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1. Introduction

In 1974 May [10] suggested the following cooperative species model [3]:

ẋ1(t)= r1x1(t)
[

1− x1(t)
a1 + b1x2(t)

− c1x1(t)
]

,

ẋ2(t)= r2x2(t)
[

1− x2(t)
a2 + b2x1(t)

− c2x2(t)
]

,

(1.1)

where ai, bi, and ci, i = 1,2, are positive constants. Recently, paper [11] has studied the
existence of positive periodic solutions of the following system:

ẋ1(t)= r1(t)x1(t)
[

1− x1(t)
a1(t) + b1(t)x2(t)

− c1(t)x1(t)
]

,

ẋ2(t)= r2(t)x2(t)
[

1− x2(t)
a2(t) + b2(t)x1(t)

− c2(t)x2(t)
]

,

(1.2)

where ai, bi, and ci (i= 1,2) are nonnegative ω-periodic continuous functions. It is well
known that more realistic and interesting species models should take into account both
the seasonality of the changing environment and time delays [4, 8, 9], and that the birth
of many species is not continuous but occurs at fixed time intervals (some wild animals
have seasonal births), in the long run; the birth of these species can be considered as an
impulse to the system [1, 2, 5, 7]. To describe this phenomenon exactly, we proposed
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2 Positive periodic solution of a cooperative model

the following periodic cooperative species model with delays and impulses, which is a
generalization of (1.1) and (1.2),

dx1(t)
d t

= r1(t)x1(t)
[

1− x1
(
t− τ11(t)

)
a1(t) + b1(t)x2

(
t− τ12(t)

) − c1(t)x1
(
t− τ13(t)

)]
, t > 0, t �= tk,

Δx1
(
tk
)=−γ1kx1

(
tk
)
, k = 1,2, . . . ,

dx2(t)
d t

= r2(t)x2(t)
[

1− x2
(
t− τ21(t)

)
a2(t) + b2(t)x1

(
t− τ22(t)

) − c2(t)x2
(
t− τ23(t)

)]
, t > 0, t �= tk,

Δx2
(
tk
)=−γ2kx2

(
tk
)
, k = 1,2, . . . ,

(1.3)

where Δx(tk)= x(t+
k )− x(t−k ) are the impulses at moment tk and t1 < t2 < ··· is a strictly

increasing sequence such that limk→∞ tk = +∞ and there exists a positive integer q such
that tk+q = tk +ω, γi(k+q) = γik < 1, k = 1,2, . . . , i = 1,2, ri(t), ai(t), ci(t), i = 1,2, are pos-
itive continuous ω-periodic functions, bi(t), τi j(t), i = 1,2, j = 1,2,3, are nonnegative
continuous ω-periodic functions.

As usual in the theory of impulsive differential equations, at the points of disconti-
nuity tk of the solution t �→ xi(t) we assume that xi(tk) ≡ xi(t−k ). It is clear that, in gen-
eral, the derivatives x′i (tk) do not exist. On the other hand, according to the first equal-
ity (1.3) there exist the limits x′i (t

∓
k ). According to the above convention, we assume

x′i (tk)≡ x′i (t
−
k ).

Throughout this paper, we assume that

∏
rσ≤tk<t

(
1− γik

)
, i= 1,2 (1.4)

are ω-periodic functions.
The organization of this paper is as follows. In Section 2, we introduce some nota-

tions and definitions, and state some preliminary results needed in later sections. We
then study, in Section 3, the existence of periodic solutions of system (1.3) by using the
continuation theorem of coincidence degree theory proposed by Gaines and Mawhin [6].

2. Preliminaries

In order to obtain the existence of a positive periodic solution of system (1.3), we first
make the following preparations.

Consider the impulsive system

x′(t)= f
(
t,x(t),x

(
t− τ1(t)

)
, . . . ,xn

(
t− τn(t)

))
, t �= tk, k = 1,2, . . . ,

Δx(t)
∣∣
t=tk = Ik

(
x
(
t−k
))

,
(2.1)
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where x ∈ Rn, f : R×Rn+1 → Rn is continuous, and f is ω-periodic with respect to its
first argument; Ik :Rn→Rn are continuous, and there exists a positive integer q such that
tk+q = tk + ω, Ik+q(x) = Ik(x) with tk ∈ R, tk+1 > tk, limk→∞ tk = ∞, Δx(t) |t=tk= x(t+

k )−
x(t−k ). For tk �= 0 (k = 1,2, . . .), [0,ω]∩{tk} = {t1, t2, . . . , tq}. As we know, {tk} are called
points of jump.

For any σ ≥ t0, let

rσ = min
1≤i≤n

inf
t≥σ
{
t− τi(t)

}
(2.2)

and let PCσ denote the set of functions φ : [rσ ,σ]→ R which are real-valued absolutely
continuous in [tk, tk+1)∩ (rσ ,σ) and at tk situated in (rσ ,σ] may have discontinuity of the
first kind.

