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We give here a geometric proof of the existence of certain local coordinates on a pseudo-
Riemannian manifold admitting a closed conformal vector field.
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1. Introduction

A vector field V on a pseudo-Riemannian manifold (M,g) is called conformal if

�Vg = 2λg (1.1)

for a scalar field λ, where � denotes the Lie derivative on M. It is easy to see that if V is
locally a gradient field, then (1.1) is equivalent to

∇XV = λX for every vector field X. (1.2)

Here ∇ denotes the Levi-Civita connection of g. We call vector fields satisfying (1.2)
closed conformal vector fields. They appear in the work of Fialkow [3] about conformal
geodesics, in the works of Yano [7–11] about concircular geometry in Riemannian man-
ifolds, and in the works of Tashiro [6], Kerbrat [4], Kühnel and Rademacher [5], and
many other authors.

If V is lightlike on (M,g), then from (1.2), we get

Xg(V ,V)= 2g
(∇XV ,V

)= 2λg(X ,V)= 0 (1.3)

for every vector field X . Thus λ≡ 0 and V is parallel. About lightlike parallel vector fields,
we have the following theorem.
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Theorem 1.1 (Brinkmann [2]). If (M,g) admits a lightlike parallel vector field V , then
there are local coordinates u1,u2, . . . ,un (n := dimM > 2) such that V = ∂/∂u1 and

(
gi j
)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 ··· 0

1 0 0 ··· 0

0 0
...

...
(
gαβ
)

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1.4)

where α,β ∈ {3, . . . ,n} and ∂gαβ/∂u1 = 0.

Brinkmann’s proof is purely analytical. We will give, in the next section, geometric
tools which will allow us to generalize Brinkmann’s theorem.

2. Geometric constructions

Let (M,g) be a connected pseudo-Riemannian manifold of dimension n and signature
(k,n− k) with 0 < k < n. Given a vector field W on M, we denote by W� the one-form
defined by W�(X)= g(W ,X). Then W is locally a gradient field if and only if dW� = 0.
In the following, a vector field W satisfying∇WW = 0 will be called geodesic.

Lemma 2.1. If W is a geodesic vector field, then dW� is invariant under the flow of W .

Proof. Let (∇W�)(X ,Y)= (∇XW�)(Y)= g(∇XW ,Y). Then, from the fact that W is ge-
odesic, it follows that

(
�W∇W�)(X ,Y)=Wg

(∇XW ,Y
)− g

(∇[W ,X]W ,Y
)− g

(∇XW , [W ,Y]
)

= g
(
R(W ,X)W ,Y

)
+ g
(∇XW ,∇YW

)
,

(2.1)

where R denotes the Riemannian curvature tensor,

R(X ,Y)Z =∇X∇YZ−∇Y∇XZ−∇[X ,Y]Z. (2.2)

Since g(R(W ,X)W ,Y) is symmetric with respect to X ,Y , from

dW�(X ,Y)= (∇W�)(X ,Y)− (∇W�)(Y ,X), (2.3)

we get (�WdW�)(X ,Y)= (�W∇W�)(X ,Y)− (�W∇W�)(Y ,X)= 0. �

Lemma 2.2. If W is a lightlike geodesic vector field, then dW�(X ,W)= 0.
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Proof. We have the following.
W lightlike ⇒ (∇W�)(X ,W)= g(∇XW ,W)= 0
W geodesic ⇒ (∇W�)(W ,X)= g(∇WW ,X)= 0

}
⇒ dW�(X ,W)= 0. �

A nontangent vector field W̃ on a pseudo-Riemannian hypersurface M̃ can be ex-
tended to a geodesic vector field W in a neighbourhood of M̃ in the following way. Let
c(s, p) be the geodesic starting at p = c(0, p)∈ M̃ with ċ(0, p)= W̃(p) and W(c(s, p)) :=
ċ(s, p). Then, taking into account the fact that W̃ is transversal (i.e. nontangent) to M̃,
we conclude that W is a geodesic vector field on a neighbourhood of M̃ extending W̃ .
Moreover, if W̃ is lightlike, then so is W . Denoting with W̃�, W̃⊥ the tangent and nor-
mal component of W̃ , for vector fields X , Y on M̃ tangent to M̃, we have the following
lemma.

Lemma 2.3. dW�(X ,Y)= d(W̃�)�(X ,Y).

