
⎣
∫ a

0

√(
c2− t2

)(
b2− t2

)
f ′(t){(

a2− t2
)}1/2 dt+

∫ c

b

√(
t2− b2

)(
c2− t2

)
f ′(t){(

t2− a2
)}1/2 dt

⎤
⎦ +B0 = 0,

⎡
⎣
∫ a

0

√(
c2− t2

)
f ′(t){(

a2− t2
)(
b2− t2

)}1/2 dt−
∫ c

b

√(
c2− t2

)
f ′(t){(

t2− a2
)(
t2− b2

)}1/2 dt

⎤
⎦= 0,

[∫ a

0

f ′(t)
R(t)

dt−
∫ c

b

f ′(t)
R(t)

dt

]
= 0.

(2.31)

These are three sovability conditions which f (t) must satisfy in order that the solution
of (1.1) satisfying (1.3) exists.

Here the solution of (1.1) is given by

g(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2x
π
R(x)

[∫ a

0

f ′(t)(
x2− t2

)
R(t)

dt−
∫ c

b

f ′(t)(
x2− t2

)
R(t)

dt
]

, 0 < x < a,

−2x
π

R(x)
[∫ a

0

f ′(t)(
x2− t2

)
R(t)

dt−
∫ c

b

f ′(t)(
x2− t2

)
R(t)

dt
]

, b < x < c,

(2.32)

where R(t) is given by (2.16).
In the next section, we will consider the problem of scattering of surface water waves

by a submerged vertical barrier with a gap and reduce the corresponding boundary value
problem to the integral equation (2.1).

3. Genesis of the integral equation mathematical formulation of
the scattering problem

We consider the irrotational motion of an incompressible inviscid fluid under the ac-
tion of gravity and use a rectangular Cartesian coordinate system in which the y-axis
is taken vertically downwards, so that the fluid region occupies the region y > 0; x ∈ R,
and the vertical barrier occupies the region x = 0; y ∈ B, where B ≡ [a,b]∪ [c,∞). As-
suming the harmonic time dependence e−iσt(σ > 0) in the velocity potential Φ(x, y, t)=
R{φ(x, y)eiσt},the problem under consideration is that of solving the following boundary
value problem for φ:

∂2φ

∂x2
+
∂2φ

∂y2
= 0, y > 0, x ∈R, (3.1)

with

∂φ

∂y
+Kφ = 0, on y = 0, (3.2)
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where K = σ2/g, g being the gravitational acceleration,

∂φ

∂x
= 0, on x = 0±, y ∈ B, (3.3)

φ(0+, y)= φ(0−, y), y ∈G(gap),
[
G≡ (0,a)∪ (b,c)

]
, (3.4)

r1/2∇φ is bounded as r −→ 0, (3.5)

“r” being the distance from sharp edges of the barrier,

∇φ−→ 0, as y −→∞,

φ ∼
⎧⎨
⎩

(1−R)e−Ky+iKx, x −→∞,

e−Ky+iKx +Re−Ky−iKx, x −→−∞,

(3.6)

where R is the reflection coefficient.

3.1. Reduction of scattering problem to singular integral equation with logarithmic
kernel. We first express φ(x, y) by using Havelock’s expansion satisfying (3.1) and the
conditions (3.2) and (3.6),

φ ∼

⎧⎪⎪⎨
⎪⎪⎩

(1−R)e−Ky+iKx +
∫∞

0
A(ξ)L(ξ, y)e−ξxdξ, x > 0,

e−Ky+iKx +Re−Ky−iKx−
∫∞

0
A(ξ)L(ξ, y)e−ξxdξ, x < 0,

(3.7)

where L(ξ, y)= ξ cosξ y−K sinξ y and A(ξ) is unknown.
For satisfying (3.3), (3.4), and (3.5), the unknown function A(ξ) must satisfy the set

of dual integral equation

∫∞
0
A(ξ)L(ξ, y)dξ = Re−Ky , y ∈G,

∫∞
0
ξA(ξ)L(ξ, y)dξ = iK(1−R)e−Ky , y ∈ B,

(3.8)

which can be alternatively written as

∫∞
0
A(ξ)sinξ y dξ =

⎧⎪⎪⎨
⎪⎪⎩
D1eK y − R

2K
e−Ky , 0 < y < a,

D2eK y − R

2K
e−Ky , b < y < c,

(3.9)