Definition 2.1. For any σ≥ 0 and φ∈ PCσ , a function x ∈ ([rσ ,∞),R) denoted by x(t,σ ,φ)
is said to be a solution of system (2.1) on (σ ,∞] satisfying the initial value conditions

x(t)= φ(t), φ(σ) > 0, t ∈ [rσ ,σ
]

(2.3)

if the following conditions are satisfied:
(i) x(t) is absolutely continuous on each interval (tk, tk+1)⊂ [rσ ,∞);

(ii) for any tk ∈ [σ ,∞), k = 1,2, . . . ,x(t+
k ) and x(t−k ) exist and x(t−k )= x(tk);

(iii) x(t) satisfies (2.1) for almost everywhere in [σ ,∞) and at impulsive points tk situ-
ated in [σ ,∞) may have discontinuity of the first kind.

Consider the following nonimpulsive delay differential system

d y1(t)
d t

= r1(t)y1(t)

[
1−

∏
0≤tk<t−τ11(t)

(
1− γ1k

)
y1
(
t− τ11(t)

)
a1(t) + b1(t)

∏
0≤tk<t−τ12(t)

(
1− γ2k

)
y2
(
t− τ12(t)

)

− c1(t)
∏

0≤tk<t−τ13(t)

(
1− γ1k

)
y1
(
t− τ13(t)

)]
,

d y2(t)
d t

= r2(t)y2(t)

[
1−

∏
0≤tk<t−τ21(t)

(
1− γ2k

)
y2
(
t− τ21(t)

)
a2(t) + b2(t)

∏
0≤tk<t−τ22(t)

(
1− γ1k

)
y1
(
t− τ22(t)

)

− c2(t)
∏

0≤tk<t−τ23(t)

(
1− γ2k

)
y2
(
t− τ23(t)

)]
,

(2.4)

with initial condition yi(t)= φi(t), t ≤ 0, where φi(t) is defined as above.
In the following, we will establish a fundamental theorem that enables us to reduce the

existence of solution of system (1.3) to the corresponding problem for the nonimpulsive
delay differential system (2.4).
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Theorem 2.2. Assume that (1.4) holds. Then
(i) if y = (y1, y2)T is a solution of (2.4), then

x =
( ∏

0≤tk<t

(
1− γ1k

)
y1,

∏
0≤tk<t

(
1− γ2k

)
y2

)T

(2.5)

is a solution of (1.3);
(ii) if x = (x1,x2)T is a solution of (1.3), then

y =
( ∏

0≤tk<t

(
1− γ1k

)−1
x1,

∏
0≤tk<t

ln
(
1− γ2k

)−1
x2

)T

(2.6)

is a solution of (2.4).

Proof. First, we prove (i). It is easy to see that xi =
∏

0≤tk<t(1− γik)yi, i = 1,2, are abso-
lutely continuous on the interval (tk, tk+1] and that for any t �= tk, k = 1,2 . . . ,

x =
( ∏

0≤tk<t

(
1− γ1k

)
y1,

∏
0≤tk<t

(
1− γ2k

)
y2

)T

(2.7)

satisfies system (1.3).
On the other hand, for every tk ∈ {tk},

xi
(
t+
k

)= lim
t→t+

k

∏
0≤t j<t

(
1− γi j

)
yi(t)=

∏
0≤t j≤tk

(
1− γi j

)
yi
(
tk
)
, i= 1,2,

xi
(
tk)=

∏
0≤t j<tk

(
1− γi j

)
yi
(
tk), i= 1,2.

(2.8)

Thus, for every k = 1,2, . . . ,

xi
(
t+
k

)= (1− γik
)
xi
(
tk
)
, i= 1,2. (2.9)

The proof is complete.
Next, we prove (ii). Since xi(t) is absolutely continuous on each interval (tk, tk+1] and,

in view of (2.9), it follows that, for any k = 1,2, . . . ,

yi
(
t+
k

)= ∏
0≤t j≤tk

(
1− γi j

)−1
xi
(
t+
k

)= ∏
0≤t j<tk

(
1− γi j

)−1
xi
(
tk
)= yi

(
tk
)
, i= 1,2,

yi
(
t−k
)= ∏

0≤t j≤tk−1

(
1− γi j

)−1
xi
(
t−k
)= yi

(
tk
)
, k = 1,2, . . . ,

(2.10)

which implies that yi(t), i= 1,2, are continuous on [0,∞). It is easy to prove that yi(t) are
absolutely continuous on [0,∞). Now, one can easily check that

y =
( ∏

0≤tk<t

(
1− γ1k

)−1
x1,

∏
0≤tk<t

(
1− γ2k

)−1
x2

)T

(2.11)

is a solution of (2.9). The proof is complete. �
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3. Existence of periodic solutions

In this section, based on Mawhin’s continuation theorem, we will study the existence of
at least one periodic solution of (1.3). To do so, we will make some preparations.