Proof. The statement follows from g(∇XW̃⊥,Y)− g(∇YW̃⊥,X) = −g(W̃⊥, [X ,Y]) = 0.
�

The following remark will be used in the proof of the next proposition.

Remark 2.4. Let V be a vector field and let ϕ be a function on M. At a point p0 ∈M, the
gradient of the solutions of V f = ϕ span an affine hyperplane H of Tp0M. Let v :=V(p0),
then H = {x ∈ Tp0M | g(x,v)= ϕ(p0)} and

(a) if ϕ(p0) �= 0, then H contains lightlike, spacelike, and timelike vectors,
(b) if ϕ(p0)= 0, then H contains only lightlike vectors and the zero vector if and only

if n= 2 and v is lightlike.

Proposition 2.5. If V is a closed conformal vector field on (M,g), then in a neighbour-
hood of a point p0 where V(p0) �= 0, there is a lightlike geodesic gradient field W such that
g(V ,W)= 1.

Proof. We divide the proof into two cases.
Case 1. n > 2 or n= 2 and V(p0) is nonlightlike.

Let u be a solution of Vu= 0 with g(p0)(∇u,∇u) �= 0 (here ∇u denotes the gradient
of u). According to Remark 2.4(b), such a solution exists. Let � be an open neighbour-
hood of p0 on which g(∇u,∇u) �= 0, and let M̃ be the pseudo-Riemannian hypersurface
u−1(u(p0))∩�. Then ∇u is a normal vector field on M̃ and, from Vu= 0, we have that

Ṽ := V |M̃ is a tangent vector field on M̃. Let f̃ : M̃ → R be a solution of Ṽ f̃ = 1 such

that g(p0)(∇ f̃ ,∇ f̃ ) and g(p0)(∇u,∇u) have opposite sign (see Remark 2.4(a)). Without

loss of generality, we assume that g(∇ f̃ ,∇ f̃ ) �= 0 on M̃. Setting W̃ :=∇ f̃ + h∇u, where

h2 :=−g(∇ f̃ ,∇ f̃ )/g(∇u,∇u) > 0, we get

g(W̃ ,W̃)= g(∇ f̃ ,∇ f̃ ) +h2g(∇u,∇u)= 0, g(Ṽ ,W̃)= Ṽ f̃ = 1. (2.4)

Let now W be the geodesic vector field extending W̃ in a neighbourhood of M̃. Then
W is lightlike. From Wg(V ,W) = g(∇WV ,W) + g(V ,∇WW) = 0 and g(Ṽ ,W̃) = 1, we
conclude that g(V ,W)= 1. It remains to show that W is locally a gradient.



4 Closed conformal vector fields on pseudo-Riemannian manifolds

For vector fields X ,Y on M̃ (not necessarily tangent to M̃), we can write

X = X� +αW̃ , Y = Y� +βW̃ , (2.5)

where α and β are certain functions on M̃ andX�,Y� are tangent to M̃. Using Lemma 2.2,
we get

0= dW�(X ,W)= dW�(X� +αW ,W
)= dW�(X�,W

)
. (2.6)

In the same way, we get dW�(W ,Y�) = 0, and therefore dW�(X ,Y) = dW�(X�,Y�).

Now Lemma 2.3 and W̃� =∇ f̃ imply that dW�(X ,Y)= 0 on M̃. Using Lemma 2.1, we
conclude that dW� = 0.
Case 2. n= 2 and V(p0) is lightlike.

According to Remark 2.4(b), we cannot proceed as in Case 1 since the gradient at p0

of a solution of Vu = 0 is a lightlike vector. Remarking that along an integral curve α

of V through p0 V is lightlike, we set M̃ := Imα. Let now W̃ be a lightlike vector field
along α such that V and W̃ are linearly independent. Then, since g is nondegenerate,
g(V ,V)g(W̃ ,W̃)− g(V ,W̃)2 =−g(V ,W̃)2 �= 0. Therefore we can assume that g(V ,W̃)=
1. Since W̃ is not tangent to α, we can extend it to a geodesic vector field W on a neigh-
bourhood � of p0. Then Wg(W ,W) = 0 which, together with W̃ lightlike, implies W
lightlike, and Wg(V ,W) = g(∇WV ,W) = 0 which, together with g(V ,W̃) = 1, implies
g(V ,W) = 1. Since every vector field on � can be written as a linear combination of V
and W , we have g(∇XW ,Y)− g(∇YW ,X) = 0 for every vector field X , Y on � if and
only if g(∇VW ,W)− g(∇WW ,V)= 0.