∫∞
0
ξA(ξ)sinξ y dξ =

⎧⎪⎪⎨
⎪⎪⎩
E1eK y − i(1−R)

2
e−Ky , a < y < b,

E2eK y − i(1−R)
2

e−Ky , c < y <∞,
(3.10)

where D1, D2, E1, E2 are arbitrary constants.
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Now, for accommodating the origin and also the point at infinity, we have

D1 = R

2K
, E2 = 0. (3.11)

Let

∫∞
0
ξA(ξ)sinξ y dξ = g(y), y ∈G, (3.12)

then using (3.11) and (3.12) in (3.10) and by Fourier sininversion,

π

2
ξA(ξ)=

∫
G
g(y)sinξt dt− i(1−R)

2

∫
B
e−Kt sinξt dt

+E1

∫ b

a
eKt sinξt dt.

(3.13)

Substituting A(ξ) from (3.13) into (3.9) and using the result
∫∞

0 (sinξ y sinξt/ξ)dξ =
(1/2)ln|(y + t)/(y− t)|, we have

1
π

∫
G
g(t) ln

∣∣∣∣ y + t

y− t

∣∣∣∣dt =
⎧⎪⎪⎨
⎪⎪⎩

R

2K

(
eK y − e−Ky

)
+P1(y), 0 < y < a,

D2eK y − R

2K
e−Ky +P1(y), b < y < c,

(3.14)

where

P1(y)= 1
π

[
− i(1−R)

2

∫
B
e−Ku ln

∣∣∣∣ y +u

y−u

∣∣∣∣du+E1

∫ b

a
eKu ln

∣∣∣∣ y +u

y−u

∣∣∣∣du
]
. (3.15)

Now, (3.14) is identical with (1.1) with f (y) as

f (y)=

⎧⎪⎪⎨
⎪⎪⎩

R

2K

(
eK y − e−Ky

)
+P1(y), 0 < y < a,

D2eK y − R

2K
e−Ky +P1(y), b < y < c,

(3.16)

where P1(y) is given by (3.15) and R, D2, E1 are unknown constants to be determined,
and G≡ (0,a)∪ (b,c).

Now it is important to know the behaviour of g(u) as u→ a,b,c. For this, let

φx(0, y)=
⎧⎨
⎩
ω(y), y ∈G,

0, y ∈ B (by (3.3)).
(3.17)

Using (3.7), we get

(
d

dy
−K

)∫∞
0
ξA(ξ)sinξ y dξ = (1−R)iKe−Ky −ω(y), y ∈G. (3.18)
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Comparing it with (3.12), we get

ω(y)=−dg

dy
+Kg(y) + iK(1−R)e−Ky. (3.19)

Noting that (3.5) holds, we find that

g(y)∼O
(∣∣(y− t)

∣∣)1/2
, as y −→ t, t = a,b,c. (3.20)

Thus g satisfies the integral equation (2.1) with the condition (1.3), the solution of
which is given by (2.32) together with the solvability conditions (2.31).

3.2. Determination of R, D2, E1. Knowing that g(u) satisfies (1.3), we use f (y) from
(3.16) into (2.31) to obtain the following equations for unknown constants R, D2, E1 as

a11R+ a12D2 + a13E1 = b1,

a21R+ a22D2 + a23E1 = b2,

a31R+ a32D2 + a33E1 = b3,

(3.21)

where ai js and bjs are given by

a11 = 1
2

(
A4

5 +
K1

Δ
.A1 +

K2

Δ
.A1

1 +H1

)

+
i

2π

(
B4

1

(
F1

)
+
K1

Δ
.B1

(
F2

)
+
K2

Δ
.B1

1

(
F2

)
+ δ1

(
F2

)
+ δ3

(
F2

))
,

a12 =−
(
α4

3(K , y) +
K1

Δ
.α3(K , y) +

K2

Δ
.α1

3(K , y)−β3(K)
)