Let X and Y be real Banach spaces, L : DomL ⊂ X→ Y a linear mapping, and N :
X→ Y a continuous mapping. The mapping L will be called a Fredholm mapping of
index zero if dimKerL = codimImL < +∞ and ImL is closed in Y. If L is a Fredholm
mapping of index zero and there exist continuous projectors P : X→ X and Q : Y→ Y
such that ImP = KerL and KerQ = Im(I −Q), it follows that mapping L|DomL∩KerP : (I −
P)X→ ImL is invertible. We denote the inverse of that mapping by KP . If Ω is an open
bounded subset of X, the mapping N will be called L-compact on Ω if QN(Ω) is bounded
and KP(I −Q)N : Ω→ X is compact. Since ImQ is isomorphic to KerL, there exists an
isomorphism J : ImQ→ KerL.

Now, we introduce Mawhin’s continuation theorem [6, page 40] as follows.

Lemma 3.1. Let Ω⊂ X be an open bounded set and let N : X→Y be a continuous operator
which is L-compact on Ω. Assume

(a) for each λ∈ (0,1), x ∈ ∂Ω∩DomL, Lx �= λNx;
(b) for each x ∈ ∂Ω∩KerL, QNx �= 0, and deg(JQN ,Ω∩KerL,0) �= 0.

Then Lx =Nx has at least one solution in Ω∩DomL.

In what follows, we will use the following notations:

h̄= 1
ω

∫ ω

0
h(t)dt, hm = min

t∈[0,ω]

{
h(t)

}
, hM = max

t∈[0,ω]

{
h(t)

}
, (3.1)

where h(t) is a periodic continuous function with period ω,

As
1 = sup

t∈[0,ω]

{ ∏
0≤tk<t

[
ln
(
1− γ1k

)]−1
}

, Bs
1 = sup

t∈[0,ω]

{ ∏
0≤tk<t

[
ln
(
1− γ2k

)]−1
}

,

A
f
1 = inf

t∈[0,ω]

{ ∏
0≤tk<t

[
ln
(
1− γ1k

)]−1
}

, B
f
1 = inf

t∈[0,ω]

{ ∏
0≤tk<t

[
ln
(
1− γ2k

)]−1
}

,

As
2 = sup

t∈[0,ω]

{ ∏
0≤tk<t

ln
(
1− γ1k

)}
, Bs

2 = sup
t∈[0,ω]

{ ∏
0≤tk<t

ln
(
1− γ2k

)}
,

A
f
2 = inf

t∈[0,ω]

{ ∏
0≤tk<t

ln
(
1− γ1k

)}
, B

f
2 = inf

t∈[0,ω]

{ ∏
0≤tk<t

ln
(
1− γ2k

)}
.

(3.2)

Before we proceed to state and prove our main result, we introduce a lemma which is
useful in the proof of our main result.

Let

y1(t)= exp
{
z1(t)

}
, y2(t)= exp

{
z2(t)

}
, (3.3)
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then (2.4) is transformed into

dz1(t)
d t

= r1(t)

[
1−

∏
0≤tk<t−τ11(t)

(
1− γ1k

)
exp

{
z1
(
t− τ11(t)

)}
a1(t) + b1(t)

∏
0≤tk<t−τ12(t)

(
1− γ2k

)
exp

{
z2
(
t− τ12(t)

)}

− c1(t)
∏

0≤tk<t−τ13(t)

(
1− γ1k

)
exp

{
z1
(
t− τ13(t)

)}]
,

dz2(t)
d t

= r2(t)

[
1−

∏
0≤tk<t−τ21(t)

(
1− γ2k

)
exp

{
z2
(
t− τ21(t)

)}
a2(t) + b2(t)

∏
0≤tk<t−τ22(t)

(
1− γ1k

)
exp

{
z1
(
t− τ22(t)

)}

− c2(t)
∏

0≤tk<t−τ23(t)

(
1− γ2k

)
exp

{
z2
(
t− τ23(t)

)}]
.

(3.4)

One can easily check that if system (3.4) has an ω-periodic solution (z∗1 (t),z∗2 (t))T , then
(ez

∗
1 (t),ez

∗
2 (t))T is a positive ω-periodic solution of system (2.4).

Lemma 3.2. Let

f (z1,z2)=
(
r̄1− 1

ω

∫ ω

0

r1(t)
∏

0≤tk<t−τ11(t)

(
1− γ1k

)
exp

{
z1
}

a1(t) + b1(t)
∏

0≤tk<t−τ12(t)

(
1− γ2k

)
exp

{
z2
}dt

− 1
ω

∫ ω

0
c1(t)r1(t)

∏
0≤tk<t−τ13(t)

(
1− γ1k

)
exp

{
z1
}

dt,

r̄2− 1
ω

∫ ω

0

r2(t)
∏

0≤tk<t−τ21(t)

(
1− γ2k

)
exp

{
z2
}

a2(t) + b2(t)
∏

0≤tk<t−τ22(t)

(
1− γ1k

)
exp

{
z1
}dt

− 1
ω

∫ ω

0
c2(t)r2(t)