Thus W being lightlike and geodesic implies that W is a gradient vector field.
It remains to show that V is lightlike along an integral curve α through p0 := α(0).

This follows from (d/dt)g(V ,V)= 2g(∇VV ,V)= 2λg(V ,V), since its general solution is

g(α(t))(V ,V)= g(p0)(V ,V)e2
∫ t

0 λ(u)du. �

For example, let M =Rn
k be the pseudo-Euclidian space of dimension n and signature

(k,n− k) with 0 < k < n, that is, 〈x,x〉 = −(x2
1 + ···+ x2

k) + (x2
k+1 + ···+ x2

n). The position
vector field V(x)=∑n

i=1 xi(∂/∂xi)|x satisfies∇XV = X , and therefore it is a closed confor-
mal vector field. We will construct, following the proof of Proposition 2.5, a lightlike ge-
odesic gradient field W with 〈V ,W〉 = 1 in a neighbourhood of a point x0 �= 0 (V(x)= 0
if and only if x = 0). We take for simplicity x0 = (1,0, . . . ,0), then u(x1, . . . ,xn) := xn/x1 is
a solution of Vu= 0 with 〈∇u,∇u〉|x0 = 1. The hypersuface M̃ := u−1(u(x0))= u−1(0) is

the hyperplane xn = 0. Let Ṽ :=V |M̃ , then f̃ (x1, . . . ,xn−1) := lnx1 is a solution of Ṽ f̃ = 1

with 〈∇ f̃ ,∇ f̃ 〉|x0 =−1. Defining for every x ∈ M̃ that

W̃(x) :=∇ f̃ (x) +∇u(x)= 1
x1

(
− ∂

∂x1
+

∂

∂xn

)∣∣
∣
∣
x
, (2.7)

it is easy to see that

W(x) := 1
x1 + xn

(
− ∂

∂x1
+

∂

∂xn

)∣∣
∣
∣
x

(2.8)
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is a geodesic vector field on M extending W̃ . Moreover W is lightlike, 〈V ,W〉 = 1, and
W = ∇ ln|x1 + xn|. It is clear that W is not unique and not everywhere defined. More
generally, for an arbitrary point x0 �= 0, we have, for instance, that

W =∇ ln
∣
∣〈a,x〉∣∣, where a is a lightlike vector in Rn

k with
〈
a,x0

〉 �= 0, (2.9)

is a lightlike geodesic gradient field satisfying 〈V ,W〉 = 1.
Finally we remark that a nontrivial conformal vector field (a vector field V is nontrivial

if there is a point p ∈M with V(p) �= 0) has isolated zeros (see [4]). This is in general not
true if the conformal vector field is not closed (see, e.g., an example in [1]).

3. Local coordinates

Let V and W be vector fields as in Proposition 2.5 and let E1 = V − g(V ,V)W , E2 =W .
It is easy to see that

(i) E1, E2 are linearly independent;
(ii) the distribution � spanned by E1, E2 is integrable and the metric g is nondegen-

erate on �;
(iii) the distribution �⊥ spanned by the vector fields orthogonal to E1, E2 is integrable

and g is nondegenerate on �⊥;
(iv) [E1,E2]= 0.

We can now state the following theorem.

Theorem 3.1. If (M,g) admits a closed conformal vector field V , then in a neighbourhood of
a point p0 where V(p0) �= 0, there are local coordinates u1,u2, . . . ,un such that V = ∂/∂u1 +
a(∂/∂u2), for some function a= a(u2), and

(
gi j
)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−a 1 0 ··· 0

1 0 0 ··· 0

0 0
...

...
(
gαβ
)

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.1)

where α,β ∈ {3, . . . ,n}, det(gαβ) �= 0, and ∂gαβ/∂u1 + a(∂gαβ/∂u2)= a′gαβ (a′ := da/du2).