,

a13 = γ4
1

(
F12, y

)− γ4
3

(
F14, y

)
+
K1

Δ
.B1

(
F22

)
+
K2

Δ
.B1

1

(
F22

)
+ δ1

(
F22

)
+ δ3

(
F22

)
,

a21 = 1
2

(
A2

5 + i.A2
2

)
, a22 =−α2

3(K , y), a23 = α2
2(K , y),

a31 = 1
2

(
A5 + i.A2

)
, a32 =−α3(K , y), a33 = α2(K , y),

b1 = i

2π

(
B4

1

(
F1

)
+
K1

Δ
.B1

(
F2

)
+
K2

Δ
.B1

1

(
F2

)
+ δ1

(
F2

)
+ δ3

(
F2

))
,

b2 = 1
2
A2

2, b3 = 1
2
A2,

(3.22)
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where

An
1 = αn1(K , y)−αn1(−K , y) +αn3(−K , y), A1 = α1(K , y)−α1(−K , y) +α3(−K , y),

An
2 = αn2(−K , y)−αn4(−K , y), A2 = α2(−K , y)−α4(−K , y),

An
5 = αn5(−K , y)−αn3(−K , y), A5 = α5(−K , y)−α3(−K , y),

Bn
1 (F)= γn1 (F, y)− γn3 (F, y), B1(F)= γ1(F, y)− γ3(F, y),

H1 = β1(K , y)−β1(−K , y)−β3(−K , y),

F1 = F12 +F14, F12 =
∫ b

a

2ue−Ku

u2− y2
du, F14 =

∫∞
c

2ue−Ku

u2− y2
du,

F2 = F22 +F24, F22 =
∫ b

a
e−Ku ln

∣∣∣∣ y +u

y−u

∣∣∣∣du, F14 =
∫∞
c
e−Ku ln

∣∣∣∣ y +u

y−u

∣∣∣∣du,

(3.23)

αni (K , y)=
∫
yneK y

R(y)
dy, αi(K , y)=

∫
eK y

R(y)
dy,

γni (F, y)=
∫

yn

R(y)
.F dy, γi(F, y)=

∫
1

R(y)
.F dy,

βi(K , y)=
∫
T∗(y).eK ydy, δi(F, y)=

∫
T∗(y).F dy,

(3.24)

where, for integrals in (3.24), the range of integration is determined by the value of i:
for i= 1, integration range is from 0 to a, for i= 2, integration range is from a to b, for
i= 3, integration range is from b to c, for i= 4, integration range is from c to∞, for i= 5,
integration range is from −a to a.

Solving (3.21), the three unknowns can be determined and g(u) can be known from
(3.21). Hence from (3.12), A(ξ) is known and φ can be obtained from (3.7). This solves
the problem completely.

4. Discussion

The reflection coefficient |R| has been numerically evaluated for various values of wave
number Kb and presented graphically in Figures 4.1 and 4.2, respectively.

In Figure 4.1, we have taken a/b = 0.01 and c/b = 1.1. It is observed that |R| decreases
at first, reaches a minimum, and then increases as Kb increases and ultimately becomes
almost unity. This figure is in agreement with [1, Figure 1]. This type of behaviour is
expected because for small value of ratio a/b, the upper end of the barrier is very near the
free surface. Hence the short waves which are confined near the free surface are almost
totally reflected by the barrier.

In Figure 4.2, we have taken a/b = 0.5 and c/b = 2.0. In this case, it is observed that
|R| decreases at first and becomes very small, and then again increases almost to unity
as the wave number Kb increases. With further increase of Kb, |R| again decreases. This
behaviour of |R| for large wave number is expected because in absence of barrier near the
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free surface, the short waves are totally transmitted. Also it is observed from Figure 4.2
that a gorge appears in the reflection coefficient for small values of wave number. This
phenomenon occurs due to some resonance effect taking place owing to the interaction
of flow with the gaps. Similar behaviour was also observed by Banerjea [1].

Thus in Figures 4.1 and 4.2, the behaviour of |R| has been depicted for various values
of wave number Kb and ratios a/b and c/b.
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5. Conclusion

We have used a function-theoretic method to obtain the solution of (1.1) and thereby uti-
lize the boundedness property of the function satisfying (1.1), the problem of scattering
of water waves by a submerged vertical barrier with a gap is solved easily.
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