∏
0≤tk<t−τ23(t)

(
1− γ2k

)
exp

{
z2
}

dt

)T

,

(3.5)

and Ω= {(z1,z2)T ∈R2 : ‖(z1,z2)T‖ <H0}, where ri,ai,bi,ci, i= 1,2, are the same as those
in system (1.3) and

H0 > max

{∣∣∣∣∣ ln
r̄1

cm1 r
m
1 A

f
2

∣∣∣∣∣,

∣∣∣∣∣ ln
r̄2

cm2 r
m
2 B

f
2

∣∣∣∣∣,

∣∣∣∣∣ ln
r̄1[(

am1
)−1

+ cM1
]
rM1 As

2

∣∣∣∣∣,

∣∣∣∣∣ ln
r̄2[(

am2
)−1

+ cM2
]
rM2 Bs

2

∣∣∣∣∣
} (3.6)

is a constant. Then

deg
{
f ,Ω, (0,0)

} �= 0. (3.7)
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Proof. Set

Φ
(
z1,z2,δ

)=
(
r̄1− 1

ω

∫ ω

0

r1(t)
∏

0≤tk<t−τ11(t)

(
1− γ1k

)
exp

{
z1
}

a1(t) + δb1(t)
∏

0≤tk<t−τ12(t)

(
1− γ2k

)
exp

{
z2
}dt

− 1
ω

∫ ω

0
c1(t)r1(t)

∏
0≤tk<t−τ13(t)

(
1− γ1k

)
exp

{
z1
}

dt,

r̄2− 1
ω

∫ ω

0

r2(t)
∏

0≤tk<t−τ21(t)

(
1− γ2k

)
exp

{
z2
}

a2(t) + δb2(t)
∏

0≤tk<t−τ22(t)

(
1− γ1k

)
exp

{
z1
}dt

− 1
ω

∫ ω

0
c2(t)r2(t)

∏
0≤tk<t−τ23(t)

(
1− γ2k

)
exp

{
z2
}

dt

)T

,

(3.8)

then it is easy to see that, for (z1,z2,δ)∈R2× [0,1],

r̄1− 1
ω

∫ ω

0

r1(t)
∏

0≤tk<t−τ11(t)(1− γ1k)exp
{
z1
}

a1(t) + δb1(t)
∏

0≤tk<t−τ12(t)

(
1− γ2k

)
exp

{
z2
}dt

− 1
ω

∫ ω

0
c1(t)r1(t)

∏
0≤tk<t−τ13(t)

(
1− γ1k

)
exp

{
z1
}

dt

< r̄1− 1
ω

∫ ω

0
c1(t)r1(t)

∏
0≤tk<t−τ13(t)

(
1− γ1k

)
exp

{
z1
}

dt

< r̄1− cm1 r
m
1 A

f
2 exp

{
z1
}
< 0 as z1 ≥ H0

2
,

r̄2− 1
ω

∫ ω

0

r2(t)
∏

0≤tk<t−τ21(t)

(
1− γ2k

)
exp

{
z2
}

a2(t) + δb2(t)
∏

0≤tk<t−τ22(t)

(
1− γ1k

)
exp

{
z1
}dt

− 1
ω

∫ ω

0
c2(t)r2(t)

∏
0≤tk<t−τ23(t)

(
1− γ2k

)
exp

{
z2
}

dt

< r̄2− 1
ω

∫ ω

0
c2(t)r2(t)

∏
0≤tk<t−τ23(t)

(
1− γ2k

)
exp

{
z2
}

dt

< r̄2− cm2 r
m
2 B

f
2 exp

{
z2
}
< 0 as z2 ≥ H0

2
,
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r̄1− 1
ω

∫ ω

0

r1(t)
∏

0≤tk<t−τ11(t)

(
1− γ1k

)
exp

{
z1
}

a1(t) + δb1(t)
∏

0≤tk<t−τ12(t)

(
1− γ2k

)
exp

{
z2
}dt

− 1
ω

∫ ω

0
c1(t)r1(t)

∏
0≤tk<t−τ13(t)

(
1− γ1k

)
exp

{
z1
}

dt

≥ r̄1− 1
ω

∫ ω

0

rM1 As
2 exp

{
z1
}

am1
dt− 1

ω

∫ ω

0
cM1 rM1 As

2 exp
{
z1
}

dt

= r̄1−
[(
am1
)−1

+ cM1
]
rM1 As

2 exp
{
z1
}
> 0 as z1 ≤−H0

2
,

r̄2− 1
ω

∫ ω

0

r2(t)
∏

0≤tk<t−τ21(t)

(
1− γ2k

)
exp

{
z2
}

a2(t) + δb2(t)
∏

0≤tk<t−τ22(t)

(
1− γ1k

)
exp

{
z1
}dt

− 1
ω

∫ ω

0
c2(t)r2(t)

∏
0≤tk<t−τ23(t)

(
1− γ2k

)
exp

{
z2
}

dt

≥ r̄2− 1
ω

∫ ω

0

rM2 Bs
2 exp

{
z2
}

am2
dt− 1

ω

∫ ω

0
cM2 rM2 Bs

2 exp
{
z2
}

dt

= r̄2−
[(
am2
)−1

+ cM2
]
rM2 Bs

2 exp
{
z2
}
> 0 as z2 ≤−H0

2
.