Proof. From Frobenius theorem, we know that there are local coordinates u1,u2, . . . ,un

such that

∂

∂u1
= E1,

∂

∂u2
= E2, g1α = g2α = 0, α= 3, . . . ,n. (3.2)
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Hence g11= g(E1,E1)= g(V ,V)−2g(V ,V)g(V ,W)=−g(V ,V), g12= g(V ,W)=1, g22 =
g(W ,W)= 0 and, setting Ei = ∂/∂ui, i= 1, . . . ,n, we have that

∂gαβ
∂u1

+ a
∂gαβ
∂u2

= g
(∇E1Eα + g(V ,V)∇E2Eα,Eβ

)

+ g
(
Eα,∇E1Eβ + g(V ,V)∇E2Eβ

)

= g
(∇EαE1 + g(V ,V)∇EαE2,Eβ

)

+ g
(
Eα,∇EβE1 + g(V ,V)∇EβE2

)

= g
(∇Eα

(
E1 + g(V ,V)E2

)
,Eβ
)

+ g
(
Eα,∇Eβ

(
E1 + g(V ,V)E2

))

= g
(∇EαV ,Eβ

)
+ g
(
Eα,∇EβV ,

)= 2λgαβ,

(3.3)

where a= g(V ,V). From Xg(V ,V)=2λg(X ,V) and g(E1,V)=g(E3,V)=···=g(En,V)=
0, we conclude that a= a(u2). Furthermore

a′ =Wg(V ,V)= 2λ (3.4)

and a= 0 if and only if V is lightlike (cf. with Brinkmann’s theorem). �

On the other hand, we have the following proposition.

Proposition 3.2. If on a neighbourhood � of a point p0 ∈M, there are local coordinates
as in Theorem 3.1, then V = ∂/∂u1 + a(∂/∂u2) is a closed conformal vector field on �.

Proof. The statement follows from

g
(∇EiV ,Ej

)= g
(∇EiE1,Ej

)
+ a′δ2iδ1 j + ag

(∇EiE2,Ej
)

= 1
2

(
∂g1 j

∂ui
+
∂gi j
∂u1

− ∂g1i

∂uj + a
∂gi j
∂u2

)
+ a′δ2iδ1 j

= 1
2

(
∂gi j
∂u1

+ a
∂gi j
∂u2

)
+

1
2
a′
(
δ1iδ2 j + δ2iδ1 j

)
,

(3.5)

where δ is the Kronecker delta. Namely, for every pair (i, j), we get g(∇EiV ,Ej) =
(1/2)a′gi j . Moreover, V is lightlike if and only if a= 0. �

Remark 3.3. If in Proposition 3.2 we assume that a �= 0, then according to Fialkow results,
see [3, formulas (12.9) and (12.10)], we must be able to prove that (�,g) is locally iso-
metric to a warped product with a one-dimensional base manifold. This can be seen in
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the following way: take local coordinates u1, . . . ,un in � such that

∂

∂u1 =
1
√|a|

(
∂

∂u1
+ a

∂

∂u2

)
,

∂

∂u2 =
∂

∂u1
,

∂

∂uα
= ∂

∂uα
, α= 3, . . . ,n. (3.6)

This is reached by the coordinate transformation

u1 =
∫ √|a|

a
du2, u2 = u1−

∫
1
a
du2, uα = uα, α= 3, . . . ,n. (3.7)

Then it is easy to see that a= a(u1) and that

(
gi j
)

:=
(
g
(

∂

∂ūi
,
∂

∂ūj

))
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

±1 0 0 ··· 0

0 −a 0 ··· 0

0 0
...

...
(
gαβ
)

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.8)

Furthermore, from ∂gαβ/∂u1 + a(∂gαβ/∂u2)= a′gαβ, we get

∂gαβ
∂u1 =

1
√|a|

(
∂gαβ
∂u1

+ a
∂gαβ
∂u2

)
= 1
√|a|

da

du2
gαβ = 1

a

da

du1 gαβ, (3.9)

and therefore gαβ = agαβ, where ∂gαβ/∂u
1 = 0. Thus (�,g) is locally isometric to a warped

product with a one-dimensional base manifold and warped factor a. In these local coor-
dinates, the metric of the fiber manifold is given by

⎛

⎜
⎜
⎜
⎜
⎝

−1 0 ··· 0

0
...

(
gαβ
)

0

⎞

⎟
⎟
⎟
⎟
⎠

(3.10)

which means, in other words, that u2, . . . ,un are Fermi coordinates on the fiber manifold.
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