(3.9)

Therefore,

Φ
(
z1,z2,δ

) �= 0 for
(
z1,z2,δ

)∈ ∂Ω× [0,1]. (3.10)

From the property of invariance under a homotopy, we have

deg
{
f
(
z1,z2

)
,Ω, (0,0)

}= deg
{
Φ
(
z1,z2,0

)
,Ω, (0,0)

}
. (3.11)

By a straightforward computation, we find

deg
{
Φ
(
z1,z2,0

)
,Ω, (0,0)

}=−1 �= 0. (3.12)

This completes the proof. �

We are now in a position to state and prove the existence of periodic solutions of (1.3).

Theorem 3.3. Assume that (1.4) holds. Suppose further that
(i) am1 > As

2 exp{M1};
(ii) am2 > Bs

2 exp{M2};
where M1 = ln(As

1/c
m
1 ) + 2ωrM1 , M2 = ln(Bs

1/c
m
2 ) + 2ωrM2 . Then system (1.3) has at least one

positive ω-periodic solution.

Proof. According to the discussion made in Section 2, we need only to prove that the
nonimpulsive delay differential system (3.4) has an ω-periodic solution. In order to use
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the continuation theorem of coincidence degree theory to establish the existence of ω-
periodic solutions of (3.4), we take X=Y= {(z1(t),z2(t))T ∈ C(R,R2) : z1(t+ω)= z1(t),
z2(t +ω)= z2(t)}, and ‖(z1(t),z2(t))T‖ =maxt∈[0,ω] |z1(t)|+ maxt∈[0,ω] |z2(t)|. With this
norm, X and Y are Banach spaces. Set

L

[
z1

z2

]
=
[
ż1

ż2

]
, P

[
z1

z2

]
=Q

[
z1

z2

]
=

⎡
⎢⎢⎢⎣

1
ω

∫ ω

0
z1(t)dt

1
ω

∫ ω

0
z2(t)dt

⎤
⎥⎥⎥⎦ ,

[
z1

z2

]
∈ X,

N

[
z1

z2

]
=
⎡
⎣lG1

(
t,z1(t),z2(t)

)
G2
(
t,z1(t),z2(t)

)
⎤
⎦ ,

(3.13)

where

G1
(
t,z1(t),z2(t)

)= r1(t)

[
1−

∏
0≤tk<t−τ11(t)

(
1− γ1k

)
exp

{
z1
(
t− τ11(t)

)}
a1(t) + b1(t)

∏
0≤tk<t−τ12(t)

(
1− γ2k

)
exp

{
z2
(
t− τ12(t)

)}

− c1(t)
∏

0≤tk<t−τ13(t)

(
1− γ1k

)
exp

{
z1
(
t− τ13(t)

)}]
,

G2
(
t,z1(t),z2(t)

)= r2(t)

[
1−

∏
0≤tk<t−τ21(t)

(
1− γ2k

)
exp

{
z2
(
t− τ21(t)

)}
a2(t) + b2(t)

∏
0≤tk<t−τ22(t)

(
1− γ1k

)
exp

{
z1
(
t− τ22(t)

)}

− c2(t)
∏

0≤tk<t−τ23(t)

(
1− γ2k

)
exp

{
z2
(
t− τ23(t)

)}]
.

(3.14)

Obviously KerL=R2 and

dimKerL= 2= codimImL. (3.15)

So, ImL is closed in X and L is a Fredholm mapping of index zero. It is easy to show that
P and Q are continuous projectors such that

ImP = KerL, KerQ = Im(I −Q). (3.16)

Furthermore, the generalized inverse (to L) KP : ImL→DomL∩KerP is given by

KP

[
z1

z2

]
=

⎡
⎢⎢⎢⎣

∫ ω

0
z1(s)ds− 1

ω

∫ ω

0

∫ t

0
z1(s)dsdt

∫ ω

0
z2(s)ds− 1

ω

∫ ω

0

∫ t

0
z2(s)dsdt

⎤
⎥⎥⎥⎦ . (3.17)
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Thus

QN

[
z1

z2

]
=

⎡
⎢⎢⎢⎣

1
ω

∫ ω

0
G1
(
t,z1(t),z2(t)

)
dt

1
ω

∫ ω

0
G2
(
t,z1(t),z2(t)

)
dt

⎤
⎥⎥⎥⎦ ; (3.18)

hence

KP(I −Q)N : X−→ X,

KP(I −Q)N

[
z1

z2

]
=

⎡
⎢⎢⎢⎣

∫ t

0
G1
(
s,z1(s),z2(s)

)
ds

∫ t

0
G2
(
s,z1(s),z2(s)

)
ds

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

1
ω

∫ ω

0

∫ t

0
G1
(
s,z1(s),z2(s)

)
dsdt

1
ω

∫ ω

0

∫ t

0
G2
(
s,z1(s),z2(s)

)
dsdt

⎤
⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎣

( t
ω
− 1

2

)∫ ω

0
G1
(
s,z1(s),z2(s)

)
ds

( t
ω
− 1

2

)∫ ω

0
G2
(
s,z1(s),z2(s)

)
ds

⎤
⎥⎥⎥⎦ .

(3.19)

Clearly, QN and KP(I −Q)N are continuous. Using the Arzela-Ascoli theorem, it is not
difficult to show that KP(I −Q)N is compact for any open bounded set Ω⊂ X. Moreover
QN(Ω̄) is bounded. Thus N is L-compact on Ω with any open bounded set Ω⊂ X. Then
isomorphism J of ImQ onto KerL can be the identity mapping since ImQ = KerL.

Now we reach the position to search for an appropriate open bounded subset Ω for
the application of the continuation theorem. Corresponding to the operator equation
Lx = λNx, λ∈ (0,1), we have

dz1(t)
d t

= λr1(t)

[
1−

∏
0≤tk<t−τ11(t)

(
1− γ1k

)
exp

{
z1
(
t− τ11(t)

)}
a1(t) + b1(t)

∏
0≤tk<t−τ12(t)

(
1− γ2k

)
exp

{
z2
(
t− τ12(t)

)}

− c1(t)
∏

0≤tk<t−τ13(t)

(
1− γ1k

)
exp

{
z1
(
t− τ13(t)

)}]
,

dz2(t)
d t

= λr2(t)

[
1−

∏
0≤tk<t−τ21(t)

(
1− γ2k

)
exp

{
z2
(
t− τ21(t)

)}
a2(t) + b2(t)

∏
0≤tk<t−τ22(t)

(
1− γ1k

)
exp

{
z1
(
t− τ22(t)

)}

− c2(t)
∏

0≤tk<t−τ23(t)

(
1− γ2k

)
exp

{
z2
(
t− τ23(t)

)}]
.

(3.20)
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Suppose that z(t) = (z1(t),z2(t))T ∈ X is a solution of system (3.20) for some λ ∈ (0,1).
Integrating (3.20) over the interval [0,ω], we obtain

∫ ω

0
r1(t)dt =

∫ ω

0
r1(t)

[ ∏
0≤tk<t−τ11(t)

(
1− γ1k

)
exp

{
z1
(
t− τ11(t)

)}
a1(t) + b1(t)

∏
0≤tk<t−τ12(t)

(
1− γ2k

)
exp

{
z2
(
t− τ12(t)

)}

+ c1(t)
∏

0≤tk<t−τ13(t)

(
1− γ1k

)
exp

{
z1
(
t− τ13(t)

)}]
dt,

∫ ω

0
r2(t)dt =

∫ ω

0
r2(t)

[ ∏
0≤tk<t−τ21(t)

(
1− γ2k

)
exp

{
z2
(
t− τ21(t)

)}
a2(t) + b2(t)

∏
0≤tk<t−τ22(t)

(
1− γ1k

)
exp

{
z1
(
t− τ22(t)

)}

+ c2(t)
∏

0≤tk<t−τ23(t)

(
1− γ2k

)
exp

{
z2
(
t− τ23(t)

)}]
dt.

(3.21)

From (3.20) and (3.21), we have

∫ ω

0

∣∣ż1(t)
∣∣dt = λ

∫ ω

0

∣∣∣∣∣r1(t)

[
1−

∏
0≤tk<t−τ11(t)

(
1− γ1k

)
exp

{
z1
(
t− τ11(t)

)}
a1(t) + b1(t)

∏
0≤tk<t−τ12(t)

(
1− γ2k

)
exp

{
z2
(
t− τ12(t)

)}

− c1(t)
∏

0≤tk<t−τ13(t)

(
1− γ1k

)
exp

{
z1
(
t− τ13(t)

)}]∣∣∣∣∣dt

≤ λ
∫ ω

0

∣∣∣∣∣r1(t)

[
1 +

∏
0≤tk<t−τ11(t)

(
1− γ1k

)
exp

{
z1
(
t− τ11(t)

)}
a1(t) + b1(t)

∏
0≤tk<t−τ12(t)

(
1− γ2k

)
exp

{
z2
(
t− τ12(t)

)}

+ c1(t)
∏

0≤tk<t−τ13(t)

(
1− γ1k

)
exp

{
z1
(
t− τ13(t)

)}]∣∣∣∣∣dt

≤ 2
∫ ω

0
r1(t)dt ≤ 2ωrM1 ,

∫ ω

0

∣∣ż2(t)
∣∣dt = λ

∫ ω

0

∣∣∣∣∣r2(t)

[
1−

∏
0≤tk<t−τ21(t)

(
1− γ2k

)
exp

{
z2
(
t− τ21(t)

)}
a2(t) + b2(t)

∏
0≤tk<t−τ22(t)

(
1− γ1k

)
exp

{
z1
(
t− τ22(t)

)}

− c2(t)
∏

0≤tk<t−τ23(t)

(
1− γ2k

)
exp

{
z2
(
t− τ23(t)

)}]∣∣∣∣∣dt

≤ λ
∫ ω

0

∣∣∣∣∣r2(t)

[
1 +

∏
0≤tk<t−τ21(t)

(
1− γ2k

)
exp

{
z2
(
t− τ21(t)

)}
a2(t) + b2(t)

∏
0≤tk<t−τ22(t)

(
1− γ1k

)
exp

{
z1
(
t− τ22(t)

)}

+ c2(t)
∏

0≤tk<t−τ23(t)

(
1− γ2k

)
exp

{
z2
(
t− τ23(t)

)}]∣∣∣∣∣dt

≤ 2
∫ ω

0
r2(t)dt ≤ 2ωrM2 .

(3.22)
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That is,

∫ ω

0

∣∣ż1(t)
∣∣dt ≤ 2ωrM1 , (3.23)

∫ ω

0

∣∣ż2(t)
∣∣dt ≤ 2ωrM2 . (3.24)

Let t1 ∈ [0,ω] such that z1(t1) =maxt∈[0,ω]{z1(t)}, since r1(t) > 0; the first equation of
(3.20) implies

∏
0≤tk<t1−τ11(t1)

(
1− γ1k

)
exp

{
z1
(
t1− τ11

(
t1
))}

a1
(
t1
)

+ b1
(
t1
)∏

0≤tk<t1−τ12(t1)

(
1− γ2k

)
exp

{
z2
(
t1− τ12

(
t1
))}

+ c1
(
t1
) ∏

0≤tk<t1−τ13(t1)

(
1− γ1k

)
exp

{
z1
(
t1− τ13

(
t1
))}= 1;

(3.25)

hence,

c1
(
t1
) ∏

0≤tk<t1−τ13(t1)

(
1− γ1k

)
exp

{
z1
(
t1− τ13

(
t1
))}

< 1; (3.26)

moreover,

∏
0≤tk<t1−τ13(t1)

(
1− γ1k

)
exp

{
z1
(
t1− τ13

(
t1
))}

<
1

c1
(
t1
) , (3.27)

then

z1
(
t1− τ13

(
t1
))

< ln
As

1

cm1
. (3.28)

We denote t1− τ13(t1)= t∗1 + l1ω, t∗1 ∈ [0,ω] and l1 is an integer, then

z1
(
t∗1
)
< ln

As
1

cm1
; (3.29)

in view of this and (3.23), we have

z1(t)= z1
(
t∗1
)

+
∫ t

t∗1
ż1(s)ds≤ z1

(
t∗1
)

+
∫ ω

0

∣∣ż1(s)
∣∣ds < ln

As
1

cm1
+ 2ωrM1 :=M1. (3.30)
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From (3.20), (3.30), and condition (i), it follows that

c1
(
t1
) ∏

0≤tk<t1−τ13(t1)

(
1− γ1k

)
exp

{
z1
(
t1− τ13

(
t1
))}

= 1−
∏

0≤tk<t1−τ11(t1)

(
1− γ1k

)
exp

{
z1
(
t1− τ11

(
t1
))}

a1
(
t1
)

+ b1
(
t1
)∏

0≤tk<t1−τ12(t1)

(
1− γ2k

)
exp

{
z2
(
t1− τ12

(
t1
))}

>
a1
(
t1
)−∏0≤tk<t1−τ11(t1)

(
1− γ1k

)
exp

{
M1
}

a1
(
t1
)

≥ a1
(
t1
)−As

2 exp
{
M1
}

a1
(
t1
) > 0;

(3.31)

hence,

∏
0≤tk<t1−τ13(t1)

(
1− γ1k

)
exp

{
z1
(
t1− τ13

(
t1
))}≥ a1

(
t1
)−As

2 exp
{
M1
}

a1
(
t1
)
c1
(
t1
) (3.32)

or

z1
(
t1− τ13

(
t1
))

> ln
[
A

f
1
a1
(
t1
)−As

2 exp
{
M1
}

a1
(
t1
)
c1
(
t1
)

]
. (3.33)

Therefore,

z1
(
t∗1
)
> ln

[
A

f
1
a1
(
t1
)−As

2 exp
{
M1
}

a1
(
t1
)
c1
(
t1
)

]
,

z1(t)= z
(
t∗1
)

+
∫ t

t∗1
ż1(s)ds

> ln
[
A

f
1
a1
(
t1
)−As

2 exp
{
M1
}

a1
(
t1
)
c1
(
t1
)

]
−
∫ ω

0

∣∣ż1(t)
∣∣dt

> ln
[
A

f
1
a1
(
t1
)−As

2 exp
{
M1
}

a1
(
t1
)
c1
(
t1
)

]
− 2ωrM1 :=M′

1,

(3.34)

that is,

z1(t) >M′
1. (3.35)

From (3.35) and (3.30), we have

∣∣z1(t)
∣∣ < max

{∣∣M1
∣∣,
∣∣M′

1

∣∣} :=H1. (3.36)
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Let t2 ∈ [0,ω] such that z2(t2)=maxt∈[0,ω]{z2(t)}; since r2(t) > 0, the second equation of
(3.20) implies that

∏
0≤tk<t2−τ21(t2)

(
1− γ2k

)
exp

{
z2
(
t2− τ21

(
t2
))}

a2
(
t2
)

+ b2
(
t2
)∏

0≤tk<t2−τ22(t2)

(
1− γ1k

)
exp

{
z1
(
t2− τ22

(
t2
))}

+ c2
(
t2
) ∏

0≤tk<t2−τ23(t2)

(
1− γ2k

)
exp

{
z2
(
t2− τ23

(
t2
))}= 1;

(3.37)

thus,

c2
(
t2
) ∏

0≤tk<t2−τ23(t2)

(
1− γ2k

)
exp

{
z2
(
t2− τ23

(
t2
))}

< 1 (3.38)

or

∏
0≤tk<t2−τ23(t2)

(
1− γ2k

)
exp

{
z2
(
t2− τ23

(
t2
))}

<
1

c2
(
t2
) , (3.39)

then

z2
(
t2− τ23

(
t2
))

< ln
Bs

1

cm2
. (3.40)

We denote t2− τ23(t2)= t∗2 + l2ω, t∗2 ∈ [0,ω] and l2 is an integer, then

z2
(
t∗2
)
< ln

Bs
1

cm2
; (3.41)

in view of this and (3.24), we have

z2(t)= z2
(
t∗2
)

+
∫ t

t∗2
ż2(s)ds < ln

Bs
1

cm2
+ 2ωrM2 =M2. (3.42)

It follows from (3.20), (3.42), and condition (ii) that

c2(t)
∏

0≤tk<t−τ23(t)

(
1− γ2k

)
exp

{
z2
(
t− τ23(t)

)}

= 1−
∏

0≤tk<t−τ21(t)

(
1− γ2k

)
exp

{
z2
(
t− τ21(t)

)}
a2(t) + b2(t)

∏
0≤tk<t−τ22(t)

(
1− γ1k

)
exp

{
z1
(
t− τ22(t)

)}

>
a2
(
t2
)−∏0≤tk<t−τ21(t)

(
1− γ2k

)
exp

{
M2
}

a2
(
t2
)

≥ a2
(
t2
)−Bs

2 exp
{
M2
}

a2
(
t2
) > 0;

(3.43)
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hence,

∏
0≤tk<t−τ23(t)

(
1− γ2k

)
z2
(
t− τ23(t)

)
>
a2
(
t2
)−Bs

2 exp
{
M2
}

a2
(
t2
)
c2
(
t2
) , (3.44)

then

z2
(
t2− τ23

(
t2
))

> ln
[
B

f
1
am2 −Bs

2 exp
{
M2
}

aM2 cM2

]
. (3.45)

Therefore,

z2
(
t∗2
)
> ln

[
B

f
1
am2 −Bs

2 exp
{
M2
}

aM2 cM2

]
, (3.46)

from this and (3.23), we obtain

z2(t)= z2
(
t∗2
)

+
∫ t

t∗2
ż2(s)ds > ln

[
B

f
1
am2 −Bs

2 exp
{
M2
}

aM2 cM2

]
− 2ωrM2 :=M′

2, (3.47)

that is,

z2(t) >M′
2. (3.48)

From (3.35) and (3.42) we have

∣∣z2(t)
∣∣ < max

{∣∣M2
∣∣,
∣∣M′

2

∣∣} :=H2. (3.49)

Denote H = H1 + H2 + H0, clearly H is independent of λ. Now we take Ω = {(z1(t),
z2(t))T ∈ X : ‖(z1,z2)T‖ < H}. This Ω satisfied the condition (a) of Lemma 3.1. While
(z1(t),z2(t))T ∈ ∂Ω∩R2, (z1,z2)T is a constant vector with |z1|+ |z2| =H . Then

QN

[
z1

z2

]
=

⎡
⎢⎢⎢⎣

1
ω

∫ ω

0
G1
(
t,z1(t),z2(t)

)
dt

1
ω

∫ ω

0
G2
(
t,z1(t),z2(t)

)
dt

⎤
⎥⎥⎥⎦ �= 0. (3.50)

Furthermore, take J = I : ImQ→ KerL. By Lemma 3.2, we have

deg
{
JQN ,KerL∩Ω, (0,0)T

} �= 0. (3.51)

According to Lemma 3.1, system (3.4) has at least one ω-periodic solution. As a con-
sequence, system (1.3) has at least one positive ω-periodic solution. The proof is com-
plete. �
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